Search results for: mechanical stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2119

Search results for: mechanical stress

1789 Experimental Study on Thermomechanical Properties of New-Generation ODS Alloys

Authors: O. Khalaj, B. Mašek, H. Jirková, J. Svoboda

Abstract:

By using a combination of new technologies together with an unconventional use of different types of materials, specific mechanical properties and structures of the material can be achieved. Some possibilities are enabled by a combination of powder metallurgy in the preparation of a metal matrix with dispersed stable particles achieved by mechanical alloying and hot consolidation. This paper explains the thermomechanical properties of new generation of Oxide Dispersion Strengthened alloys (ODS) within three ranges of temperature with specified deformation profiles. The results show that the mechanical properties of new ODS alloys are significantly affected by the thermomechanical treatment.

Keywords: Hot forming, ODS, alloys, thermomechanical, Fe-Al, Al2O3.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
1788 Mechanical and Thermal Properties Characterisation of Vinyl Ester Matrix Nanocomposites Based On Layered Silicate

Authors: A. I. Alateyah, H. N. Dhakal, Z. Y. Zhang

Abstract:

The mechanical properties including flexural and tensile of neat vinyl ester and polymer based on layered silicate nanocomposite materials are discussed. The addition of layered silicate into the polymer matrix increased the tensile and flexural modulus up to 1 wt.% clay loading. The incorporation of more clay resulted in decreasing the mechanical properties which was traced to the existence of aggregation layers. Likewise, up to 1 wt.% clay loading, the thermal behaviour showed significant improvements and at higher clay loading the thermal pattern was reduced. The aggregation layers imparted a negative impact on the overall mechanical and thermal properties. Wide Angle X-ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy were utilised in order to characterise the interlamellar structure of nanocomposites.

Keywords: Vinyl ester, nanocomposites, layered silicate, mechanical properties, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3986
1787 Comparison of Process Slaughtered on Beef Cattle Based on Level of Cortisol and Fourier Transform Infrared Spectroscopy (FTIR)

Authors: Pudji Astuti, C. P. C. Putro, C. M. Airin, L. Sjahfirdi, S. Widiyanto, H. Maheshwari

Abstract:

Stress of slaughter animals starting long before until at the time of process of slaughtering which cause misery and decrease of meat quality. Meanwhile, determination of animal stress using hormonal such as cortisol is expensive and less practical so that portable stress indicator for cows based on Fourier Transform Infrared Spectroscopy (FTIR) must be provided. The aims of this research are to find out the comparison process of slaughter between Rope Casting Local (RCL) and Restraining Box Method (RBM) by measuring of cortisol and wavelength in FTIR methods. Thirty two of male Ongole crossbred cattle were used in this experiment. Blood sampling was taken from jugular vein when they were rested and repeated when slaughtered. All of blood samples were centrifuged at 3000 rpm for 20 minutes to get serum, and then divided into two parts for cortisol assayed using ELISA and for measuring the wavelength using FTIR. The serum then measured at the wavelength between 4000-400 cm-1 using MB3000 FTIR. Band data absorption in wavelength of FTIR is analyzed descriptively by using FTIR Horizon MBTM. For RCL, average of serum cortisol when the animals rested were 11.47 ± 4.88 ng/mL, when the time of slaughter were 23.27 ± 7.84 ng/mL. For RBM, level of cortisol when rested animals were 13.67 ± 3.41 ng/mL and 53.47 ± 20.25 ng/mL during the slaughter. Based on student t-Test, there were significantly different between RBM and RCL methods when beef cattle were slaughtered (P<0.05), but no significantly different when animals were rested (P>0.05). Result of FTIR with the various of wavelength such as methyl group (=CH3 ) 2986cm-1, methylene (=CH2 ) 2827 cm-1, hydroxyl (- OH) 3371 cm-1, carbonyl (ketones) (C=O) 1636 cm-1, carboxyl (COO-1) 1408 cm-1, glucosa 1057 cm-1, urea 1011 cm-1have been obtained. It can be concluded that the RCL slaughtered method is better than the RBM method based on the increase of cortisol as an indicator of stress in beef cattle (P<0.05). FTIR is really possible to be used as stub of stress tool due to differentiate of resting and slaughter condition by recognizing the increase of absorption and the separation of component group at the wavelength.  

