Search results for: magnetic flux density.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1643

Search results for: magnetic flux density.

1313 Heat Transfer to Laminar Flow over a Double Backward-Facing Step

Authors: Hussein Togun, Tuqa Abdulrazzaq, S. N. Kazi, A. Badarudin, M. K. A. Ariffin

Abstract:

Heat transfer and laminar air flow over a double backward-facing step numerically studied in this paper. The simulations was performed by using ANSYS ICEM for meshing process and using ANSYS fluent 14 (CFD) for solving. The k-ɛ standard model adopted with Reynolds number varied between 98.5 to 512 and three step height at constant heat flux (q=2000 W/m2). The top of wall and bottom of upstream are insulated with bottom of downstream is heated. The results show increase in Nusselt number with increases of Reynolds number for all cases and the maximum of Nusselt number happens at the first step in compared to the second step. Due to increase of cross section area of downstream to generate sudden expansion then Nusselt number decrease but the profile of Nusselt number keep same trend for all cases where increase after the first and second steps. Recirculation region after the first and second steps are denoted by contour of streamline velocity. The higher augmentation of heat transfer rate observed for case 1 at Reynolds number of 512 and heat flux q=2000 W/m2.

Keywords: Laminar flow, Double backward, Separation flow, Recirculation flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3505
1312 Turbulent Mixing and its Effects on Thermal Fatigue in Nuclear Reactors

Authors: Eggertson, E.C. Kapulla, R, Fokken, J, Prasser, H.M.

Abstract:

The turbulent mixing of coolant streams of different temperature and density can cause severe temperature fluctuations in piping systems in nuclear reactors. In certain periodic contraction cycles these conditions lead to thermal fatigue. The resulting aging effect prompts investigation in how the mixing of flows over a sharp temperature/density interface evolves. To study the fundamental turbulent mixing phenomena in the presence of density gradients, isokinetic (shear-free) mixing experiments are performed in a square channel with Reynolds numbers ranging from 2-500 to 60-000. Sucrose is used to create the density difference. A Wire Mesh Sensor (WMS) is used to determine the concentration map of the flow in the cross section. The mean interface width as a function of velocity, density difference and distance from the mixing point are analyzed based on traditional methods chosen for the purposes of atmospheric/oceanic stratification analyses. A definition of the mixing layer thickness more appropriate to thermal fatigue and based on mixedness is devised. This definition shows that the thermal fatigue risk assessed using simple mixing layer growth can be misleading and why an approach that separates the effects of large scale (turbulent) and small scale (molecular) mixing is necessary.

Keywords: Concentration measurements, Mixedness, Stablystratified turbulent isokinetic mixing layer, Wire mesh sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244
1311 Sex Differences in Thyroid Gland Structure of Rabbits

Authors: Parchami A., Fatahian Dehkordi RF.

Abstract:

The aim of the present investigation was to compare sex differences in thyroid gland structure of rabbits. Five adult male and five adult female (3.1-3.5 kg body weight) New Zealand white rabbits were used in the experiment. Results showed that at light microscopic level, there was no sex difference in microscopic appearance of the thyroid glands. At electron microscopic level, however, the mitochondria and the microvilli of the follicular cells are more numerous and the Golgi complex is also more extensive in male rabbits in comparison to females. Results obtained from micrometric measurements showed that the volume density of the follicles is higher in males than in females, but the differences are not statistically significant .The volume density of epithelium and the height of follicular cells are significantly greater in males than in females and reverse is true about the volume density of interstitium (p<0.05). The volume density of colloid is also greater in females (66±6) than in males (60±7) but the differences are not statistically significant .It was concluded that sex has limited effects on histomorphometric properties of thyroid gland in rabbits.

