Search results for: adaptive cruise control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4285

Search results for: adaptive cruise control

3955 Improved IDR(s) Method for Gaining Very Accurate Solutions

Authors: Yusuke Onoue, Seiji Fujino, Norimasa Nakashima

Abstract:

The IDR(s) method based on an extended IDR theorem was proposed by Sonneveld and van Gijzen. The original IDR(s) method has excellent property compared with the conventional iterative methods in terms of efficiency and small amount of memory. IDR(s) method, however, has unexpected property that relative residual 2-norm stagnates at the level of less than 10-12. In this paper, an effective strategy for stagnation detection, stagnation avoidance using adaptively information of parameter s and improvement of convergence rate itself of IDR(s) method are proposed in order to gain high accuracy of the approximated solution of IDR(s) method. Through numerical experiments, effectiveness of adaptive tuning IDR(s) method is verified and demonstrated.

Keywords: Krylov subspace methods, IDR(s), adaptive tuning, stagnation of relative residual.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
3954 Speed Sensorless Direct Torque Control of a PMSM Drive using Space Vector Modulation Based MRAS and Stator Resistance Estimator

Authors: A. Ameur, B. Mokhtari, N. Essounbouli, L. Mokrani

Abstract:

This paper presents a speed sensorless direct torque control scheme using space vector modulation (DTC-SVM) for permanent magnet synchronous motor (PMSM) drive based a Model Reference Adaptive System (MRAS) algorithm and stator resistance estimator. The MRAS is utilized to estimate speed and stator resistance and compensate the effects of parameter variation on stator resistance, which makes flux and torque estimation more accurate and insensitive to parameter variation. In other hand the use of SVM method reduces the torque ripple while achieving a good dynamic response. Simulation results are presented and show the effectiveness of the proposed method.

Keywords: MRAS, PMSM, SVM, DTC, Speed and Resistance estimation, Sensorless drive

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3869
3953 Neighborhood Sustainability Assessment Tools: A Conceptual Framework for Their Use in Building Adaptive Capacity to Climate Change

Authors: Sally Naji, Julie Gwilliam

Abstract:

Climate change remains a challenging matter for the human and the built environment in the 21st century, where the need to consider adaptation to climate change in the development process is paramount. However, there remains a lack of information regarding how we should prepare responses to this issue, such as through developing organized and sophisticated tools enabling the adaptation process. This study aims to build a systematic framework approach to investigate the potentials that Neighborhood Sustainability Assessment tools (NSA) might offer in enabling both the analysis of the emerging adaptive capacity to climate change. The analysis of the framework presented in this paper aims to discuss this issue in three main phases. The first part attempts to link sustainability and climate change, in the context of adaptive capacity. It is argued that in deciding to promote sustainability in the context of climate change, both the resilience and vulnerability processes become central. However, there is still a gap in the current literature regarding how the sustainable development process can respond to climate change. As well as how the resilience of practical strategies might be evaluated. It is suggested that the integration of the sustainability assessment processes with both the resilience thinking process, and vulnerability might provide important components for addressing the adaptive capacity to climate change. A critical review of existing literature is presented illustrating the current lack of work in this field, integrating these three concepts in the context of addressing the adaptive capacity to climate change. The second part aims to identify the most appropriate scale at which to address the built environment for the climate change adaptation. It is suggested that the neighborhood scale can be considered as more suitable than either the building or urban scales. It then presents the example of NSAs, and discusses the need to explore their potential role in promoting the adaptive capacity to climate change. The third part of the framework presents a comparison among three example NSAs, BREEAM Communities, LEED-ND, and CASBEE-UD. These three tools have been selected as the most developed and comprehensive assessment tools that are currently available for the neighborhood scale. This study concludes that NSAs are likely to present the basis for an organized framework to address the practical process for analyzing and yet promoting Adaptive Capacity to Climate Change. It is further argued that vulnerability (exposure & sensitivity) and resilience (Interdependence & Recovery) form essential aspects to be addressed in the future assessment of NSA’s capability to adapt to both short and long term climate change impacts. Finally, it is acknowledged that further work is now required to understand impact assessment in terms of the range of physical sectors (Water, Energy, Transportation, Building, Land Use and Ecosystems), Actor and stakeholder engagement as well as a detailed evaluation of the NSA indicators, together with a barriers diagnosis process.