Keywords: Cows, cortisol, FTIR, RBM, RCL, stress indicator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2440
1786 Job Stressors and Coping Mechanisms among Emergency Department Nurses in the Armed Force Hospitals of Taiwan

Authors: Wei-Wen Liu, Feng-Chuan Pan, Pei-Chi Wen, Sen-Ji Chen, Su-Hui Lin

Abstract:

Nurses in an Armed Force Hospital (AFH) expose to stronger stress than those in a civil hospital, especially in an emergency department (ED). Ironically, stresses of these nurses received few if any attention in academic research in the past. This study collects 227 samples from the emergency departments of four armed force hospitals in central and southern Taiwan. The research indicates that the top five stressors are a massive casualty event, delayed physician support, overloads of routine work, overloads of assignments, and annoying paper work. Excessive work loading was found to be the primary source of stress. Nurses who were perceived to have greater stress levels were more inclined to deploy emotion-oriented approaches and more likely to seek job rotations. Professional stressors and problem-oriented approaches were positively correlated. Unlike other local studies, this study concludes that the excessive work-loading is more stressful in an AFH.

Keywords: Emergency nurse, Job stressor, Coping behavior, Armed force hospital.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2926
1785 Production and Mechanical Characterization of Ballistic Thermoplastic Composite Materials

Authors: D. Korsacilar, C. Atas

Abstract:

In this study, first thermoplastic composite materials /plates that have high ballistic impact resistance were produced. For this purpose, the thermoplastic prepreg and the vacuum bagging technique were used to produce a composite material. Thermoplastic prepregs (resin-impregnated fiber) that are supplied ready to be used, namely high-density polyethylene (HDPE) was chosen as matrix and unidirectional glass fiber was used as reinforcement. In order to compare the fiber configuration effect on mechanical properties, unidirectional and biaxial prepregs were used. Then the microstructural properties of the composites were investigated with scanning electron microscopy (SEM) analysis. Impact properties of the composites were examined by Charpy impact test and tensile mechanical tests and then the effects of ultraviolet irradiation were investigated on mechanical performance.

Keywords: Ballistic, Composite, Thermoplastic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2869
1784 A Lagrangian Hamiltonian Computational Method for Hyper-Elastic Structural Dynamics

Authors: Hosein Falahaty, Hitoshi Gotoh, Abbas Khayyer

Abstract:

Performance of a Hamiltonian based particle method in simulation of nonlinear structural dynamics is subjected to investigation in terms of stability and accuracy. The governing equation of motion is derived based on Hamilton's principle of least action, while the deformation gradient is obtained according to Weighted Least Square method. The hyper-elasticity models of Saint Venant-Kirchhoff and a compressible version similar to Mooney- Rivlin are engaged for the calculation of second Piola-Kirchhoff stress tensor, respectively. Stability along with accuracy of numerical model is verified by reproducing critical stress fields in static and dynamic responses. As the results, although performance of Hamiltonian based model is evaluated as being acceptable in dealing with intense extensional stress fields, however kinds of instabilities reveal in the case of violent collision which can be most likely attributed to zero energy singular modes.

Keywords: Hamilton's principle of least action, particle based method, hyper-elasticity, analysis of stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
1783 Flow of a Second Order Fluid through Constricted Tube with Slip Velocity at Wall Using Integral Method

Authors: Nosheen Zareen Khan, Abdul Majeed Siddiqui, Muhammad Afzal Rana

Abstract:

The steady flow of a second order fluid through constricted tube with slip velocity at wall is modeled and analyzed theoretically. The governing equations are simplified by implying no slip in radial direction. Based on Karman Pohlhausen procedure polynomial solution for axial velocity profile is presented. Expressions for pressure gradient, shear stress, separation and reattachment points, and radial velocity are also calculated. The effect of slip and no slip velocity on magnitude velocity, shear stress, and pressure gradient are discussed and depicted graphically. It is noted that when Reynolds number increases magnitude velocity of the fluid decreases in both slip and no slip conditions. It is also found that the wall shear stress, separation, and reattachment points are strongly affected by Reynolds number.