Keywords: Rabbit, Thyroid Gland, Sex difference, Electron microscope

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2403
1310 3D High-Precision Tunnel Gravity Exploration Method for Concealed High-Density Ore-Bodies: A Case Study on the Zhaotong Maoping Carbonate-Hosted Zn-Pb-(Ag-Ge) Deposit in Northeastern Yunnan, China

Authors: Han Run-Sheng, Li Wen-Yao, Wang Feng, Liu Fei, Qiu Wen-Long, Lei Li

Abstract:

Accurately positioning detection of concealed deposits or ore-bodies is one of the difficult problems in mineral exploration field. Theory calculation and exploration practices for tunnel gravity indicate that 3D high-precision Tunnel Gravity Exploration Method (TGEM) can find concealed high-density three-dimensional ore-bodies in the depth. The ore-finding breakthroughs at the depth of the Zhaotong Maoping carbonate-hosted Zn–Pb–(Ag–Ge) deposit in Northeastern Yunnan have proved that the exploration method in combination with MEAHFZ method is effective to detect concealed high-density ore-bodies. TGEM may overcome anomalous ambiguity of other geophysical methods for 3D positioning of concealed ore-bodies.

Keywords: 3D tunnel gravity exploration method, concealed high-density ore-bodies, Zn–Pb–(Ag–Ge) deposit, Zaotong Maoping, Northeastern Yunnan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1166
1309 On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation

Authors: Gyo Woo Lee, Man Young Kim

Abstract:

A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time.

Keywords: Reheating Furnace, Steel Slab, Radiative Heat Transfer, WSGGM, Emissivity, Residence Time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4173
1308 Electron Density Discrepancy Analysis of Energy Metabolism Coenzymes

Authors: Alan Luo, Hunter N. B. Moseley

Abstract:

Many macromolecular structure entries in the Protein Data Bank (PDB) have a range of regional (localized) quality issues, be it derived from X-ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, or other experimental approaches. However, most PDB entries are judged by global quality metrics like R-factor, R-free, and resolution for X-ray crystallography or backbone phi-psi distribution statistics and average restraint violations for NMR. Regional quality is often ignored when PDB entries are re-used for a variety of structurally based analyses. The binding of ligands, especially ligands involved in energy metabolism, is of particular interest in many structurally focused protein studies. Using a regional quality metric that provides chemically interpretable information from electron density maps, a significant number of outliers in regional structural quality was detected across X-ray crystallographic PDB entries for proteins bound to biochemically critical ligands. In this study, a series of analyses was performed to evaluate both specific and general potential factors that could promote these outliers. In particular, these potential factors were the minimum distance to a metal ion, the minimum distance to a crystal contact, and the isotropic atomic b-factor. To evaluate these potential factors, Fisher’s exact tests were performed, using regional quality criteria of outlier (top 1%, 2.5%, 5%, or 10%) versus non-outlier compared to a potential factor metric above versus below a certain outlier cutoff. The results revealed a consistent general effect from region-specific normalized b-factors but no specific effect from metal ion contact distances and only a very weak effect from crystal contact distance as compared to the b-factor results. These findings indicate that no single specific potential factor explains a majority of the outlier ligand-bound regions, implying that human error is likely as important as these other factors. Thus, all factors, including human error, should be considered when regions of low structural quality are detected. Also, the downstream re-use of protein structures for studying ligand-bound conformations should screen the regional quality of the binding sites. Doing so prevents misinterpretation due to the presence of structural uncertainty or flaws in regions of interest.

Keywords: Biomacromolecular structure, coenzyme, electron density discrepancy analysis, X-ray crystallography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 253
1307 The Effect of Solution Density on the Synthesis of Magnesium Borate from Boron-Gypsum

Authors: N. Tugrul, E. Sariburun, F. T. Senberber, A. S. Kipcak, E. Moroydor Derun, S. Piskin

Abstract:

Boron-gypsum is a waste which occurs in the boric acid production process. In this study, the boron content of this waste is evaluated for the use in synthesis of magnesium borates and such evaluation of this kind of waste is useful more than storage or disposal. Magnesium borates, which are a sub-class of boron minerals, are useful additive materials for the industries due to their remarkable thermal and mechanical properties. Magnesium borates were obtained hydrothermally at different temperatures. Novelty of this study is the search of the solution density effects to magnesium borate synthesis process for the increasing the possibility of borongypsum usage as a raw material. After the synthesis process, products are subjected to XRD and FT-IR to identify and characterize their crystal structure, respectively.

