Search results for: conventional statistical methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6118

Search results for: conventional statistical methods

5788 Adaptive Subchannel Allocation for MC-CDMA System

Authors: Cuiran Li, Jianli Xie, Chengshu Li

Abstract:

Multicarrier code-division multiple-access is one of the effective techniques to gain its multiple access capability, robustness against fading, and to mitigate the ISI. In this paper, we propose an improved mulcarrier CDMA system with adaptive subchannel allocation. We analyzed the performance of our proposed system in frequency selective fading environment with narrowband interference existing and compared it with that of parallel transmission over many subchannels (namely, conventional MC-CDMA scheme) and DS-CDMA system. Simulation results show that adaptive subchannel allocation scheme, when used in conventional multicarrier CDMA system, the performance will be greatly improved.

Keywords: MC-CDMA, Rayleigh fading, Narrowbandinterference, Channel estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
5787 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics

Authors: Farhad Asadi, Mohammad Javad Mollakazemi

Abstract:

In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.

Keywords: Time series, fluctuation in statistical characteristics, optimal learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
5786 Improvement in Power Transformer Intelligent Dissolved Gas Analysis Method

Authors: S. Qaedi, S. Seyedtabaii

Abstract:

Non-Destructive evaluation of in-service power transformer condition is necessary for avoiding catastrophic failures. Dissolved Gas Analysis (DGA) is one of the important methods. Traditional, statistical and intelligent DGA approaches have been adopted for accurate classification of incipient fault sources. Unfortunately, there are not often enough faulty patterns required for sufficient training of intelligent systems. By bootstrapping the shortcoming is expected to be alleviated and algorithms with better classification success rates to be obtained. In this paper the performance of an artificial neural network, K-Nearest Neighbour and support vector machine methods using bootstrapped data are detailed and shown that while the success rate of the ANN algorithms improves remarkably, the outcome of the others do not benefit so much from the provided enlarged data space. For assessment, two databases are employed: IEC TC10 and a dataset collected from reported data in papers. High average test success rate well exhibits the remarkable outcome.

Keywords: Dissolved gas analysis, Transformer incipient fault, Artificial Neural Network, Support Vector Machine (SVM), KNearest Neighbor (KNN)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2738
5785 Evaluating Hourly Sulphur Dioxide and Ground Ozone Simulated with the Air Quality Model in Lima, Peru

Authors: Odón R. Sánchez-Ccoyllo, Elizabeth Ayma-Choque, Alan Llacza

Abstract:

Sulphur dioxide (SO₂) and surface-ozone (O₃) concentrations are associated with diseases. The objective of this research is to evaluate the effectiveness of the air-quality Weather Research and Forecasting model coupled to Chemistry (WRF-Chem) model with a horizontal resolution of 5 km x 5 km. For this purpose, the measurements of the hourly SO₂ and O₃ concentrations available in three air quality monitoring stations in Lima, Peru were used for the purpose of validating the simulations of the SO₂ and O₃ concentrations obtained with the WRF-Chem model in February 2018. For the quantitative evaluation of the simulations of these gases, statistical techniques were implemented, such as the average of the simulations; the average of the measurements; the Mean Bias (MeB); the Mean Error (MeE); and the Root Mean Square Error (RMSE). The results of these statistical metrics indicated that the simulated SO₂ and O₃ values over-predicted the SO₂ and O₃ measurements. For the SO₂ concentration, the MeB values varied from 0.58 to 26.35 µg/m³; the MeE values varied from 8.75 to 26.5 µg/m³; the RMSE values varied from 13.3 to 31.79 µg/m³; while for O₃ concentrations the statistical values of the MeB varied from 37.52 to 56.29 µg/m³; the MeE values varied from 37.54 to 56.70 µg/m³; the RMSE values varied from 43.05 to 69.56 µg/m³.

Keywords: Ground-ozone, Lima, Sulphur dioxide, WRF-Chem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 363
5784 Statistical Analysis of Stresses in Rigid Pavement

Authors: Aleš Florian, Lenka Ševelová, Rudolf Hela

Abstract:

Complex statistical analysis of stresses in concrete slab of the real type of rigid pavement is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangement of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional subgrade layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used for statistical analysis. As results, the estimates of basic statistics of the principal stresses s1 and s3 in 53 points on the upper and lower surface of the slabs are obtained.