Keywords: Adaptive capacity, climate change, NSA tools, resilience, vulnerability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172
3952 Seed-Based Region Growing (SBRG) vs Adaptive Network-Based Inference System (ANFIS) vs Fuzzyc-Means (FCM): Brain Abnormalities Segmentation

Authors: Shafaf Ibrahim, Noor Elaiza Abdul Khalid, Mazani Manaf

Abstract:

Segmentation of Magnetic Resonance Imaging (MRI) images is the most challenging problems in medical imaging. This paper compares the performances of Seed-Based Region Growing (SBRG), Adaptive Network-Based Fuzzy Inference System (ANFIS) and Fuzzy c-Means (FCM) in brain abnormalities segmentation. Controlled experimental data is used, which designed in such a way that prior knowledge of the size of the abnormalities are known. This is done by cutting various sizes of abnormalities and pasting it onto normal brain tissues. The normal tissues or the background are divided into three different categories. The segmentation is done with fifty seven data of each category. The knowledge of the size of the abnormalities by the number of pixels are then compared with segmentation results of three techniques proposed. It was proven that the ANFIS returns the best segmentation performances in light abnormalities, whereas the SBRG on the other hand performed well in dark abnormalities segmentation.

Keywords: Seed-Based Region Growing (SBRG), Adaptive Network-Based Fuzzy Inference System (ANFIS), Fuzzy c-Means (FCM), Brain segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305
3951 A Study of the Adaptive Reuse for School Land Use Strategy: An Application of the Analytic Network Process and Big Data

Authors: Wann-Ming Wey

Abstract:

In today's popularity and progress of information technology, the big data set and its analysis are no longer a major conundrum. Now, we could not only use the relevant big data to analysis and emulate the possible status of urban development in the near future, but also provide more comprehensive and reasonable policy implementation basis for government units or decision-makers via the analysis and emulation results as mentioned above. In this research, we set Taipei City as the research scope, and use the relevant big data variables (e.g., population, facility utilization and related social policy ratings) and Analytic Network Process (ANP) approach to implement in-depth research and discussion for the possible reduction of land use in primary and secondary schools of Taipei City. In addition to enhance the prosperous urban activities for the urban public facility utilization, the final results of this research could help improve the efficiency of urban land use in the future. Furthermore, the assessment model and research framework established in this research also provide a good reference for schools or other public facilities land use and adaptive reuse strategies in the future.

Keywords: Adaptive reuse, analytic network process, big data, land use strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921
3950 Model of Obstacle Avoidance on Hard Disk Drive Manufacturing with Distance Constraint

Authors: Rawinun Praserttaweelap, Somyot Kiatwanidvilai

Abstract:

Obstacle avoidance is the one key for the robot system in unknown environment. The robots should be able to know their position and safety region. This research starts on the path planning which are SLAM and AMCL in ROS system. In addition, the best parameters of the obstacle avoidance function are required. In situation on Hard Disk Drive Manufacturing, the distance between robots and obstacles are very serious due to the manufacturing constraint. The simulations are accomplished by the SLAM and AMCL with adaptive velocity and safety region calculation.