Keywords: Boron-gypsum, hydrothermal synthesis, magnesium borate, solution density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156
1306 Gaussian Density and HOG with Content Based Image Retrieval System – A New Approach

Authors: N. Shanmugapriya, R. Nallusamy

Abstract:

Content-based image retrieval (CBIR) uses the contents of images to characterize and contact the images. This paper focus on retrieving the image by separating images into its three color mechanism R, G and B and for that Discrete Wavelet Transformation is applied. Then Wavelet based Generalized Gaussian Density (GGD) is practical which is used for modeling the coefficients from the wavelet transforms. After that it is agreed to Histogram of Oriented Gradient (HOG) for extracting its characteristic vectors with Relevant Feedback technique is used. The performance of this approach is calculated by exactness and it confirms that this method is wellorganized for image retrieval.

Keywords: Content-Based Image Retrieval (CBIR), Relevant Feedback, Histogram of Oriented Gradient (HOG), Generalized Gaussian Density (GGD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039
1305 Single-qubit Quantum Gates using Magneto-optic Kerr Effect

Authors: Pradeep Kumar K

Abstract:

We propose the use of magneto-optic Kerr effect (MOKE) to realize single-qubit quantum gates. We consider longitudinal and polar MOKE in reflection geometry in which the magnetic field is parallel to both the plane of incidence and surface of the film. MOKE couples incident TE and TM polarized photons and the Hamiltonian that represents this interaction is isomorphic to that of a canonical two-level quantum system. By varying the phase and amplitude of the magnetic field, we can realize Hadamard, NOT, and arbitrary phase-shift single-qubit quantum gates. The principal advantage is operation with magnetically non-transparent materials.

Keywords: Quantum computing, qubit, magneto-optic kerr effect (MOKE), magneto-optical interactions, continuous variables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030
1304 Energetic Considerations for Sputter Deposition Processes

Authors: Dirk Hegemann, Martin Amberg

Abstract:

Sputter deposition processes, especially for sputtering from metal targets, are well investigated. For practical reasons, i.e. for industrial processes, energetic considerations for sputter deposition are useful in order to optimize the sputtering process. In particular, for substrates at floating conditions it is required to obtain energetic conditions during film growth that enables sufficient dense metal films of good quality. The influence of ion energies, energy density and momentum transfer is thus examined both for sputtering at the target as well as during film growth. Different regimes dominated by ion energy, energy density and momentum transfer were identified by using different plasma sources and by varying power input, pressure and bias voltage.

Keywords: Energy density, film growth, momentum transfer, sputtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2446
1303 Effects of Thermal Radiation and Magnetic Field on Unsteady Stretching Permeable Sheet in Presence of Free Stream Velocity

Authors: Phool Singh, Ashok Jangid, N. S. Tomer, Deepa Sinha

Abstract:

The aim of this paper is to investigate twodimensional unsteady flow of a viscous incompressible fluid about stagnation point on permeable stretching sheet in presence of time dependent free stream velocity. Fluid is considered in the influence of transverse magnetic field in the presence of radiation effect. Rosseland approximation is use to model the radiative heat transfer. Using time-dependent stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by using Runge-Kutta Fehlberg method with the help of Newton-Raphson shooting technique. In the present work the effect of unsteadiness parameter, magnetic field parameter, radiation parameter, stretching parameter and the Prandtl number on flow and heat transfer characteristics have been discussed. Skin-friction coefficient and Nusselt number at the sheet are computed and discussed. The results reported in the paper are in good agreement with published work in literature by other researchers.

Keywords: Magneto hydrodynamics, stretching sheet, thermal radiation, unsteady flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2266
1302 Qualitative Modelling for Ferromagnetic Hysteresis Cycle

Authors: M. Mordjaoui, B. Boudjema, M. Chabane, R. Daira

Abstract:

In determining the electromagnetic properties of magnetic materials, hysteresis modeling is of high importance. Many models are available to investigate those characteristics but they tend to be complex and difficult to implement. In this paper a new qualitative hysteresis model for ferromagnetic core is presented, based on the function approximation capabilities of adaptive neuro fuzzy inference system (ANFIS). The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach can restored the hysteresis curve with a little RMS error. The model accuracy is good and can be easily adapted to the requirements of the application by extending or reducing the network training set and thus the required amount of measurement data.

