Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30011
Detection of Oxidative Stress Induced by Mobile Phone Radiation in Tissues of Mice using 8-Oxo-7, 8-Dihydro-2'-Deoxyguanosine as a Biomarker

Authors: Ahmad M. Khalil, Ahmad M. Alshamali, Marwan H. Gagaa


We investigated oxidative DNA damage caused by radio frequency radiation using 8-oxo-7, 8-dihydro-2'- deoxyguanosine (8-oxodG) generated in mice tissues after exposure to 900 MHz mobile phone radio frequency in three independent experiments. The RF was generated by a Global System for Mobile Communication (GSM) signal generator. The radio frequency field was adjusted to 25 V/m. The whole body specific absorption rate (SAR) was 1.0 W/kg. Animals were exposed to this field for 30 min daily for 30 days. 24 h post-exposure, blood serum, brain and spleen were removed and DNA was isolated. Enzyme-linked immunosorbent assay (ELISA) was used to measure 8-oxodG concentration. All animals survived the whole experimental period. The body weight of animals did not change significantly at the end of the experiment. No statistically significant differences observed in the levels of oxidative stress. Our results are not in favor of the hypothesis that 900 MHz RF induces oxidative damage.

Keywords: Mice, Mobile phone radiation, oxidative stress, 8-oxo-7, 8-dihydro-2'-deoxyguanosine