Keywords: concrete, FEM, pavement, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
5783 Effects of Biostimulant Application on Quali-Quantitative Characteristics of Cauliflower, Pepper and Fennel Crops under Organic and Conventional Fertilization

Authors: E. Tarantino, G. Disciglio, L. Frabboni, A. Libutti, G. Gatta, A. Gagliaridi, A. Tarantino

Abstract:

Nowadays, the main goal for modern horticultural production is an increase the quality. In recent years, the use of organic fertilizers or biostimulants that can be applied in agriculture to improve quali-quantitative crop yields has encountered increasing interest. Biostimulants are gaining importance also for their possible use in organic and sustainable agriculture, to avoid excessive fertilizer applications. Consecutive experimental trials were carried out in the Apulia region (southern Italy) on three herbaceous crops (cauliflower, pepper, fennel) grown in pots under conventional and organic fertilization systems without and with biostimulants. The aim was to determine the effects of three biostimulants (Siapton®10L, Micotech L, Lysodin Alga-Fert) on quali-quantitative yield characteristics. At harvest, the quali-quantitative yield characteristics of each crop were determined. All of the experimental data were subjected to analysis of variance (ANOVA), and when significant effects were detected, the means were compared using Tukey’s tests. These data show large differences in these yield characteristics between conventional and organic crops, particularly highlighting higher yields for the conventional crops, while variable results were generally observed when the biostimulants were applied. In this context, there were no effects of the biostimulants on the quantitative yield, whereas there were low positive effects on the qualitative characteristics, as related to higher dry matter content of cauliflower, and higher soluble solids content of pepper. Moreover, there were evident positive effects of the biostimulants with fennel, due to the lower nitrate content. These latter data are in line with most of the published literature obtained for other herbaceous crops.

Keywords: Biostimulants, cauliflower, pepper, fennel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3569
5782 Unit Commitment Solution Methods

Authors: Sayeed Salam

Abstract:

An effort to develop a unit commitment approach capable of handling large power systems consisting of both thermal and hydro generating units offers a large profitable return. In order to be feasible, the method to be developed must be flexible, efficient and reliable. In this paper, various proposed methods have been described along with their strengths and weaknesses. As all of these methods have some sort of weaknesses, a comprehensive algorithm that combines the strengths of different methods and overcomes each other-s weaknesses would be a suitable approach for solving industry-grade unit commitment problem.

Keywords: Unit commitment, Solution methods, and Comprehensive algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6170
5781 Attacks Classification in Adaptive Intrusion Detection using Decision Tree

Authors: Dewan Md. Farid, Nouria Harbi, Emna Bahri, Mohammad Zahidur Rahman, Chowdhury Mofizur Rahman

Abstract:

Recently, information security has become a key issue in information technology as the number of computer security breaches are exposed to an increasing number of security threats. A variety of intrusion detection systems (IDS) have been employed for protecting computers and networks from malicious network-based or host-based attacks by using traditional statistical methods to new data mining approaches in last decades. However, today's commercially available intrusion detection systems are signature-based that are not capable of detecting unknown attacks. In this paper, we present a new learning algorithm for anomaly based network intrusion detection system using decision tree algorithm that distinguishes attacks from normal behaviors and identifies different types of intrusions. Experimental results on the KDD99 benchmark network intrusion detection dataset demonstrate that the proposed learning algorithm achieved 98% detection rate (DR) in comparison with other existing methods.