Keywords: ANFIS modeling technique, magnetic hysteresis, Jiles-Atherton model, ferromagnetic core.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
1301 Low Pressure Binder-Less Densification of Fibrous Biomass Material using a Screw Press

Authors: Tsietsi J. Pilusa, Robert Huberts, Edison Muzenda

Abstract:

In this study, the theoretical relationship between pressure and density was investigated on cylindrical hollow fuel briquettes produced of a mixture of fibrous biomass material using a screw press without any chemical binder. The fuel briquettes were made of biomass and other waste material such as spent coffee beans, mielie husks, saw dust and coal fines under pressures of 0.878-2.2 Mega Pascals (MPa). The material was densified into briquettes of outer diameter of 100mm, inner diameter of 35mm and 50mm long. It was observed that manual screw compression action produces briquettes of relatively low density as compared to the ones made using hydraulic compression action. The pressure and density relationship was obtained in the form of power law and compare well with other cylindrical solid briquettes made using hydraulic compression action. The produced briquettes have a dry density of 989 kg/m3 and contain 26.30% fixed carbon, 39.34% volatile matter, 10.9% moisture and 10.46% ash as per dry proximate analysis. The bomb calorimeter tests have shown the briquettes yielding a gross calorific value of 18.9MJ/kg.

Keywords: Bio briquettes, biomass fuel, coffee grounds, fuelbriquettes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2673
1300 Estimation of Wind Characteristics and Energy Yield at Different Towns in Libya

Authors: Farag Ahwide, Souhel Bousheha

Abstract:

A technical assessment has been made of electricity generation, considering wind turbines ranging between Vestas (V80-2.0 MW and V112-3.0 MW) and the air density is equal to 1.225 Kg/m3, at different towns in Libya. Wind speed might have been measured each 3 hours during 10 m stature at a time for 10 quite sometime between 2000 Furthermore 2009, these towns which are spotted on the bank from claiming Mediterranean ocean also how in the desert, which need aid Derna 1, Derna 2, Shahat, Benghazi, Ajdabya, Sirte, Misurata, Tripoli-Airport, Al-Zawya, Al-Kofra, Sabha, Nalut. The work presented long term "wind data analysis in terms of annual, seasonal, monthly and diurnal variations at these sites. Wind power density with different heights has been studied. Excel sheet program was used to calculate the values of wind power density and the values of wind speed frequency for the stations; their seasonally values have been estimated. Limit variable with rated wind pace to 10 different wind turbines need to be been estimated, which is used to focus those required yearly vitality yield of a wind vitality change framework (WECS), acknowledging wind turbines extending between 600 kW and 3000 kW).

Keywords: Energy yield, wind turbines, wind speed, wind power density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1149
1299 Analyses of Natural Convection Heat Transfer from a Heated Cylinder Mounted in Vertical Duct

Authors: H. Bhowmik, A. Faisal, Ahmed Al Yaarubi, Nabil Al Alawi

Abstract:

Experiments are conducted to analyze the steady-state and the power-on transient natural convection heat transfer from a horizontal cylinder mounted in a vertical up flow circular duct. The heat flux ranges from 177 W/m2 to 2426 W/m2 and the Rayleigh number ranges from 1×104 to 4.35×104. For natural air flow and constant heat flux condition, the effects of heat transfer around the cylinder under steady-state condition are investigated. The steady-state results compare favorably with that of the available data. The effects of transient heat transfer data on different angular position of the thermocouple (0o, 90o, 180o) are also reported. It is observed that the transient heat transfer around the cylinder is strongly affected by the position of thermocouples. In the transient region, the rate of heat transfer obtained at 90o and 180o are higher than that of stagnation point (0o). Finally, the dependence of the average Nusselt number on Rayleigh number for steady and transient natural convection heat transfer are analyzed, and a correlation equation is presented.