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF


[1] L. Hardell, M. Carlberg, and M. K. Hansson, "Epidemiological evidence for an association between use of wireless phones and tumor diseases" Pathophysiology, vol. , 16, pp. 113-122, 2009.
[2] V. G. Khurana, C. Teo, M. Kundi, L Hardell, and M. Carlberg, "Cell phones and brain tumors: a review including the long-term epidemiologic data", Surgical Neurology, vol. 72, pp. 205-215, 2009.
[3] R. J. Croft, R. J. Mckenzie, I. Inyang, G. P. Benke, V.Anderson, and M. J. Abramson, "Mobile phones and brain tumors: a review of epidemiological research", Australasian Physical and Engineering Sciences in Medicine, vol. 31, pp. 255-267, 2008.
[4] A. Agarwal, N. R. Desai, K. Makker, A.Varghese, R. Mouradi, E. Sabanegh, and R. Sharma, "Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study", Fertility and Sterility, vol. 92, pp. 1318-1325, 2009.
[5] G. N. De Iuliis, R. J. Newey, B. V. King, and R. J. Aitken, "Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro", PLoS One, vol. 4, pp. e6446, 2009.
[6] N. Salama, T. Kishimoto, and H. O. Kanayama, "Effects of exposure to a mobile phone on testicular function and structure in adult rabbit", International Journal of Andrology, vol. 33, pp. 88-94, 2010.
[7] N. Falzone, C. Huyser, F. Fourie, T. Toivo, D. Leszczynski, and D. Franken, "In vitro effect of pulsed 900 MHz GSM radiation on mitochondrial membrane potential and motility of human spermatozoa", Bioelectromagnetics, vol. 29, pp. 268-276, 2008.
[8] H. W. Ruediger, "Genotoxic effects of radiofrequency electromagnetic fields", Pathophysiology, vol. 16 pp. 89-102, 2009.
[9] I. L. Hansteen, K. O. Clausen, V. Haugan, M. Svendsen, M. V. Svendsen, J. K. Eriksen, et al. , "Cytogenetic effects of exposure to 2.3 GHz radiofrequency radiation on human lymphocytes in vitro", Anticancer Research, vol. 29, pp. 4323-4330, 2009.
[10] A. Khalil, and A. Alshamali, "No significant cytogenetic effects in cultured human lymphocytes exposed to cell phones radiofrequencies (900MHz and 1800MHz)", Jordan Journal of Biological Sciences, vol. 3, pp. 21-28, 2010.
[11] P. Valbonesi, S. Franzellitti, A. Piano, A. Contin,C. Biondi, and E. Fabbri, "Evaluation of HSP70 expression and DNA damage in cells of a human trophoblast cell line exposed to 1.8 GHz amplitude-modulated radiofrequency fields", Radiation Research, vol. 169, pp. 270-279, 2008.
[12] O. Zeni, A. Schiavoni, A. Perrotta, D. Forigo, M. Deplano, and M. R. Scarfi, "Evaluation of genotoxic effects in human leukocytes after in vitro exposure to 1950 MHz UMTS radiofrequency field", Bioelectromagnetics, vol. 29, pp. 177-184, 2008.
[13] N. R. Desai, K. K. Kesari, and A. Agarwal, "Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system", Reproductive Biology and Endocrinology, vol. 7, pp. 114, 2009.
[14] K. K. Kesari, and J. Behari, "Microwave exposure affecting reproductive system in male rats", Applied Biochemistry and Biotechnology, vol. 158, pp. 126-139, 2009.
[15] M. Simko, "Cell type specific redox status is responsible for diverse electromagnetic field effect", Current Medicinal Chemistry, vol. 14, pp. 1141-1152, 2007.
[16] H. Kasai, P. F. Crain, Y. Kuchino, S. Nishimura S, A. Ootsuyama, and H. Tanooka, "Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair", Carcinogenesis, vol. 7, pp. 1849-1851, 1986.
[17] A. Valavanidis, T. Vlachogianni, and C. Fiotakis "8-Hydroxy-2'- deoxyguanosine (8-OhdG): A Critical biomarker of oxidative stress and carcinogenesis", Journal of Environmental Science and Health - Part C, vol. 27, pp. 120-139, 2009.
[18] K. C. Cheng, D. S. Cahill, H. Kasai, S. Nishimura, and L. A. Loeb, "8- Hydroxyguanine, an abundant form of oxidative DNA damage, causes G----T and A----C substitutions", Journal of Biological Chemistry, vol. 267, pp. 166-172, 1992.
[19] HFSS, "High frequency structure simulator based on finite element method", V11.0.2 Ansoft Corporation, 2007.
[20] O. P. Gandhi, G. Lazzi, and C. M. Furse, "Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900 MHZ", IEEE Transaction on Microwave Theory and Technology, vol. 44, pp. 1884-1897, 1996.
[21] D. K. Lahiri, and J. I. Nurnberger, "A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP st Biochemical and Molecular Medicine udies", Nucleic Acids Research, vol. 19, pp. 5444, 1991.
[22] J. R. Hofstetter, A. Zhang, A. R. Mayeda, J. I. Nurnberger, and D. K. Lahiri, "Genomic DNA from mice: a comparison of recovery methods and tissue sources", Biochemical and Molecular Medicine, vol. 62, pp. 197-202, 1997.
[23] H. G. Claycamp, "Phenol sensitization of DNA to subsequent oxidative damage in 8-hydroxyguanine assays", Carcinogenesis, vol. 13, pp. 1289-1292, 1992.
[24] M. S. Cooke, M. D. Evans, K. E.Herbert, And J. L. Lunec, "Urinary 8- oxo-2'-deoxyguanosineÔÇösource, significance and supplements", Free Radical Research, vol. 32, pp. 381-397, 2000.
[25] A. Pilger, and H. W. Rudiger, "8-Hydroxy-2'-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures", International Archives of Occupational and Environmental Health, vol. 80, pp. 1-15, 2006.
[26] B. Yin, R. M. Whyatt, F. P. Perera, M. C. Randall, T. B. Cooper, and R. M. Santella, "Determination of 8-hydroxydeoxyguanosine by an immunoaffinity chromatography-monoclonal antibody-based ELISA" Free Radical Biology and Medicine , vol. 18, 1023-1032, 1995.