Keywords: Obstacle avoidance, simultaneous localization and mapping, adaptive Monte Carlo localization, KLD sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 492
3949 Adaptive Neuro-Fuzzy Inference System for Financial Trading using Intraday Seasonality Observation Model

Authors: A. Kablan

Abstract:

The prediction of financial time series is a very complicated process. If the efficient market hypothesis holds, then the predictability of most financial time series would be a rather controversial issue, due to the fact that the current price contains already all available information in the market. This paper extends the Adaptive Neuro Fuzzy Inference System for High Frequency Trading which is an expert system that is capable of using fuzzy reasoning combined with the pattern recognition capability of neural networks to be used in financial forecasting and trading in high frequency. However, in order to eliminate unnecessary input in the training phase a new event based volatility model was proposed. Taking volatility and the scaling laws of financial time series into consideration has brought about the development of the Intraday Seasonality Observation Model. This new model allows the observation of specific events and seasonalities in data and subsequently removes any unnecessary data. This new event based volatility model provides the ANFIS system with more accurate input and has increased the overall performance of the system.

Keywords: Adaptive Neuro-fuzzy Inference system, High Frequency Trading, Intraday Seasonality Observation Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3395
3948 Performance of Compound Enhancement Algorithms on Dental Radiograph Images

Authors: S.A.Ahmad, M.N.Taib, N.E.A.Khalid, R.Ahmad, H.Taib

Abstract:

The purpose of this research is to compare the original intra-oral digital dental radiograph images with images that are enhanced using a combination of image processing algorithms. Intraoral digital dental radiograph images are often noisy, blur edges and low in contrast. A combination of sharpening and enhancement method are used to overcome these problems. Three types of proposed compound algorithms used are Sharp Adaptive Histogram Equalization (SAHE), Sharp Median Adaptive Histogram Equalization (SMAHE) and Sharp Contrast adaptive histogram equalization (SCLAHE). This paper presents an initial study of the perception of six dentists on the details of abnormal pathologies and improvement of image quality in ten intra-oral radiographs. The research focus on the detection of only three types of pathology which is periapical radiolucency, widen periodontal ligament space and loss of lamina dura. The overall result shows that SCLAHE-s slightly improve the appearance of dental abnormalities- over the original image and also outperform the other two proposed compound algorithms.

Keywords: intra-oral dental radiograph, histogram equalization, sharpening, CLAHE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
3947 Optimal Simultaneous Sizing and Siting of DGs and Smart Meters Considering Voltage Profile Improvement in Active Distribution Networks

Authors: T. Sattarpour, D. Nazarpour

Abstract:

This paper investigates the effect of simultaneous placement of DGs and smart meters (SMs), on voltage profile improvement in active distribution networks (ADNs). A substantial center of attention has recently been on responsive loads initiated in power system problem studies such as distributed generations (DGs). Existence of responsive loads in active distribution networks (ADNs) would have undeniable effect on sizing and siting of DGs. For this reason, an optimal framework is proposed for sizing and siting of DGs and SMs in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Looking for voltage profile improvement, the optimization procedure is solved by genetic algorithm (GA) and tested on IEEE 33-bus distribution test system. Different scenarios with variations in the number of DG units, individual or simultaneous placing of DGs and SMs, and adaptive power factor (APF) mode for DGs to support reactive power have been established. The obtained results confirm the significant effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the improvement of voltage profile as well.

Keywords: Active distribution network (ADN), distributed generations (DGs), smart meters (SMs), demand response programs (DRPs), adaptive power factor (APF).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
3946 Application of Adaptive Neuro-Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel ASTM A516 Grade 70

Authors: Omar Al Denali, Abdelaziz Badi

Abstract:

The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of PWHT experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556%, which confirms the high accuracy of the model.

Keywords: Prediction, post-weld heat treatment, adaptive neuro-fuzzy inference system, ANFIS, mean absolute percentage error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 399
3945 Application of Adaptive Neuro-Fuzzy Inference System in Smoothing Transition Autoregressive Models

Authors: Ε. Giovanis

Abstract:

In this paper we propose and examine an Adaptive Neuro-Fuzzy Inference System (ANFIS) in Smoothing Transition Autoregressive (STAR) modeling. Because STAR models follow fuzzy logic approach, in the non-linear part fuzzy rules can be incorporated or other training or computational methods can be applied as the error backpropagation algorithm instead to nonlinear squares. Furthermore, additional fuzzy membership functions can be examined, beside the logistic and exponential, like the triangle, Gaussian and Generalized Bell functions among others. We examine two macroeconomic variables of US economy, the inflation rate and the 6-monthly treasury bills interest rates.