Keywords: Approximate solution, constricted tube, non-Newtonian fluids, Reynolds number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
1782 Synthesis and Study the Effect of HNTs on PVA/Chitosan Composite Material

Authors: Malek Ali

Abstract:

Composites materials of Poly (vinyl alcohol) (PVA)/Chitosan (CS) have been synthesized and characterized successfully. HNTs have been added to composites to enhance the mechanical and degradation properties by hydrogen bonding interactions, compatibility, and chemical crosslink between HNTs and PVA. PVA/CS/HNTs composites prepared with different concentration ratio. SEM micrographs of composites surface showed that more agglomeration with more chitosan ratio. Mechanical and degradation properties were characterized and the result indicates that Mechanical and degradation of 80%PVA/5%Chitosan/15%HNTs higher than the others PVA/CS/HNTs composites.

Keywords: PVA/Chitosan, Composites, PVA/CS/HNTs, HNTs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
1781 Mechanical Properties of Powder Metallurgy Processed Biodegradable Zn-Based Alloy for Biomedical Application

Authors: Maruf Yinka Kolawole, Jacob Olayiwola Aweda, Farasat Iqbal, Asif Ali, Sulaiman Abdulkareem

Abstract:

Zinc is a non-ferrous metal with potential application in orthopaedic implant materials. However, its poor mechanical properties were major challenge to its application. Therefore, this paper studies the mechanical properties of biodegradable Zn-based alloy for biomedical application. Pure zinc powder with varying (0, 1, 2, 3 & 6) wt% of magnesium powders were ball milled using ball-to-powder ratio (B:P) of 10:1 at 350 rpm for 4 hours. The resulting milled powders were compacted and sintered at 300 MPa and 350 °C respectively. Microstructural, phase and mechanical properties analyses were performed following American standard of testing and measurement. The results show that magnesium has influence on the mechanical properties of zinc. The compressive strength, hardness and elastic modulus of 210 ± 8.878 MPa, 76 ± 5.707 HV and 45 ± 11.616 GPa respectively as obtained in Zn-2Mg alloy were optimum and meet the minimum requirement of biodegradable metal for orthopaedics application. These results indicate an increase of 111, 93 and 93% in compressive strength, hardness and elastic modulus respectively as compared to pure zinc. The increase in mechanical properties was adduced to effectiveness of compaction pressure and intermetallic phase formation within the matrix resulting in high dislocation density for improving strength. The study concluded that, Zn-2Mg alloy with optimum mechanical properties can therefore be considered a potential candidate for orthopaedic application.

Keywords: Biodegradable metal, biomedical application mechanical properties, powder metallurgy, zinc.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 956
1780 A Soft Switching PWM DC-DC Boost Converter with Increased Efficiency by Using ZVT-ZCT Techniques

Authors: Yakup Sahin, Naim Suleyman Ting, Ismail Aksoy

Abstract:

In this paper, an improved active snubber cell is proposed on account of soft switching (SS) family of pulse width modulation (PWM) DC-DC converters. The improved snubber cell provides zero-voltage transition (ZVT) turn on and zero-current transition (ZCT) turn off for main switch. The snubber cell decreases EMI noise and operates with SS in a wide range of line and load voltages. Besides, all of the semiconductor devices in the converter operate with SS. There is no additional voltage and current stress on the main devices. Additionally, extra voltage stress does not occur on the auxiliary switch and its current stress is acceptable value. The improved converter has a low cost and simple structure. The theoretical analysis of converter is clarified and the operating states are given in detail. The experimental results of converter are obtained by prototype of 500 W and 100 kHz. It is observed that the experimental results and theoretical analysis of converter are suitable with each other perfectly.

Keywords: Active snubber cells, DC-DC converters, zero-voltage transition, zero-current transition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
1779 Residual Stresses in Thermally Sprayed Gas Turbine Components

Authors: M.Jalali Azizpour, S.Norouzi, D.Sajedipour, H.Mohammadi Majd

Abstract:

In this paper, the residual stress of thermal spray coatings in gas turbine component by curvature method has been studied. The samples and shaft were coated by hard WC-12Co cermets using high velocity oxy fuel (HVOF) after preparation in same conditions. The curvature of coated samples was measured by using of coordinate measurement machine (CMM). The metallurgical and Tribological studies has been made on the coated shaft using optical microscopy and scanning electron microscopy (SEM)

Keywords: Thermal spray, Residual stress, Wear mechanism, HVOF, Gas compressor shafts

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
1778 Estimation of R= P [Y < X] for Two-parameter Burr Type XII Distribution

Authors: H.Panahi, S.Asadi

Abstract:

In this article, we consider the estimation of P[Y < X], when strength, X and stress, Y are two independent variables of Burr Type XII distribution. The MLE of the R based on one simple iterative procedure is obtained. Assuming that the common parameter is known, the maximum likelihood estimator, uniformly minimum variance unbiased estimator and Bayes estimator of P[Y < X] are discussed. The exact confidence interval of the R is also obtained. Monte Carlo simulations are performed to compare the different proposed methods.