Keywords: Detection rate, decision tree, intrusion detectionsystem, network security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3628
5780 Authentication Protocol for Wireless Sensor Networks

Authors: Sunil Gupta, Harsh Kumar Verma, AL Sangal

Abstract:

Wireless sensor networks can be used to measure and monitor many challenging problems and typically involve in monitoring, tracking and controlling areas such as battlefield monitoring, object tracking, habitat monitoring and home sentry systems. However, wireless sensor networks pose unique security challenges including forgery of sensor data, eavesdropping, denial of service attacks, and the physical compromise of sensor nodes. Node in a sensor networks may be vanished due to power exhaustion or malicious attacks. To expand the life span of the sensor network, a new node deployment is needed. In military scenarios, intruder may directly organize malicious nodes or manipulate existing nodes to set up malicious new nodes through many kinds of attacks. To avoid malicious nodes from joining the sensor network, a security is required in the design of sensor network protocols. In this paper, we proposed a security framework to provide a complete security solution against the known attacks in wireless sensor networks. Our framework accomplishes node authentication for new nodes with recognition of a malicious node. When deployed as a framework, a high degree of security is reachable compared with the conventional sensor network security solutions. A proposed framework can protect against most of the notorious attacks in sensor networks, and attain better computation and communication performance. This is different from conventional authentication methods based on the node identity. It includes identity of nodes and the node security time stamp into the authentication procedure. Hence security protocols not only see the identity of each node but also distinguish between new nodes and old nodes.

Keywords: Authentication, Key management, Wireless Sensornetwork, Elliptic curve cryptography (ECC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3823
5779 A Comparison of Different Soft Computing Models for Credit Scoring

Authors: Nnamdi I. Nwulu, Shola G. Oroja

Abstract:

It has become crucial over the years for nations to improve their credit scoring methods and techniques in light of the increasing volatility of the global economy. Statistical methods or tools have been the favoured means for this; however artificial intelligence or soft computing based techniques are becoming increasingly preferred due to their proficient and precise nature and relative simplicity. This work presents a comparison between Support Vector Machines and Artificial Neural Networks two popular soft computing models when applied to credit scoring. Amidst the different criteria-s that can be used for comparisons; accuracy, computational complexity and processing times are the selected criteria used to evaluate both models. Furthermore the German credit scoring dataset which is a real world dataset is used to train and test both developed models. Experimental results obtained from our study suggest that although both soft computing models could be used with a high degree of accuracy, Artificial Neural Networks deliver better results than Support Vector Machines.

Keywords: Artificial Neural Networks, Credit Scoring, SoftComputing Models, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
5778 Tool Failure Detection Based on Statistical Analysis of Metal Cutting Acoustic Emission Signals

Authors: Othman Belgassim, Krzysztof Jemielniak

Abstract:

The analysis of Acoustic Emission (AE) signal generated from metal cutting processes has often approached statistically. This is due to the stochastic nature of the emission signal as a result of factors effecting the signal from its generation through transmission and sensing. Different techniques are applied in this manner, each of which is suitable for certain processes. In metal cutting where the emission generated by the deformation process is rather continuous, an appropriate method for analysing the AE signal based on the root mean square (RMS) of the signal is often used and is suitable for use with the conventional signal processing systems. The aim of this paper is to set a strategy in tool failure detection in turning processes via the statistic analysis of the AE generated from the cutting zone. The strategy is based on the investigation of the distribution moments of the AE signal at predetermined sampling. The skews and kurtosis of these distributions are the key elements in the detection. A normal (Gaussian) distribution has first been suggested then this was eliminated due to insufficiency. The so called Beta distribution was then considered, this has been used with an assumed β density function and has given promising results with regard to chipping and tool breakage detection.

Keywords: AE signal, skew, kurtosis, tool failure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
5777 Enhancement of a 3D Sound Using Psychoacoustics

Authors: Kyosik Koo, Hyungtai Cha

Abstract:

Generally, in order to create 3D sound using binaural systems, we use head related transfer functions (HRTF) including the information of sounds which is arrived to our ears. But it can decline some three-dimensional effects in the area of a cone of confusion between front and back directions, because of the characteristics of HRTF. In this paper, we propose a new method to use psychoacoustics theory that reduces the confusion of sound image localization. In the method, HRTF spectrum characteristic is enhanced by using the energy ratio of the bark band. Informal listening tests show that the proposed method improves the front-back sound localization characteristics much better than the conventional methods

Keywords: HRTF, 3D sound, Psychoacoustics, Localization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024
5776 Sigma-Delta ADCs Converter a Study Case

Authors: Thiago Brito Bezerra, Mauro Lopes de Freitas, Waldir Sabino da Silva Júnior

Abstract:

The Sigma-Delta A/D converters have been proposed as a practical application for A/D conversion at high rates because of its simplicity and robustness to imperfections in the circuit, also because the traditional converters are more difficult to implement in VLSI technology. These difficulties with conventional conversion methods need precise analog components in their filters and conversion circuits, and are more vulnerable to noise and interference. This paper aims to analyze the architecture, function and application of Analog-Digital converters (A/D) Sigma-Delta to overcome these difficulties, showing some simulations using the Simulink software and Multisim.