Keywords: Forecasting, Neuro-Fuzzy, Smoothing transition, Time-series

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
3944 On Two Control Approaches for The Output Voltage Regulation of a Boost Converter

Authors: Abdelaziz Sahbani, Kamel Ben Saad, Mohamed Benrejeb

Abstract:

This paper deals with the comparison between two proposed control strategies for a DC-DC boost converter. The first control is a classical Sliding Mode Control (SMC) and the second one is a distance based Fuzzy Sliding Mode Control (FSMC). The SMC is an analytical control approach based on the boost mathematical model. However, the FSMC is a non-conventional control approach which does not need the controlled system mathematical model. It needs only the measures of the output voltage to perform the control signal. The obtained simulation results show that the two proposed control methods are robust for the case of load resistance and the input voltage variations. However, the proposed FSMC gives a better step voltage response than the one obtained by the SMC.

Keywords: Boost DC-DC converter, Sliding Mode Control (SMC), Fuzzy Sliding Mode Control (FSMC), Robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
3943 Model Predictive Control of Gantry Crane with Input Nonlinearity Compensation

Authors: Steven W. Su , Hung Nguyen, Rob Jarman, Joe Zhu, David Lowe, Peter McLean, Shoudong Huang, Nghia T. Nguyen, Russell Nicholson, Kaili Weng

Abstract:

This paper proposed a nonlinear model predictive control (MPC) method for the control of gantry crane. One of the main motivations to apply MPC to control gantry crane is based on its ability to handle control constraints for multivariable systems. A pre-compensator is constructed to compensate the input nonlinearity (nonsymmetric dead zone with saturation) by using its inverse function. By well tuning the weighting function matrices, the control system can properly compromise the control between crane position and swing angle. The proposed control algorithm was implemented for the control of gantry crane system in System Control Lab of University of Technology, Sydney (UTS), and achieved desired experimental results.

Keywords: Model Predictive Control, Control constraints, Input nonlinearity compensation, Overhead gantry crane.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
3942 A Complexity-Based Approach in Image Compression using Neural Networks

Authors: Hadi Veisi, Mansour Jamzad

Abstract:

In this paper we present an adaptive method for image compression that is based on complexity level of the image. The basic compressor/de-compressor structure of this method is a multilayer perceptron artificial neural network. In adaptive approach different Back-Propagation artificial neural networks are used as compressor and de-compressor and this is done by dividing the image into blocks, computing the complexity of each block and then selecting one network for each block according to its complexity value. Three complexity measure methods, called Entropy, Activity and Pattern-based are used to determine the level of complexity in image blocks and their ability in complexity estimation are evaluated and compared. In training and evaluation, each image block is assigned to a network based on its complexity value. Best-SNR is another alternative in selecting compressor network for image blocks in evolution phase which chooses one of the trained networks such that results best SNR in compressing the input image block. In our evaluations, best results are obtained when overlapping the blocks is allowed and choosing the networks in compressor is based on the Best-SNR. In this case, the results demonstrate superiority of this method comparing with previous similar works and JPEG standard coding.

Keywords: Adaptive image compression, Image complexity, Multi-layer perceptron neural network, JPEG Standard, PSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
3941 Reductions of Control Flow Graphs

Authors: Robert Gold

Abstract:

Control flow graphs are a well-known representation of the sequential control flow structure of programs with a multitude of applications. Not only single functions but also sets of functions or complete programs can be modeled by control flow graphs. In this case the size of the graphs can grow considerably and thus makes it difficult for software engineers to analyze the control flow. Graph reductions are helpful in this situation. In this paper we define reductions to subsets of nodes. Since executions of programs are represented by paths through the control flow graphs, paths should be preserved. Furthermore, the composition of reductions makes a stepwise analysis approach possible.