Keywords: Stress-Strength model, Maximum likelihood estimator, Bayes estimator, Burr type XII distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
1777 Thermo-Mechanical Treatment of Chromium Alloyed Low Carbon Steel

Authors: L. Kučerová, M. Bystrianský, V. Kotěšovec

Abstract:

Thermo-mechanical processing with various processing parameters was applied to 0.2%C-0.6%Mn-2S%i-0.8%Cr low alloyed high strength steel. The aim of the processing was to achieve the microstructures typical for transformation induced plasticity (TRIP) steels. Thermo-mechanical processing used in this work incorporated two or three deformation steps. The deformations were in all the cases carried out during the cooling from soaking temperatures to various bainite hold temperatures. In this way, 4-10% of retained austenite were retained in the final microstructures, consisting further of ferrite, bainite, martensite and pearlite. The complex character of TRIP steel microstructure is responsible for its good strength and ductility. The strengths achieved in this work were in the range of 740 MPa – 836 MPa with ductility A5mm of 31-41%.

Keywords: Pearlite, retained austenite, thermo-mechanical treatment, TRIP steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834
1776 Evaluation of Longitudinal and Hoop Stresses and a Critical Study of Factor of Safety (FoS) in Design of a Glass-Fiber Pressure Vessel

Authors: Zainul Huda, Muhammad Hani Ajani

Abstract:

The design, manufacture, and operation of thin-walled pressure vessels must be based on maximum safe operating pressure and an adequate factor of safety (FoS). This research paper first reports experimental evaluation of longitudinal and hoops stresses based on working pressure as well as maximum pressure; and then includes a critical study of factor of safety (FoS) in the design of a glass fiber pressure vessel. Experimental work involved the use of measuring instruments and the readings from pressure gauges. Design calculations involved the computations of design stress and FoS; the latter was based on breaking strength of 55 MPa for the glass fiber (pressure-vessel material). The experimentally determined FoS value has been critically compared with the general FoS allowed in the design of glass fiber pressure vessels.

Keywords: Thin-walled pressure vessel, hoop stress, longitudinal stress, factor of safety (FoS), fiberglass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7763
1775 Intervention of Sambucus Nigra Polyphenolic Extract in Experimental Arterial Hypertension

Authors: Manuela Ciocoiu, Laur Badescu, Oana Badulescu, Magda Badescu

Abstract:

The research focuses on the effects of polyphenols extracted from Sambucus nigra fruit, using an experimental arterial hypertension pattern, as well as their influence on the oxidative stress. The results reveal the normalization of the reduced glutathion concentration, as well as a considerable reduction in the malondialdehide serum concentration by the polyphenolic protection. The rat blood pressure values were recorded using a CODATM system, which uses a non-invasive blood pressure measuring method. All the measured blood pressure components revealed a biostatistically significant (p<0.05) blood pressure drop between the AHT and the AHT+P groups. The results prove that oxidative stress is considerably lower, statistically speaking, in rats with hypertension but also provided with natural polyphenolic protection from Sambucus nigra fruits than in the rats belonging to the control group. In addition to the demonstrated antioxidant effects, natural polyphenols also have other biological properties that might contribute to the cardioprotective effects.

Keywords: Arterial hypertension, Oxidative stress, Sambucus nigra

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3293
1774 Study on Damage Tolerance Behavior of Integrally Stiffened Panel and Conventional Stiffened Panel

Authors: M. Adeel

Abstract:

The damage tolerance behavior of integrally and conventional stiffened panel is investigated based on the fracture mechanics and finite element analysis. The load bearing capability and crack growth characteristic of both types of the stiffened panels having same configuration subjected to distributed tensile load is examined in this paper. A fourteen-stringer stiffened panel is analyzed for a central skin crack propagating towards the adjacent stringers. Stress intensity factors and fatigue crack propagation rates of both types of the stiffened panels are then compared. The analysis results show that integral stiffening causes higher stress intensity factor than conventional stiffened panel as the crack tip passes through the stringer and the integrally stiffened panel has less load bearing capability than the riveted stiffened panel.