Keywords: Steady-state, transient, natural convection, Rayleigh number, Nusselt number, Fourier Number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217
1298 Marangoni Instability in a Fluid Layer with Insoluble Surfactant

Authors: Ainon Syazana Ab. Hamid, Seripah Awang Kechil, Ahmad Sukri Abd. Aziz

Abstract:

The Marangoni convective instability in a horizontal fluid layer with the insoluble surfactant and nondeformable free surface is investigated. The surface tension at the free surface is linearly dependent on the temperature and concentration gradients. At the bottom surface, the temperature conditions of uniform temperature and uniform heat flux are considered. By linear stability theory, the exact analytical solutions for the steady Marangoni convection are derived and the marginal curves are plotted. The effects of surfactant or elasticity number, Lewis number and Biot number on the marginal Marangoni instability are assessed. The surfactant concentration gradients and the heat transfer mechanism at the free surface have stabilizing effects while the Lewis number destabilizes fluid system. The fluid system with uniform temperature condition at the bottom boundary is more stable than the fluid layer that is subjected to uniform heat flux at the bottom boundary.

Keywords: Analytical solutions, Marangoni Instability, Nondeformable free surface, Surfactant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
1297 Material Density Mapping on Deformable 3D Models of Human Organs

Authors: Petru Manescu, Joseph Azencot, Michael Beuve, Hamid Ladjal, Jacques Saade, Jean-Michel Morreau, Philippe Giraud, Behzad Shariat

Abstract:

Organ motion, especially respiratory motion, is a technical challenge to radiation therapy planning and dosimetry. This motion induces displacements and deformation of the organ tissues within the irradiated region which need to be taken into account when simulating dose distribution during treatment. Finite element modeling (FEM) can provide a great insight into the mechanical behavior of the organs, since they are based on the biomechanical material properties, complex geometry of organs, and anatomical boundary conditions. In this paper we present an original approach that offers the possibility to combine image-based biomechanical models with particle transport simulations. We propose a new method to map material density information issued from CT images to deformable tetrahedral meshes. Based on the principle of mass conservation our method can correlate density variation of organ tissues with geometrical deformations during the different phases of the respiratory cycle. The first results are particularly encouraging, as local error quantification of density mapping on organ geometry and density variation with organ motion are performed to evaluate and validate our approach.

Keywords: Biomechanical simulation, dose distribution, image guided radiation therapy, organ motion, tetrahedral mesh, 4D-CT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3007
1296 The Smoke Suppression Effect of Copper Oxideon the Epoxy Resin/Intumescent Flame Retardant/Titanate Couple Agent System

Authors: Zhiping Wu, Meiqin Chen, Haikuan Yang, Yunchu Hu

Abstract:

Fire disaster is the major factor to endanger the public and environmental safety. People lost their life during fire disaster mainly be attributed to the dense smoke and toxic gas under combustion, which hinder the escape of people and the rescue of firefighters under fire disaster. The smoke suppression effect of several transitional metals oxide on the epoxy resin treated with intumescent flame retardant and titanate couple agent (EP/IFR/Titanate) system have been investigated. The results showed manganese dioxide has great effect on reducing the smoke density rate (SDR) of EP/IFR/Titanate system; however it has little effect to reduce the maximum smoke density (MSD) of EP/IFR/Titanate system. Copper oxide can decrease the maximum smoke density (MSD) and smoke density rate of EP/IFR/Titanate system substantially. The MSD and SDR of EP/IFR/Titanate system can reduce 20.3% and 39.1% respectively when 2% of copper oxide is introduced.

Keywords: copper oxide, epoxy resin, intumescent flameretardant, smoke suppression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2694
1295 Magnetic Properties of Sr-Ferrite Nano-Powder Synthesized by Sol-Gel Auto-Combustion Method

Authors: M. Ghobeiti-Hasab, Z. Shariati

Abstract:

In this paper, strontium ferrite (SrO.6Fe2O3) was synthesized by the sol-gel auto-combustion process. The thermal behavior of powder obtained from self-propagating combustion of initial gel was evaluated by simultaneous differential thermal analysis (DTA) and thermo gravimetric (TG), from room temperature to 1200°C. The as-burnt powder was calcined at various temperatures from 700-900°C to achieve the single-phase Sr-ferrite. Phase composition, morphology and magnetic properties were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM) techniques. Results showed that the single-phase and nano-sized hexagonal strontium ferrite particles were formed at calcination temperature of 800°C with crystallite size of 27 nm and coercivity of 6238 Oe.