Keywords: Analysis, Oversampling Modulator, A/D converters, Sigma-Delta.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2685
5775 Mechanical Quadrature Methods and Their Extrapolations for Solving First Kind Boundary Integral Equations of Anisotropic Darcy-s Equation

Authors: Xin Luo, Jin Huang, Chuan-Long Wang

Abstract:

The mechanical quadrature methods for solving the boundary integral equations of the anisotropic Darcy-s equations with Dirichlet conditions in smooth domains are presented. By applying the collectively compact theory, we prove the convergence and stability of approximate solutions. The asymptotic expansions for the error show that the methods converge with the order O (h3), where h is the mesh size. Based on these analysis, extrapolation methods can be introduced to achieve a higher convergence rate O (h5). An a posterior asymptotic error representation is derived in order to construct self-adaptive algorithms. Finally, the numerical experiments show the efficiency of our methods.

Keywords: Darcy's equation, anisotropic, mechanical quadrature methods, extrapolation methods, a posteriori error estimate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
5774 Solving the Economic Dispatch Problem by Using Differential Evolution

Authors: S. Khamsawang, S. Jiriwibhakorn

Abstract:

This paper proposes an application of the differential evolution (DE) algorithm for solving the economic dispatch problem (ED). Furthermore, the regenerating population procedure added to the conventional DE in order to improve escaping the local minimum solution. To test performance of DE algorithm, three thermal generating units with valve-point loading effects is used for testing. Moreover, investigating the DE parameters is presented. The simulation results show that the DE algorithm, which had been adjusted parameters, is better convergent time than other optimization methods.

Keywords: Differential evolution, Economic dispatch problem, Valve-point loading effect, Optimization method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
5773 Study of Qualitative and Quantitative Metric for Pixel Factor Mapping and Extended Pixel Mapping Method

Authors: Indradip Banerjee, Souvik Bhattacharyya, Gautam Sanyal

Abstract:

In this paper, an approach is presented to investigate the performance of Pixel Factor Mapping (PFM) and Extended PMM (Pixel Mapping Method) through the qualitative and quantitative approach. These methods are tested against a number of well-known image similarity metrics and statistical distribution techniques. The PFM has been performed in spatial domain as well as frequency domain and the Extended PMM has also been performed in spatial domain through large set of images available in the internet.

Keywords: Qualitative, quantitative, PFM, EXTENDED PMM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1062
5772 Two Fourth-order Iterative Methods Based on Continued Fraction for Root-finding Problems

Authors: Shengfeng Li, Rujing Wang

Abstract:

In this paper, we present two new one-step iterative methods based on Thiele-s continued fraction for solving nonlinear equations. By applying the truncated Thiele-s continued fraction twice, the iterative methods are obtained respectively. Analysis of convergence shows that the new methods are fourth-order convergent. Numerical tests verifying the theory are given and based on the methods, two new one-step iterations are developed.

Keywords: Iterative method, Fixed-point iteration, Thiele's continued fraction, Order of convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
5771 Emotional Security in Relationship to Tikrit University Students' Emotional Efficiency

Authors: Ibtisam Mahmoud Mohammed Sultan

Abstract:

The present research aims at identifying the level of both emotional security and emotional competence among Tikrit University students. It also meant to know the statistically significant differences according to variables such as gender variables (m-f) and specialization variables (scientific-humanities). The research also attempts to learn what kind of relationship is there between emotional security and emotional efficiency Tikrit University students have achieved. We constructed emotional security measure which consists of 54 items as well as a measure of emotional competence consisting of 46 items. We extracted full psychometric characteristics of both scales. The research sample consisted of 600 students selected randomly and applying the scales on a basic research sample and processed statistical data using a variety of methods, including statistical measure Pearson correlation coefficient, we found a set of results as follows: Tikrit University students possess a high level of emotional security, males enjoy more emotional security than females, there is no difference between students of scientific and humanitarian specialization in variable emotional security, Tikrit University students enjoy a high level of emotional competence, females outperform males in emotional competence level, the humanitarian specialization students excel in emotional competence more than those specialized in non-humanitarian sciences. Furthermore, the research comes up with a positive correlative relationship between these two variables. Through research results, we developed a set of conclusions, proposals, and recommendations.

Keywords: Emotional security, gender variable, specialization variable, Tikrit University students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 385
5770 An Improved Integer Frequency Offset Estimator using the P1 Symbol for OFDM System

Authors: Yong-An Jung, Young-Hwan You

Abstract:

This paper suggests an improved integer frequency offset (IFO) estimation scheme using P1 symbol for orthogonal frequency division multiplexing (OFDM) based the second generation terrestrial digital video broadcasting (DVB-T2) system. Proposed IFO estimator is designed by a low-complexity blind IFO estimation scheme, which is implemented with complex additions. Also, we propose active carriers (ACs) selection scheme in order to prevent performance degradation in blind IFO estimation. The simulation results show that under the AWGN and TU6 channels, the proposed method has low complexity than conventional method and almost similar performance in comparison with the conventional method.

Keywords: OFDM, DVB-T2, P1 symbol, ACs, IFO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
5769 Detection of Actuator Faults for an Attitude Control System using Neural Network

Authors: S. Montenegro, W. Hu

Abstract:

The objective of this paper is to develop a neural network-based residual generator to detect the fault in the actuators for a specific communication satellite in its attitude control system (ACS). First, a dynamic multilayer perceptron network with dynamic neurons is used, those neurons correspond a second order linear Infinite Impulse Response (IIR) filter and a nonlinear activation function with adjustable parameters. Second, the parameters from the network are adjusted to minimize a performance index specified by the output estimated error, with the given input-output data collected from the specific ACS. Then, the proposed dynamic neural network is trained and applied for detecting the faults injected to the wheel, which is the main actuator in the normal mode for the communication satellite. Then the performance and capabilities of the proposed network were tested and compared with a conventional model-based observer residual, showing the differences between these two methods, and indicating the benefit of the proposed algorithm to know the real status of the momentum wheel. Finally, the application of the methods in a satellite ground station is discussed.

Keywords: Satellite, Attitude Control, Momentum Wheel, Neural Network, Fault Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
5768 Impact of Solar Energy Based Power Grid for Future Prospective of Pakistan

Authors: Muhammd Usman Sardar, Mazhar Hussain Baloch, Muhammad Shahbaz Ahmad, Zahir Javed Paracha

Abstract:

Shortfall of electrical energy in Pakistan is a challenge adversely affecting its industrial output and social growth. As elsewhere, Pakistan derives its electrical energy from a number of conventional sources. The exhaustion of petroleum and conventional resources, the rising costs coupled with extremely adverse climatic effects are taking its toll especially on the under-developed countries like Pakistan. As alternate, renewable energy sources like hydropower, solar, wind, even bio-energy and a mix of some or all of them could provide a credible alternative to the conventional energy resources that would not only be cleaner but sustainable as well. As a model, solar energy-based power grid for the near future has been attempted to offset the energy shortfalls as a mix with our existing sustainable natural energy resources. An assessment of solar energy potential for electricity generation is being presented for fulfilling the energy demands with higher level of reliability and sustainability. This model is based on the premise that solar energy potential of Pakistan is not only reliable but also sustainable. This research estimates the present & future approaching renewable energy resource specially the impact of solar energy based power grid for mitigating energy shortage in Pakistan.