Keywords: Conventional Stiffened Structure, Damage Tolerance, Finite Element Analysis, Integrally Stiffened Structure, Stress Intensity Factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2890
1773 The Effects of Alkalization to the Mechanical Properties of the Ijuk Fiber Reinforced PLA Biocomposites

Authors: Mochamad Chalid, Imam Prabowo

Abstract:

Today, the pollution due to non-degradable material such as plastics, has led to studies about the development of environmental-friendly material. Because of biodegradability obtained from natural sources, polylactid acid (PLA) and ijuk fiber are interesting to modify into a composite. This material is also expected to reduce the impact of environmental pollution. Surface modification of ijuk fiber through alkalinization with 0.25 M NaOH solution for 30 minutes was aimed to enhance its compatibility to PLA, in order to improve properties of the composite such as the mechanical properties. Alkalinization of the ijuk fibers annihilates some surface components such as lignin, wax and hemicelloluse, so the pore on the surface clearly appeared, decreasing of the density and diameter of the ijuk fibers. The change of the ijuk fiber properties leads to increase the mechanical properties of PLA composites reinforced the ijuk fibers through strengthening of the mechanical interlocking with the PLA matrix. An addition to enhance the distribution of the fibers in the PLA matrix, the stirring during DCM solvent evaporation from the mixture of the ijuk fibers and the dissolved-PLA can reduce amount of the trapped-voids and fibers pull-out phenomena, which can decrease the mechanical properties of the composite.

Keywords: Polylactic acid, Arenga pinnata, alkalinization, compatibility, adhesion, morphology, mechanical properties, volume fraction, distributiom.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2779
1772 Effect of Non-Crimp Fabric Structure on Mechanical Properties of Laminates

Authors: Hireni R. Mankodi, D. J. Chudasama

Abstract:

The textile preforms play a key role in providing the mechanical properties and gives the idea about selection parameter of preforms to improve the quality and performance of laminates. The main objectives of this work are to study the effect of non-crimp fabric preform structure in final properties of laminates. It has been observed that the multi-axial preform give better mechanical properties of laminates as compared to woven and biaxial fabrics. This study investigated the effect of different non-crimp glass preform structure on tensile strength, bending and compression properties of glass laminates. The different woven, bi-axial and multi-axial fabrics with similar GSM used to manufacture the laminates using polyester resin. The structural and mechanical properties of preform and laminates were studied using standard methods. It has been observed that the glass fabric geometry, including type of weaves, warps and filling density and number of layer plays significant role in deciding mechanical properties of laminates.

Keywords: Preform, non-crimp, laminates, bi-axial, multiaxial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
1771 Design Optimization of the Primary Containment Building of a Pressurized Water Reactor

Authors: M. Hossain, A. H. Khan, M. A. R. Sarkar

Abstract:

Primary containment structure is one of the five safety layers of a nuclear facility which is needed to be designed in such a manner that it can withstand the pressure and excessive radioactivity during accidental situations. It is also necessary to ensure minimization of cost with maximum possible safety in order to make the design economically feasible and attractive. This paper attempts to identify the optimum design conditions for primary containment structure considering both mechanical and radiation safety keeping the economic aspects in mind. This work takes advantage of commercial simulation software to identify the suitable conditions without the requirement of costly experiments. Generated data may be helpful for further studies.

Keywords: PWR, concrete containment, finite element approach, neutron attenuation, Von Mises Stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 858
1770 The Effect of Kaizen Implementation on Employees’ Affective Attitude in Textile Company in Ethiopia

Authors: Meseret Teshome

Abstract:

This study has the objective of assessing the effect of kaizen (5S, Muda elimination and Quality Control Circle (QCC) on employees’ affective attitude (job satisfaction, commitment and job stress) in Kombolcha Textile Share Company. A conceptual model was developed to describe the relationship between Kaizen and Employees’ Affective Attitude (EAA) factors. The three factors of Employee Affective Attitude were measured using questionnaire derived from other validated questionnaire. In the data collection to conduct this study; questionnaire, unstructured interview, written documents and direct observations are used. To analyze the data, SPSS and Microsoft Excel were used. In addition, the internal consistency of similar items in the questionnaire instrument was measured for their equivalence by using the cronbach’s alpha test. In this study, the effect of 5S, Muda elimination and QCC on job satisfaction, commitment and job stress in Kombolcha Textile Share Company is assessed and factors that reduce employees’ job satisfaction with respect to kaizen implementation are identified. The total averages of means from the questionnaire are 3.1 for job satisfaction, 4.31 for job commitment and 4.2 for job stress. And results from interview and secondary data show that kaizen implementation have effect on EAA. In general, based on the thesis results it was concluded that kaizen (5S, muda elimination and QCC) have positive effect for improving EAA factors at KTSC. Finally, recommendations for improvement are given based on the results.

Keywords: Kaizen, job satisfaction, job commitment, job stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1238
1769 Germination and Seed Vigor Response of Five Wheat Cultivars to Stress of Premature Aging Effects

Authors: M. Soltani Howyzeh, N. Kardoni, M. Mojadam

Abstract:

To evaluate the vigor of wheat seeds and stress of premature aging effects on germination percentage, root length and shoot length of five wheat cultivars that include Vynak, Karkheh, Chamran, Star and Kavir which underwent a period of zero, two, three, four days in terms of premature aging with 41°C temperature and 100% relative humidity. Seed germination percentage, root length and shoot length in these conditions were measured. This experiment was conducted as a factorial completely randomized design with four replications in laboratory conditions. The results showed that each of aging treatments used in this experiment can be used to detect differences in vigor of wheat varieties. Wheat cultivars illustrated significant differences in germination percentage, root length and shoot length in terms of premature aging. The wheat cultivars; Astar and Vynak had maximum germination percentage and Karkheh, respectively Kavir and Chamran had lowest percentage of seed germination. Reactions of root and shoot length of wheat cultivars was also different. The results showed that the seeds with a stronger vigor affected less in premature aging condition and the difference between the percentage of seed germination under normal conditions and stress was significant and the seeds with the weaker vigor were more sensitive to the premature aging stress and the premature aging had more severe negative impact on seed vigor.

Keywords: Wheat cultivars, seed vigor, premature aging effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
1768 Comparative Study of Tensile Properties of Cast and Hot Forged Alumina Nanoparticle Reinforced Composites

Authors: S. Ghanaraja, Subrata Ray, S. K. Nath

Abstract:

Particle reinforced Metal Matrix Composite (MMC) succeeds in synergizing the metallic matrix with ceramic particle reinforcements to result in improved strength, particularly at elevated temperatures, but adversely it affects the ductility of the matrix because of agglomeration and porosity. The present study investigates the outcome of tensile properties in a cast and hot forged composite reinforced simultaneously with coarse and fine particles. Nano-sized alumina particles have been generated by milling mixture of aluminum and manganese dioxide powders. Milled particles after drying are added to molten metal and the resulting slurry is cast. The microstructure of the composites shows good distribution of both the size categories of particles without significant clustering. The presence of nanoparticles along with coarser particles in a composite improves both strength and ductility considerably. Delay in debonding of coarser particles to higher stress is due to reduced mismatch in extension caused by increased strain hardening in presence of the nanoparticles. However, higher addition of powder mix beyond a limit results in deterioration of mechanical properties, possibly due to clustering of nanoparticles. The porosity in cast composite generally increases with the increasing addition of powder mix as observed during process and on forging it has got reduced. The base alloy and nanocomposites show improvement in flow stress which could be attributed to lowering of porosity and grain refinement as a consequence of forging.

Keywords: Aluminum, alumina, nanoparticle reinforced composites, porosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
1767 Material Selection for a Manual Winch Rope Drum

Authors: Moses F. Oduori, Enoch K. Musyoka, Thomas O. Mbuya

Abstract:

The selection of materials is an essential task in mechanical design processes. This paper sets out to demonstrate the application of analytical decision making during mechanical design and, particularly, in selecting a suitable material for a given application. Equations for the mechanical design of a manual winch rope drum are used to derive quantitative material performance indicators, which are then used in a multiple attribute decision making (MADM) model to rank the candidate materials. Thus, the processing of mechanical design considerations and material properties data into information that is suitable for use in a quantitative materials selection process is demonstrated for the case of a rope drum design. Moreover, Microsoft Excel®, a commonly available computer package, is used in the selection process. The results of the materials selection process are in agreement with current industry practice in rope drum design. The procedure that is demonstrated here should be adaptable to other design situations in which a need arises for the selection of engineering materials, and other engineering entities.