Keywords: Control flow graph, graph reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3495
3940 A New Kind Methodology for Controlling Complex Systems

Authors: Zundong Zhang, Limin Jia, Yuanyuan Chai

Abstract:

Control of complex systems is one of important files in complex systems, that not only relies on the essence of complex systems which is denoted by the core concept – emergence, but also embodies the elementary concept in control theory. Aiming at giving a clear and self-contained description of emergence, the paper introduces a formal way to completely describe the formation and dynamics of emergence in complex systems. Consequently, this paper indicates the Emergence-Oriented Control methodology that contains three kinds of basic control schemes: the direct control, the system re-structuring and the system calibration. As a universal ontology, the Emergence-Oriented Control provides a powerful tool for identifying and resolving control problems in specific systems.

Keywords: Complex System Control, Emergence, Emergence- Oriented Control Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
3939 Cognitive SATP for Airborne Radar Based on Slow-Time Coding

Authors: Fanqiang Kong, Jindong Zhang, Daiyin Zhu

Abstract:

Space-time adaptive processing (STAP) techniques have been motivated as a key enabling technology for advanced airborne radar applications. In this paper, the notion of cognitive radar is extended to STAP technique, and cognitive STAP is discussed. The principle for improving signal-to-clutter ratio (SCNR) based on slow-time coding is given, and the corresponding optimization algorithm based on cyclic and power-like algorithms is presented. Numerical examples show the effectiveness of the proposed method.

Keywords: Space-time adaptive processing (STAP), signal-to-clutter ratio, slow-time coding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 851
3938 Maximum Wind Power Extraction Strategy and Decoupled Control of DFIG Operating in Variable Speed Wind Generation Systems

Authors: Abdellatif Kasbi, Abderrafii Rahali

Abstract:

This paper appraises the performances of two control scenarios, for doubly fed induction generator (DFIG) operating in wind generation system (WGS), which are the direct decoupled control (DDC) and indirect decoupled control (IDC). Both control scenarios studied combines vector control and Maximum Power Point Tracking (MPPT) control theory so as to maximize the captured power through wind turbine. Modeling of DFIG based WGS and details of both control scenarios have been presented, a proportional integral controller is employed in the active and reactive power control loops for both control methods. The performance of the both control scenarios in terms of power reference tracking and robustness against machine parameters inconstancy has been shown, analyzed and compared, which can afford a reference to the operators and engineers of a wind farm. All simulations have been implemented via MATLAB/Simulink.

Keywords: DFIG, WGS, DDC, IDC, vector control, MPPT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708
3937 Fast Algorithm of Infrared Point Target Detection in Fluctuant Background

Authors: Yang Weiping, Zhang Zhilong, Li Jicheng, Chen Zengping, He Jun

Abstract:

The background estimation approach using a small window median filter is presented on the bases of analyzing IR point target, noise and clutter model. After simplifying the two-dimensional filter, a simple method of adopting one-dimensional median filter is illustrated to make estimations of background according to the characteristics of IR scanning system. The adaptive threshold is used to segment canceled image in the background. Experimental results show that the algorithm achieved good performance and satisfy the requirement of big size image-s real-time processing.