[27] K. Shimoi, H. Kasai, N. Yokota, and S. Toyokuni S, Kinae, "Comparison between high-performance liquid chromatography and enzyme-linked immunosorbent assay for the determination of 8- hydroxy-2ÔÇ▓-deoxyguanosine in human urine", Cancer Epidemiology, Biomarkers and Prevention, vol. 11, 767-770, 2002.
[28] J. Cadet, T. Douki, S. Frelon, S. Sauvaigo, J. P. Pouget, and J. L Ravanat, "Assessment of oxidative base damage to isolated and cellular DNA by HPLC-MS/MS measurement", Free Radical Biology and Medicine, vol. 33, pp. 441-449, 2002.
[29] J. L. Ravanat, R. J. Turesky, E. Gremaud, L. J. Trudel, R. H. Stader, "Determination of 8-oxoguanine in DNA by gas chromatography-mass spectrometry and HPLC-electrochemical detection: overestimation of the background level of the oxidized base by the gas chromatography-mass spectrometry assay", Chemical Research in Toxicology, vol. 8, pp. 1039-1045, 1995.
[30] H. J. Helbock, K. B. Beckman, M. K. Shigenaga, P. Walter, A. A. Woodall, H. C. Yeo, et al., "DNA oxidation matters: The HPLC-EC assay of 8-oxo-deoxyguanosine and 8-oxo-guanine", Proceedings of the National Academy of Sciences, USA, vol. 95, pp. 288-293, 1998.
[31] D. Mangal, D. Vudathala, J. H. Park, S. H. Lee, T. M. Penning, and I. A. Blair, "Analysis of 8-oxo-2'-deoxyguanosine in cellular DNA during oxidative stress", Chemical Research in Toxicology, vol. 22, pp. 788- 797, 2009.
[32] J. L. Ravanat, T. Douki, P. Duez, E. Gremaud, K. Herbert, T. Hofer, et al. , "Cellular background level of 8-oxo-7, 8-dihydro-2ÔÇ▓- deoxyguanosine: an isotope based method to evaluate artefactual oxidation of DNA during its extraction and subsequent work-up", Carcinogenesis, vol. 23, pp. 1911-1918, 2002.
[33] M. Ammari, A. Lecomte, M. Sakly, H. Abdelmelek, and R. de-Seze, "Exposure to GSM 900 MHz electromagnetic fields affects cerebral cytochrome c oxidase activity", Toxicology, vol. 250, pp. 70-74, 2008.
[34] G. Borthakur, C. Butryee, M. Stacewicz-Sapuntzakis, and P. E. Bowen, "Exofoliated buccal cells as source of DNA to study oxidative stress", Cancer Epidemiology, Biomarkers & Prevention, vol. 17, pp. 212-219, 2008.
[35] A. Tomruk, G. G. Goknur, and A. S. Dincel, "The Influence of 1800 MHz GSM-like signals on hepatic oxidative DNA and lipid damage in nonpregnant, pregnant, and newly born rabbits", Cell Biochemistry and Biophysics, vol. 56, pp. 39-47, 2010.
[36] S. Xu, Z. Zhou, L. Zhang, Z. Yu, W. Zhang, Y. Wang, et al., "Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons", Brain Research, vol. 1311, pp. 189-196, 2010.
[37] K. Hubbard, H. Huang, M. F. Laspia, H. Ide, B. F. Erlanger, and S. S. Wallace, "Immunochemical quantitation of thymine glycol in oxidized and X-irradiated DNA", Radiation Research, vol. 118, pp. 257-268, 1989.
[38] J. Musarrat, J. Arezina-Wilson, and A. Wani, "Prognostic and aetiological relevance of 8-hydroxyguanosine in human breast carcinogenesis" European Journal of Cancer, vol. 32A pp. 1209-1214, 1996.
[39] J. Liao, D. N. Seril, G. G. Lu, M. Zhang, S. ToyokuniS, A. L. yang, et al., "Increased susceptibility of chronic ulcerative colitis-induced carcinoma development in DNA repair enzyme Ogg1 deficient mice", Molecular Carcinogenesis, vol. 47, pp. 638-646, 2008.
[40] A. Azqueta, S. Shaposhnikov, and A. R. Collins, "DNA oxidation: investigating its key role in environmental mutagenesis with the comet assay", Mutation Research, vol. 674, pp. 101-108, 2009.
[41] 41. J. A. Elder, "Survival and cancer in laboratory mammals exposed to radiofrequency energy", Bioelectromagnetics Supplement, vol. 6, pp. S101-S106, 2003.
[42] 42. A. I. Yurekli, M. Ozkan, T. Kalkan, H. Saybasili, H. Tuncel, H.P. Atukeren, et al., "GSM base station electromagnetic radiation and oxidative stress in rats", Electromagnetic Biology and Medicine, vol. 25, pp. 177-188, 2006.
[43] 43. E. P. Ribeiro, E. L. Rhoden, M. M. Horn, C. Rhoden, L.P. Lima, and L. Toniolo, "Effects of sub chronic exposure to radio frequency from a conventional cellular telephone on testicular function in adult rats", Journal of Urology, vol. 177, pp. 395-399, 2007.
[44] 44. T. H. Kim, T. Q. Huang , J. J. Jang , M. H. Kim, H. J. Kim, J. S. Lee, et al., "Local exposure of 849 MHz and 1763 MHz radiofrequency radiation to mouse heads does not induce cell death or cell proliferation in brain", Experimental and Molecular Medicine, vol. 40, pp. 294-303, 2008.
[45] A. M. Sommer, J. Streckert, A. K. Bitz, V. W. Hansen, and A. Lerchl, "No effects of GSM-modulated 900 MHz electromagnetic fields on survival rate and spontaneous development of lymphoma in female AKR/J mice", BMC Cancer, vol. 4, 77-90, 2004.
[46] A. Lerchl, H. Kr├╝ger, M. Niehaus, J. R. Streckert, A. K. Bitz, and V. Hansen, "Effects of mobile phone electromagnetic fields at nonthermal SAR values on melatonin and body weight of Djungarian hamsters (Phodopus sungorus)", Journal of Pineal Research, vol. 44, pp. 267- 272, 2008.
[47] W. Dong, D. Gao, and X. Zhang, "Mitochondria biogenesis induced by resveratrol against brain ischemic stroke", Medical Hypotheses,vol. 69, 700-701, 2007.
[48] Lin MT, Beal MF. 2006. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443: 787-795.
[49] F. Oktem, F. Ozguner, H. Mollaoglu, A. Koyu, and E. Uz, "Oxidative damage in the kidney induced by 900-MHz-emitted mobile phone: protection by melatonin", Archives of Medical 35 Research, vol. pp. 350-355, 2005.
[50] E. W. Austin, J. M. Parish, D. H. Kinder, and R. J. Bull, "Lipid peroxidation and formation of 8-hydroxydeoxyguanosine from acute doses of halogenated acetic acids", Fundamental and Applied Toxicology, vol. 31, pp. 77-82, 1996.