Keywords: Design Decisions, Materials Selection, Mechanical Design, Rope Drum Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3761
1766 Stress Analysis of Spider Gear Using Structural Steel on ANSYS

Authors: Roman Kalvin, Anam Nadeem, Shahab Khushnood

Abstract:

Differential is an integral part of four wheeled vehicle, and its main function is to transmit power from drive shaft to wheels. Differential assembly allows both rear wheels to turn at different speed along curved paths. It consists of four gears which are assembled together namely pinion, ring, spider and bevel gears. This research focused on the spider gear and its static structural analysis using ANSYS. The main aim was to evaluate the distribution of stresses on the teeth of the spider gear. This study also analyzed total deformation that may occur during its working along with bevel gear that is meshed with spider gear. Structural steel was chosen for spider gear in this research. Modeling and assembling were done on SolidWorks for both spider and bevel gear. They were assembled exactly same as in a differential assembly. This assembly was then imported to ANSYS. After observing results that maximum amount of stress and deformation was produced in the spider gear, it was concluded that structural steel material for spider gear possesses greater amount of strength to bear maximum stress.

Keywords: Differential, spider gear, ANSYS, structural steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1041
1765 Detection of Oxidative Stress Induced by Mobile Phone Radiation in Tissues of Mice using 8-Oxo-7, 8-Dihydro-2'-Deoxyguanosine as a Biomarker

Authors: Ahmad M. Khalil, Ahmad M. Alshamali, Marwan H. Gagaa

Abstract:

We investigated oxidative DNA damage caused by radio frequency radiation using 8-oxo-7, 8-dihydro-2'- deoxyguanosine (8-oxodG) generated in mice tissues after exposure to 900 MHz mobile phone radio frequency in three independent experiments. The RF was generated by a Global System for Mobile Communication (GSM) signal generator. The radio frequency field was adjusted to 25 V/m. The whole body specific absorption rate (SAR) was 1.0 W/kg. Animals were exposed to this field for 30 min daily for 30 days. 24 h post-exposure, blood serum, brain and spleen were removed and DNA was isolated. Enzyme-linked immunosorbent assay (ELISA) was used to measure 8-oxodG concentration. All animals survived the whole experimental period. The body weight of animals did not change significantly at the end of the experiment. No statistically significant differences observed in the levels of oxidative stress. Our results are not in favor of the hypothesis that 900 MHz RF induces oxidative damage.

Keywords: Mice, Mobile phone radiation, oxidative stress, 8-oxo-7, 8-dihydro-2'-deoxyguanosine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
1764 Non Destructive Testing for Evaluation of Defects and Interfaces in Metal Carbon Fiber Reinforced Polymer Hybrids

Authors: H.-G. Herrmann, M. Schwarz, J. Summa, F. Grossmann

Abstract:

In this work, different non-destructive testing methods for the characterization of defects and interfaces are presented. It is shown that, by means of active thermography, defects in the interface and in the carbon fiber reinforced polymer (CFRP) itself can be detected and determined. The bonding of metal and thermoplastic can be characterized very well by ultrasonic testing with electromagnetic acoustic transducers (EMAT). Mechanical testing is combined with passive thermography to correlate mechanical values with the defect-size. There is also a comparison between active and passive thermography. Mechanical testing shows the influence of different defects. Furthermore, a correlation of defect-size and loading to rupture was performed.

 

Keywords: Defect evaluation, EMAT, mechanical testing, thermography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
1763 Optimum Design of Pressure Vessel Subjected to Autofrettage Process

Authors: Abu Rayhan Md. Ali, Nidul Ch. Ghosh, Tanvir-E-Alam

Abstract:

The effect of autofrettage process in strain hardened thick-walled pressure vessels has been investigated theoretically by finite element modeling. Equivalent von Mises stress is used as yield criterion to evaluate the optimum autofrettage pressure and the optimum radius of elastic-plastic junction. It has been observed that the optimum autofrettage pressure increases along with the working pressure. For two different working pressures, the effect of the ratio of outer to inner radius (b/a=k) value on the optimum autofrettage pressure is also noticed. The Optimum autofrettage pressure solely depends on K value rather than on the inner or outer radius. Furthermore, percentage reduction of von Mises stresses is compared for different working pressures and different k values. Maximum von Mises stress developed at different autofrettage pressure is equated for elastic perfectly plastic and elastic-plastic material with different slope of strain hardening segment. Cylinder material having higher slope of strain hardening segment provides better benedictions in the autofrettage process.