Keywords: Point target, background estimation, median filter, adaptive threshold, target detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
3936 Matching-Based Cercospora Leaf Spot Detection in Sugar Beet

Authors: Rong Zhou, Shun’ich Kaneko, Fumio Tanaka, Miyuki Kayamori, Motoshige Shimizu

Abstract:

In this paper, we propose a robust disease detection method, called adaptive orientation code matching (Adaptive OCM), which is developed from a robust image registration algorithm: orientation code matching (OCM), to achieve continuous and site-specific detection of changes in plant disease. We use two-stage framework for realizing our research purpose; in the first stage, adaptive OCM was employed which could not only realize the continuous and site-specific observation of disease development, but also shows its excellent robustness for non-rigid plant object searching in scene illumination, translation, small rotation and occlusion changes and then in the second stage, a machine learning method of support vector machine (SVM) based on a feature of two dimensional (2D) xy-color histogram is further utilized for pixel-wise disease classification and quantification. The indoor experiment results demonstrate the feasibility and potential of our proposed algorithm, which could be implemented in real field situation for better observation of plant disease development.

Keywords: Cercospora Leaf Spot (CLS), Disease detection, Image processing, Orientation Code Matching (OCM), Support Vector Machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
3935 Design of a Drift Assist Control System Applied to Remote Control Car

Authors: Sheng-Tse Wu, Wu-Sung Yao

Abstract:

In this paper, a drift assist control system is proposed for remote control (RC) cars to get the perfect drift angle. A steering servo control scheme is given powerfully to assist the drift driving. A gyroscope sensor is included to detect the machine's tail sliding and to achieve a better automatic counter-steering to prevent RC car from spinning. To analysis tire traction and vehicle dynamics is used to obtain the dynamic track of RC cars. It comes with a control gain to adjust counter-steering amount according to the sensor condition. An illustrated example of 1:10 RC drift car is given and the real-time control algorithm is realized by Arduino Uno.

Keywords: Drift assist control system, remote control cars, gyroscope, vehicle dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2555
3934 Simulation as an Effective Tool for the Comparative Evaluation of Field Oriented Control and Direct Torque Control of Induction Motor

Authors: Y.Srinivasa Kishore Babu, G.Tulasi Ram Das

Abstract:

This paper presents a comparative study of two most popular control strategies for Induction motor (IM) drives: Field-Oriented Control (FOC) and Direct Torque Control (DTC). The comparison is based on various criteria including basic control characteristics, dynamic performance, and implementation complexity. The study is done by simulation using the Simulink Power System Block set that allows a complete representation of the power section (inverter and IM) and the control system.

Keywords: IM, FOC, DTC, Simulink

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2529
3933 Landslide Susceptibility Mapping: A Comparison between Logistic Regression and Multivariate Adaptive Regression Spline Models in the Municipality of Oudka, Northern of Morocco

Authors: S. Benchelha, H. C. Aoudjehane, M. Hakdaoui, R. El Hamdouni, H. Mansouri, T. Benchelha, M. Layelmam, M. Alaoui

Abstract:

The logistic regression (LR) and multivariate adaptive regression spline (MarSpline) are applied and verified for analysis of landslide susceptibility map in Oudka, Morocco, using geographical information system. From spatial database containing data such as landslide mapping, topography, soil, hydrology and lithology, the eight factors related to landslides such as elevation, slope, aspect, distance to streams, distance to road, distance to faults, lithology map and Normalized Difference Vegetation Index (NDVI) were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by the two mentioned methods. Before the calculation, this database was divided into two parts, the first for the formation of the model and the second for the validation. The results of the landslide susceptibility analysis were verified using success and prediction rates to evaluate the quality of these probabilistic models. The result of this verification was that the MarSpline model is the best model with a success rate (AUC = 0.963) and a prediction rate (AUC = 0.951) higher than the LR model (success rate AUC = 0.918, rate prediction AUC = 0.901).