Keywords: Powergrid network, solar photovoltaic (SPV) setups, solar power generation, solar energy technology (SET).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3449
5767 Using Field Indices of Rill and Gully in order to Erosion Estimating and Sediment Analysis (Case Study: Menderjan Watershed in Isfahan Province, Iran)

Authors: Masoud Nasri, Sadat Feiznia, Mohammad Jafari, Hasan Ahmadi

Abstract:

Today, incorrect use of lands and land use changes, excessive grazing, no suitable using of agricultural farms, plowing on steep slopes, road construct, building construct, mine excavation etc have been caused increasing of soil erosion and sediment yield. For erosion and sediment estimation one can use statistical and empirical methods. This needs to identify land unit map and the map of effective factors. However, these empirical methods are usually time consuming and do not give accurate estimation of erosion. In this study, we applied GIS techniques to estimate erosion and sediment of Menderjan watershed at upstream Zayandehrud river in center of Iran. Erosion faces at each land unit were defined on the basis of land use, geology and land unit map using GIS. The UTM coordinates of each erosion type that showed more erosion amounts such as rills and gullies were inserted in GIS using GPS data. The frequency of erosion indicators at each land unit, land use and their sediment yield of these indices were calculated. Also using tendency analysis of sediment yield changes in watershed outlet (Menderjan hydrometric gauge station), was calculated related parameters and estimation errors. The results of this study according to implemented watershed management projects can be used for more rapid and more accurate estimation of erosion than traditional methods. These results can also be used for regional erosion assessment and can be used for remote sensing image processing.

Keywords: Erosion and sedimentation, Gully, Rill, GIS, GPS, Menderjan Watershed

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
5766 Non-Polynomial Spline Solution of Fourth-Order Obstacle Boundary-Value Problems

Authors: Jalil Rashidinia, Reza Jalilian

Abstract:

In this paper we use quintic non-polynomial spline functions to develop numerical methods for approximation to the solution of a system of fourth-order boundaryvalue problems associated with obstacle, unilateral and contact problems. The convergence analysis of the methods has been discussed and shown that the given approximations are better than collocation and finite difference methods. Numerical examples are presented to illustrate the applications of these methods, and to compare the computed results with other known methods.

Keywords: Quintic non-polynomial spline, Boundary formula, Convergence, Obstacle problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
5765 Assessment of the Adaptive Pushover Analysis Using Displacement-based Loading in Prediction the Seismic Behaviour of the Unsymmetric-Plan Buildings

Authors: M.O. Makhmalbaf, F. Mohajeri Nav, M. Zabihi Samani

Abstract:

The recent drive for use of performance-based methodologies in design and assessment of structures in seismic areas has significantly increased the demand for the development of reliable nonlinear inelastic static pushover analysis tools. As a result, the adaptive pushover methods have been developed during the last decade, which unlike their conventional pushover counterparts, feature the ability to account for the effect that higher modes of vibration and progressive stiffness degradation might have on the distribution of seismic storey forces. Even in advanced pushover methods, little attention has been paid to the Unsymmetric structures. This study evaluates the seismic demands for three dimensional Unsymmetric-Plan buildings determined by the Displacement-based Adaptive Pushover (DAP) analysis, which has been introduced by Antoniou and Pinho [2004]. The capability of DAP procedure in capturing the torsional effects due to the irregularities of the structures, is investigated by comparing its estimates to the exact results, obtained from Incremental Dynamic Analysis (IDA). Also the capability of the procedure in prediction the seismic behaviour of the structure is discussed.

Keywords: Nonlinear static procedures, Unsymmetric-PlanBuildings, Torsional effects, IDA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2767
5764 Statistical Assessment of Models for Determination of Soil – Water Characteristic Curves of Sand Soils

Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha

Abstract:

Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and timeconsuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.

