First-Principle Investigation of the Electronic Band Structure and Dielectric Response Function of ZnIn2Se4 and ZnIn2Te4
Authors: Nnamdi N. Omehe, Chibuzo Emeruwa
Abstract:
ZnIn2Se4 and ZnIn2Te4 are vacancy defect materials whose properties have been investigated using Density Functional Theory (DFT) framework. The pseudopotential method in conjunction with the LDA+U technique and the Projector Augmented Wave (PAW) was used to calculate the electronic band structure, total density of state, and the partial density of state; while the norm-conserving pseudopotential was used to calculate the dielectric response function with scissors shift. Both ZnIn2Se4 and ZnIn2Te4 were predicted to be semiconductors with energy band gap of 1.66 eV and 1.33 eV respectively, and they both have direct energy band gap at the gamma point of high symmetry. The topmost valence subband for ZnIn2Se4 and ZnIn2Te4 has an energy width of 5.7 eV and 6.0 eV respectively. The calculations of partial density of state (PDOS) show that for ZnIn2Se4, the top of the valence band is dominated by Se-4p orbital, while the bottom of the conduction band is composed of In-5p, In-5s, and Zn-4s states. PDOS for ZnIn2Te4, shows that the top of the valence band is mostly of Te-5p states, while its conduction band bottom is composed mainly of Zn-4s, Te-5p, Te-5s, and In-5s states. Dielectric response function calculation yielded (0) of 11.9 and 36 for ZnIn2Se4 and ZnIn2Te4 respectively.
Keywords: Optoelectronic, Dielectric Response Function, LDA+U, band structure calculation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120References:
[1] S. Ozaki, K. I. Muto, H. Nagata and S. Adachi, (2005). Optical absorption and emission in defect-chalcopyrite semiconductor. J. Appl. Phys. 97, 043507, https://doi.org/1063/1.1845582.
[2] B. H. Dhryv, A. Nowicki, B. H. Patel and V. D Dhamecha, (2015). Memory switching characteristics in amorphous ZnIn2Se4 thin films, surface. Eng. 31, 556-562.
[3] H. M. Zeyada, M. S. Aziz, A. S. Behairy (2009). Structure formation and mechanisms of DC conduction in thermally evaporated nanocrystallite structure ZnIn2Se4 thin films, phys. B: condensed maters, vol. 404, Issue 21, pp 3957-3963.
[4] D. K. Dhruv and B. H. Patel (2016). Fabrication and electrical characterization of Al/P-ZnIn2Se4 thin films schottky diode structure, mater. Sc. Semicond. Process. 54, 29-35, https://doi.org/10/016/j.Mssp.2016.06.012.
[5] A. A. Vaipolin, Y. A. Nikolaev, V. Y. Rud, and E. I. Terukov (2003). Photosensitive structure based on ZnIn2Se4 single crystals, Semiconductor structures, Interfaces, and Surfaces, Vol. 37, pp 414-416.
[6] Y. Chao, P. Zhuo, N. Li, J. Lai, Y. Yang, Y. Zhang, W. Yang, Y. Du, D. Su, Y. Tan, S. Guo, (2019). Ultra-thin visible-light-driven Mo. Incorporating In2O3- ZnIn2Se4 Z-scheme nano sheet photocatalysts, Adv. Mater. 31(5): el807226, doi:10.1002/adma.201807226.
[7] H. H. Gullui, (2019). Investigation of electrical properties of In/ZnIn2Te4/n-Si/Ag diode, Bull. Materials. Sc. 42: 89, https://doi.org/10.1007/512034-019-177c-z.
[8] H. P. Trah, and V. Kramer (1985). Crystal structure of Zinc Indium selenide, ZnIn2Se4 zeitsehrift fur kristallographic crystalline materials, vol 173, number 1-4, pp 199-204, https://doi.org/10.1524/zkri.1985.173.14.199
[9] R. E. Marsh and W. R. Robinson (1988). On the structure of ZnIn2Te4, journal of solid state chemistry, vol 73, issue 2, pp 591-592.
[10] C. Razzett, G. Attolini, S. Bini, P. P. Lottici (1992), Synthesis and characterization of the layered compounds in the ZnIn2S4- ZnIn2Se4 System, Physical status solid B, vol. 173, issue 2, pp 525-531, https://doi.org/10.1002/pss6.2221730204.
[11] V. Riede, H. Neumann, H. Schwer, V. Kramer, I. Gregora, V. Vorlicek (1993), infrared and Raman spectra of ZnIn2S4, Cryst. Res. Technol, 28,5,641-645.
[12] L. I. Soliman, M. H. Wasfi, and T. A. Hendia (2000). Thermal properties of Polycrstalline ZnIn2Se4, Journal of Thermal Analysis and Calorimetry, vol. 59, pp. 971-976, https://doi.org/10.1023/A:101019482987.