Keywords: Hard magnet, Sr-ferrite, Sol-gel auto-combustion, Nano-powder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3724
1294 FEM Simulation of Triple Diffusive Magnetohydrodynamics Effect of Nanofluid Flow over a Nonlinear Stretching Sheet

Authors: Rangoli Goyal, Rama Bhargava

Abstract:

The triple diffusive boundary layer flow of nanofluid under the action of constant magnetic field over a non-linear stretching sheet has been investigated numerically. The model includes the effect of Brownian motion, thermophoresis, and cross-diffusion; slip mechanisms which are primarily responsible for the enhancement of the convective features of nanofluid. The governing partial differential equations are transformed into a system of ordinary differential equations (by using group theory transformations) and solved numerically by using variational finite element method. The effects of various controlling parameters, such as the magnetic influence number, thermophoresis parameter, Brownian motion parameter, modified Dufour parameter, and Dufour solutal Lewis number, on the fluid flow as well as on heat and mass transfer coefficients (both of solute and nanofluid) are presented graphically and discussed quantitatively. The present study has industrial applications in aerodynamic extrusion of plastic sheets, coating and suspensions, melt spinning, hot rolling, wire drawing, glass-fibre production, and manufacture of polymer and rubber sheets, where the quality of the desired product depends on the stretching rate as well as external field including magnetic effects.

Keywords: FEM, Thermophoresis, Diffusiophoresis, Brownian motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
1293 Magnetoplasmadynamic Thruster Design and Characteristics

Authors: A. Almuwallad

Abstract:

The magnetoplasmadynamic (MPD) thruster is classified as an electric propulsion system and consists of two metal electrodes separated by an insulator. A high-current electric arc is driven between electrodes to ionize the injected propellant between electrodes for plasma creation. At the same time, a magnetic field is generated by the electric current returning to the power supply. This magnetic field interacts with the electric current flowing through the plasma to produce thrust. This paper compares the performance of MPD thrusters when using three different propellants (methane, nitrogen, and propane) at varying input mass flow rates. Methane provided the best performance, and nitrogen performed better than propane. In addition, when using the same parameters, the thruster with a divergent nozzle performed better than the thruster with a constant nozzle.

Keywords: Magnetoplasmadynamic thruster, electric propulsion, propellant, plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 281
1292 Mathematical Study for Traffic Flow and Traffic Density in Kigali Roads

Authors: Kayijuka Idrissa

Abstract:

This work investigates a mathematical study for traffic flow and traffic density in Kigali city roads and the data collected from the national police of Rwanda in 2012. While working on this topic, some mathematical models were used in order to analyze and compare traffic variables. This work has been carried out on Kigali roads specifically at roundabouts from Kigali Business Center (KBC) to Prince House as our study sites. In this project, we used some mathematical tools to analyze the data collected and to understand the relationship between traffic variables. We applied the Poisson distribution method to analyze and to know the number of accidents occurred in this section of the road which is from KBC to Prince House. The results show that the accidents that occurred in 2012 were at very high rates due to the fact that this section has a very narrow single lane on each side which leads to high congestion of vehicles, and consequently, accidents occur very frequently. Using the data of speeds and densities collected from this section of road, we found that the increment of the density results in a decrement of the speed of the vehicle. At the point where the density is equal to the jam density the speed becomes zero. The approach is promising in capturing sudden changes on flow patterns and is open to be utilized in a series of intelligent management strategies and especially in noncurrent congestion effect detection and control.