Keywords: Soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2664
5763 Variation in the Traditional Knowledge of Curcuma longa L. in North-Eastern Algeria

Authors: A. Bouzabata, A. Boukhari

Abstract:

Curcuma longa L. (Zingiberaceae), commonly known as turmeric, has a long history of traditional uses for culinary purposes as a spice and a food colorant. The present study aimed to document the ethnobotanical knowledge about Curcuma longa, and to assess the variation in the herbalists’ experience in Northeastern Algeria. Data were collected using semi-structured questionnaires and direct interviews with 30 herbalists. Ethnobotanical indices, including the fidelity level (FL%), the relative frequency citation (RFC), and use value (UV) were determined by quantitative methods. Diversity in the level of knowledge was analyzed using univariate, non-parametric, and multivariate statistical methods. Three main categories of uses were recorded for C. longa: for food, for medicine, and for cosmetic purposes. As a medicine, turmeric was used for the treatment of gastrointestinal, dermatological, and hepatic diseases. Medicinal and food uses were correlated with both forms of preparation (rhizome and powder). The age group did not influence the use. Multivariate analyses showed a significant variation in traditional knowledge, associated with the use value, origin, quality, and efficacy of the drug. The findings suggested that the geographical origin of C. longa affected the use in Algeria.

Keywords: Curcuma longa, curcuma indices, ethnobotanical knowledge, variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2596
5762 Medical Image Fusion Based On Redundant Wavelet Transform and Morphological Processing

Authors: P. S. Gomathi, B. Kalaavathi

Abstract:

The process in which the complementary information from multiple images is integrated to provide composite image that contains more information than the original input images is called image fusion. Medical image fusion provides useful information from multimodality medical images that provides additional information to the doctor for diagnosis of diseases in a better way. This paper represents the wavelet based medical image fusion algorithm on different multimodality medical images. In order to fuse the medical images, images are decomposed using Redundant Wavelet Transform (RWT). The high frequency coefficients are convolved with morphological operator followed by the maximum-selection (MS) rule. The low frequency coefficients are processed by MS rule. The reconstructed image is obtained by inverse RWT. The quantitative measures which includes Mean, Standard Deviation, Average Gradient, Spatial frequency, Edge based Similarity Measures are considered for evaluating the fused images. The performance of this proposed method is compared with Pixel averaging, PCA, and DWT fusion methods. When compared with conventional methods, the proposed framework provides better performance for analysis of multimodality medical images.

Keywords: Discrete Wavelet Transform (DWT), Image Fusion, Morphological Processing, Redundant Wavelet Transform (RWT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156
5761 Self-evolving Neural Networks Based On PSO and JPSO Algorithms

Authors: Abdussamad Ismail, Dong-Sheng Jeng

Abstract:

A self-evolution algorithm for optimizing neural networks using a combination of PSO and JPSO is proposed. The algorithm optimizes both the network topology and parameters simultaneously with the aim of achieving desired accuracy with less complicated networks. The performance of the proposed approach is compared with conventional back-propagation networks using several synthetic functions, with better results in the case of the former. The proposed algorithm is also implemented on slope stability problem to estimate the critical factor of safety. Based on the results obtained, the proposed self evolving network produced a better estimate of critical safety factor in comparison to conventional BPN network.

Keywords: Neural networks, Topology evolution, Particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
5760 A New Load Frequency Controller based on Parallel Fuzzy PI with Conventional PD (FPI-PD)

Authors: Aqeel S. Jaber, Abu Zaharin Ahmad, Ahmed N. Abdalla

Abstract:

The artificial intelligent controller in power system plays as most important rule for many applications such as system operation and its control specially Load Frequency Controller (LFC). The main objective of LFC is to keep the frequency and tie-line power close to their decidable bounds in case of disturbance. In this paper, parallel fuzzy PI adaptive with conventional PD technique for Load Frequency Control system was proposed. PSO optimization method used to optimize both of scale fuzzy PI and tuning of PD. Two equal interconnected power system areas were used as a test system. Simulation results show the effectiveness of the proposed controller compared with different PID and classical fuzzy PI controllers in terms of speed response and damping frequency.

Keywords: Load frequency control, PSO, fuzzy control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
5759 Interpolation of Geofield Parameters

Authors: A. Pashayev, C. Ardil, R. Sadiqov

Abstract:

Various methods of geofield parameters restoration (by algebraic polynoms; filters; rational fractions; interpolation splines; geostatistical methods – kriging; search methods of nearest points – inverse distance, minimum curvature, local – polynomial interpolation; neural networks) have been analyzed and some possible mistakes arising during geofield surface modeling have been presented.

Keywords: interpolation methods, geofield parameters, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703