Keywords: Autofrettage, elastic plastic junction, pressure vessel, von Mises stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3797
1762 Mechanical Contribution of Silica Fume and Hydrated Lime Addition in Mortars Assessed by Ultrasonic Pulse Velocity Tests

Authors: Nacim Khelil, Amar Kahil, Said Boukais

Abstract:

The aim of the present study is to investigate the changes in the mechanical properties of mortars including additions of Condensed Silica Fume (CSF), Hydrated Lime (CH) or both at various amounts (5% to 15% of cement replacement) and high water ratios (w/b) (0.4 to 0.7). The physical and mechanical changes in the mixes were evaluated using non-destructive tests (Ultrasonic Pulse Velocity (UPV)) and destructive tests (crushing tests) on 28 day-long specimens consecutively, in order to assess CSF and CH replacement rate influence on the mechanical and physical properties of the mortars, as well as CSF-CH pre-mixing on the improvement of these properties. A significant improvement of the mechanical properties of the CSF, CSF-CH mortars, has been noted. CSF-CH mixes showed the best improvements exceeding 50% improvement, showing the sizable pozzolanic reaction contribution to the specimen strength development. UPV tests have shown increased velocities for CSF and CSH mixes, however no proportional evolution with compressive strengths could be noted. The results of the study show that CSF-CH addition could represent a suitable solution to significantly increase the mechanical properties of mortars.

Keywords: Compressive strength, condensed silica fume, hydrated lime, pozzolanic reaction, UPV testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 557
1761 Finite Element Modeling of the Mechanical Behavior of Municipal Solid Waste Incineration Bottom Ash with the Mohr-Coulomb Model

Authors: Le Ngoc Hung, Abriak Nor Edine, Binetruy Christophe, Benzerzour Mahfoud, Shahrour Isam, Patrice Rivard

Abstract:

Bottom ash from Municipal Solid Waste Incineration (MSWI) can be viewed as a typical granular material because these industrial by-products result from the incineration of various domestic wastes. MSWI bottom ash is mainly used in road engineering in substitution of the traditional natural aggregates. As the characterization of their mechanical behavior is essential in order to use them, specific studies have been led over the past few years. In the first part of this paper, the mechanical behavior of MSWI bottom ash is studied with triaxial tests. After, analysis of the experiment results, the simulation of triaxial tests is carried out by using the software package CESAR-LCPC. As the first approach in modeling of this new class material, the Mohr-Coulomb model was chosen to describe the evolution of material under the influence of external mechanical actions.

Keywords: Bottom ash, granular material, triaxial test, mechanical behavior, simulation, Mohr-Coulomb model, CESARLCPC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
1760 Stress Intensity Factors for Plates with Collinear and Non-Aligned Straight Cracks

Authors: Surendran M, Palani G. S, Nagesh R. Iyer

Abstract:

Multi-site damage (MSD) has been a challenge to aircraft, civil and power plant structures. In real life components are subjected to cracking at many vulnerable locations such as the bolt holes. However, we do not consider for the presence of multiple cracks. Unlike components with a single crack, these components are difficult to predict. When two cracks approach one another, their stress fields influence each other and produce enhancing or shielding effect depending on the position of the cracks. In the present study, numerical studies on fracture analysis have been conducted by using the developed code based on the modified virtual crack closure integral (MVCCI) technique and finite element analysis (FEA) software ABAQUS for computing SIF of plates with multiple cracks. Various parametric studies have been carried out and the results have been compared with literature where ever available and also with the solution, obtained by using ABAQUS. By conducting extensive numerical studies expressions for SIF have been obtained for collinear cracks and non-aligned cracks.

Keywords: Crack interaction, Fracture mechanics, Multiple site damage, stress intensity factor, collinear cracks, non-aligned cracks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2909