Keywords: Statistical methods, Poisson distribution, car moving techniques, traffic flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
1291 First-Principle Investigation of the Electronic Band Structure and Dielectric Response Function of ZnIn2Se4 and ZnIn2Te4

Authors: Nnamdi N. Omehe, Chibuzo Emeruwa

Abstract:

ZnIn2Se4 and ZnIn2Te4 are vacancy defect materials whose properties have been investigated using Density Functional Theory (DFT) framework. The pseudopotential method in conjunction with the LDA+U technique and the Projector Augmented Wave (PAW) was used to calculate the electronic band structure, total density of state, and the partial density of state; while the norm-conserving pseudopotential was used to calculate the dielectric response function with scissors shift. Both ZnIn2Se4 and ZnIn2Te4 were predicted to be semiconductors with energy band gap of 1.66 eV and 1.33 eV respectively, and they both have direct energy band gap at the gamma point of high symmetry. The topmost valence subband for ZnIn2Se4 and ZnIn2Te4 has an energy width of 5.7 eV and 6.0 eV respectively. The calculations of partial density of state (PDOS) show that for ZnIn2Se4, the top of the valence band is dominated by Se-4p orbital, while the bottom of the conduction band is composed of In-5p, In-5s, and Zn-4s states. PDOS for ZnIn2Te4, shows that the top of the valence band is mostly of Te-5p states, while its conduction band bottom is composed mainly of Zn-4s, Te-5p, Te-5s, and In-5s states. Dielectric response function calculation yielded (0) of 11.9 and 36 for ZnIn2Se4 and ZnIn2Te4 respectively.

Keywords: Optoelectronic, Dielectric Response Function, LDA+U, band structure calculation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 105
1290 A Multigrid Approach for Three-Dimensional Inverse Heat Conduction Problems

Authors: Jianhua Zhou, Yuwen Zhang

Abstract:

A two-step multigrid approach is proposed to solve the inverse heat conduction problem in a 3-D object under laser irradiation. In the first step, the location of the laser center is estimated using a coarse and uniform grid system. In the second step, the front-surface temperature is recovered in good accuracy using a multiple grid system in which fine mesh is used at laser spot center to capture the drastic temperature rise in this region but coarse mesh is employed in the peripheral region to reduce the total number of sensors required. The effectiveness of the two-step approach and the multiple grid system are demonstrated by the illustrative inverse solutions. If the measurement data for the temperature and heat flux on the back surface do not contain random error, the proposed multigrid approach can yield more accurate inverse solutions. When the back-surface measurement data contain random noise, accurate inverse solutions cannot be obtained if both temperature and heat flux are measured on the back surface.

Keywords: Conduction, inverse problems, conjugated gradient method, laser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842
1289 Enhancement of Pulsed Eddy Current Response Based on Power Spectral Density after Continuous Wavelet Transform Decomposition

Authors: A. Benyahia, M. Zergoug, M. Amir, M. Fodil

Abstract:

The main objective of this work is to enhance the Pulsed Eddy Current (PEC) response from the aluminum structure using signal processing. Cracks and metal loss in different structures cause changes in PEC response measurements. In this paper, time-frequency analysis is used to represent PEC response, which generates a large quantity of data and reduce the noise due to measurement. Power Spectral Density (PSD) after Wavelet Decomposition (PSD-WD) is proposed for defect detection. The experimental results demonstrate that the cracks in the surface can be extracted satisfactorily by the proposed methods. The validity of the proposed method is discussed.

Keywords: NDT, pulsed eddy current, continuous wavelet transform, Mexican hat wavelet mother, defect detection, power spectral density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 763
1288 The Reconstruction New Agegraphic and Gauss- Bonnet Dark Energy Models with a Special Power Law Expasion

Authors: V. Fayaz , F. Felegary

Abstract:

Here, in this work we study correspondence the energy density New agegraphic and the energy density Gauss- Bonnet models in flat universe. We reconstruct Λ  and Λ ω for them with 0 ( ) 0 h a t = a t .

Keywords: dark energy, new age graphic, gauss- bonnet, late time universe

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
1287 Synthesis and Application of an Organic Dye in Nanostructure Solar Cells Device

Authors: M. Hoseinnezhad, K. Gharanjig

Abstract:

Two organic dyes comprising carbazole as the electron donors and cyanoacetic acid moieties as the electron acceptors were synthesized. The organic dye was prepared by standard reaction from carbazole as the starting material. To this end, carbazole was reacted with bromobenzene and further oxidation and reacted with cyanoacetic acid. The obtained organic dye was purified and characterized using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1HNMR), carbon nuclear magnetic resonance (13CNMR) and elemental analysis. The influence of heteroatom on carbazole donors and cyno substitution on the acid acceptor is evidenced by spectral and electrochemical photovoltaic experiments. Finally, light fastness properties for organic dye were investigated.