[13] H. M. Zeyada, M. S. Aziz and A. S. Behairy (2009), Absorption and dispersion studies of thermally evaporated nano crystallite structure ZnIn2Se4 thin films, Eur. Phys. J Appl. Phys. 45, 30601, https://doi.org/10.1051/epjap/2009009
[14] P. Babu, K. T. R. Reddy, R. W. Miles (2011). Precursor concentration effect on the properties of ZnIn2Se4 layers grown by chemical bath deposition, Energy procedia 10, 177-181.
[15] D. K. Dhruv, B. H. Patel, and D. Lakshminarayana (2016). Heterojunction of ZnIn2Se4 and Si was prepared by flash evaporation technique, Materials Research Innovations, vol. 20, issue 4, https://doi.orn/10.1080/14328917.2015.1131919
[16] A. A. Attia, H. A. M. Ali, G. F. Salem, M. I. Ismail, F. F. Al-Harbi (2017) Analysis of electrical properties of heterojunction based on ZnIn2Se4, Optical Materials 66,480-486.
[17] S. Khawar, N. A. Noor, A. Malik, B. U. I. Haq, and A. Laref A. (2019). Ab-initio investigations of structure optoelectronic, and thermoelectric properties of AIn2Se4 (A = Zn, Cd) spinels, Materials Research Express, Vol 6, number 8, 086308, 2019.
[18] S. M. Patel and M. H. Ali (1987). Growth of ZnIn2Te4 thin films, Materials Letters, Vol 5, Issue 9, pp 350-356.
[19] S. Ozaki and S. Adachi (2001). Optical properties and electronic band structure of ZnIn2Te4, Phys. Rev. B. 64, 085208.
[20] T. Suriwong, K. Kurosaki, S. Thongtem, A. Harnwunggmoung, T. Plirdpring, T. Sugahara, Y. Ohishi, H. Muta, and S. Yamanaka (2011). Synthesis and Thermal conductivities of ZnIn2Te4 and CdIn2Te4 with defect –chalcopyrite structure, Journal of Alloys and Compounds, Vol 509, Issue 27, pp 7484-7487.
[21] M. Rashid, A. S. Alghamdi, Q. Mahmood, M. Hassan, M. Yaseen, A. Laref (2019) Optoelectronic and thermoelectric hehaviour of XIn2Te4 (X = Mg, Zn, and Cd) for energy harvesting application: DFT approach, physica scripta 94(12), Doi:10.1088/1402-4896/ab154f.
[22] A. M. Shakra, M. Fadel, and S. S. Shenouda (2020). Response of electrical and dielectric parameters of ZnIn2Te4 thin films to temperature and frequency, Physical B: Condensed Matter, Vol. 585, 412082.
[23] B. Ganguli, K. K. Saha, T. Saha-Dasgypta, A. Mookerjee, and A. K. Bhattacharya (2004). Electronic and optical properties of ZnIn2Te4, Physica B: Condensed Matter Vol. 348, Issue 1-4,pp 382-390.
[24] Y. Ayeb, T. Ouahrani, R. Khenata, A. Reshak, D. Rached D, A. Dou Bouhema, R. Arrar (2010). FP-LAPW investigation of structural, electronics, linear and nonlinear optical properties of ZnIn2Te4 defect-chalcopyrite, Computational Material Sci., 50, 651-655.
[25] Y. Ayeb, A. Benghia, M. B. Akanoun, R. Arrar, B. Lagoon, and S. Goumri–Said. (2019). Elucidation linear and nonlinear optical properties of defect chalcopyrite compounds ZnIn2Te4 (X = Al, Ga, In) from electronic transitions, solid state sciences, vol. 87, pp. 39 39-48, https://doi.org/10.1016/j.solid state sciences. 2018.08.002.
[26] S. Reguieg, R. Baghdad, A. Abdiche, M. A. Bezzerrouk, B. Benyoucef, R. Khenata, and S. Bin-Omran. (2017). First–principles study of strucutural, optical, and thermodynamic properties of ZnIn2X4 (X = Se, Te) compounds with DC or DF structure, Journal of Electronic Materials, Vol 46, No 1, DOI:10.1007/511664-016-4831-8.
[27] B. Wu, G. Wang and J. Hu (2021). First principle study of the vacancy defects in ZnIn2Te4 and CdIn2Te4, International Journal of Modern Physics C, Vol .32, Issue 12, 1-12, 2021.
[28] O. Madelung, (2004), Semiconductors: Data hand book, springer, 3rd edition
[29] X. Gonze, J. M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G. M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, and D. C. Allan, (2002) First-principles computation of material properties: the Abinit software project, Computational Materials Science 25, 478-492.
[30] X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, Ph. Ghosez, M. Veithen, J-Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D. R. Hamann, and D. C. Allan, (2005) A brief Introduction to the Abinit software package. Z. Kristallogr. 220, 558-562.