Keywords: Dye-sensitized solar cells, Indoline dye, nanostructure, oxidation potential, solar energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 964
1286 Relationship between Gender, BMI, and Lifestyle with Bone Mineral Density of Adolescent in Urban Areas

Authors: Ari Istiany

Abstract:

The purpose of this study was to analyze relationship between gender, BMI, and lifestyle with bone mineral density (BMD) of adolescent in urban areas . The place of this study in Jakarta State University, Indonesia. The number of samples involved as many as 200 people, consisting of 100 men and 100 women. BMD was measured using Quantitative Ultrasound Bone Densitometry. While the questionnaire used to collect data on age, gender, and lifestyle (calcium intake, smoking habits, alcohol consumption, tea, coffee, sports, and sun exposure). Mean age of men and women, respectively as much as 20.7 ± 2.18 years and 21 ± 1.61 years. Mean BMD values of men was 1.084 g/cm ² ± 0.11 while women was 0.976 g/cm ² ± 0.10. Men and women with normal BMD respectively as much as 46.7% and 16.7%. Men and women affected by osteopenia respectively as much as 50% and 80%. Men and women affected by osteoporosis respectively as much as 3.3% and 3.3%. Mean BMI of men and women, respectively as much as 21.4 ± 2.07 kg/m2 and 20.9 ± 2.06 kg/m2. Mean lifestyle score of men and women , respectively as much as 71.9 ± 5.84 and 70.1 ± 5.67 (maximum score 100). Based on Spearman and Pearson Correlation test, there were relationship significantly between gender and lifestyle with BMD.

Keywords: Adolescents, Body Mass Index (BMI), Bone Mineral Density (BMD), gender, and lifestyle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
1285 Biodiversity and Phytosociological Analysis of Plants around the Municipal Drains in Jaunpur

Authors: Ekta Singh, M. P. Singh

Abstract:

The habitat where the present study has been carried out is productive in relation to nutrient quality and they may perform several useful functions, but are also threatened for their existence. Hence, the proposed work, will add much new information about biodiversity of macrophytes in drains and their embankment. All the species were identified with their different stages of growth which encountered on the three selected sites (I, II and III). The number of species occurring at each site is grouped seasonally, i.e. summer, rainy and winter season and the species were further recorded for the study of phytosociology. Phytosociological characters such as frequency, density and abundance were influenced by the climatic, anthropogenic and biotic stresses prevailing at the three study sites. All the species present at the study sites have shown maximum values of frequency, density and abundance in rainy season in comparison to that of summer and winter seasons.

Keywords: Abundance, Biodiversity, Density, Frequency, Macrophytes, Phytosociology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3215
1284 Steady State Transpiration Cooling System in Ni-Cr Open-Cellular Porous Plate

Authors: P. Amatachaya, P. Khantikomol, R. Sangchot, B. Krittacom

Abstract:

The steady-state temperature for one-dimensional transpiration cooling system has been conducted experimentally and numerically to investigate the heat transfer characteristics of combined convection and radiation. The Nickel –Chrome (Ni-Cr) open-cellular porous material having porosity of 0.93 and pores per inch (PPI) of 21.5 was examined. The upper surface of porous plate was heated by the heat flux of incoming radiation varying from 7.7 - 16.6 kW/m2 whereas air injection velocity fed into the lower surface was varied from 0.36 - 1.27 m/s, and was then rearranged as Reynolds number (Re). For the report of the results in the present study, two efficiencies including of temperature and conversion efficiency were presented. Temperature efficiency indicating how close the mean temperature of a porous heat plate to that of inlet air, and increased rapidly with the air injection velocity (Re). It was then saturated and had a constant value at Re higher than 10. The conversion efficiency, which was regarded as the ability of porous material in transferring energy by convection after absorbed from heat radiation, decreased with increasing of the heat flux and air injection velocity. In addition, it was then asymptotic to a constant value at the Re higher than 10. The numerical predictions also agreed with experimental data very well.

Keywords: Convection, open-cellular, radiation, transpiration cooling, Reynolds number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613