Keywords: Landslide susceptibility mapping, regression logistic, multivariate adaptive regression spline, Oudka, Taounate, Morocco.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 989
3932 An Approach to Control Design for Nonlinear Systems via Two-stage Formal Linearization and Two-type LQ Controls

Authors: Kazuo Komatsu, Hitoshi Takata

Abstract:

In this paper we consider a nonlinear control design for nonlinear systems by using two-stage formal linearization and twotype LQ controls. The ordinary LQ control is designed on almost linear region around the steady state point. On the other region, another control is derived as follows. This derivation is based on coordinate transformation twice with respect to linearization functions which are defined by polynomials. The linearized systems can be made up by using Taylor expansion considered up to the higher order. To the resulting formal linear system, the LQ control theory is applied to obtain another LQ control. Finally these two-type LQ controls are smoothly united to form a single nonlinear control. Numerical experiments indicate that this control show remarkable performances for a nonlinear system.

Keywords: Formal Linearization, LQ Control, Nonlinear Control, Taylor Expansion, Zero Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
3931 Automated Segmentation of ECG Signals using Piecewise Derivative Dynamic Time Warping

Authors: Ali Zifan, Mohammad Hassan Moradi, Sohrab Saberi, Farzad Towhidkhah

Abstract:

Electrocardiogram (ECG) segmentation is necessary to help reduce the time consuming task of manually annotating ECG-s. Several algorithms have been developed to segment the ECG automatically. We first review several of such methods, and then present a new single lead segmentation method based on Adaptive piecewise constant approximation (APCA) and Piecewise derivative dynamic time warping (PDDTW). The results are tested on the QT database. We compared our results to Laguna-s two lead method. Our proposed approach has a comparable mean error, but yields a slightly higher standard deviation than Laguna-s method.

Keywords: Adaptive Piecewise Constant Approximation, Dynamic programming, ECG segmentation, Piecewise DerivativeDynamic Time Warping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
3930 Amelioration of Cardiac Arrythmias Classification Performance Using Artificial Neural Network, Adaptive Neuro-Fuzzy and Fuzzy Inference Systems Classifiers

Authors: Alexandre Boum, Salomon Madinatou

Abstract:

This paper aims at bringing a scientific contribution to the cardiac arrhythmia biomedical diagnosis systems; more precisely to the study of the amelioration of cardiac arrhythmia classification performance using artificial neural network, adaptive neuro-fuzzy and fuzzy inference systems classifiers. The purpose of this amelioration is to enable cardiologists to make reliable diagnosis through automatic cardiac arrhythmia analyzes and classifications based on high confidence classifiers. In this study, six classes of the most commonly encountered arrhythmias are considered: the Right Bundle Branch Block, the Left Bundle Branch Block, the Ventricular Extrasystole, the Auricular Extrasystole, the Atrial Fibrillation and the Normal Cardiac rate beat. From the electrocardiogram (ECG) extracted parameters, we constructed a matrix (360x360) serving as an input data sample for the classifiers based on neural networks and a matrix (1x6) for the classifier based on fuzzy logic. By varying three parameters (the quality of the neural network learning, the data size and the quality of the input parameters) the automatic classification permitted us to obtain the following performances: in terms of correct classification rate, 83.6% was obtained using the fuzzy logic based classifier, 99.7% using the neural network based classifier and 99.8% for the adaptive neuro-fuzzy based classifier. These results are based on signals containing at least 360 cardiac cycles. Based on the comparative analysis of the aforementioned three arrhythmia classifiers, the classifiers based on neural networks exhibit a better performance.

Keywords: Adaptive neuro-fuzzy, artificial neural network, cardiac arrythmias, fuzzy inference systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 709
3929 Process Capability Analysis by Using Statistical Process Control of Rice Polished Cylinder Turning Practice

Authors: S. Bangphan, P. Bangphan, T. Boonkang

Abstract:

Quality control helps industries in improvements of its product quality and productivity. Statistical Process Control (SPC) is one of the tools to control the quality of products that turning practice in bringing a department of industrial engineering process under control. In this research, the process control of a turning manufactured at workshops machines. The varying measurements have been recorded for a number of samples of a rice polished cylinder obtained from a number of trials with the turning practice. SPC technique has been adopted by the process is finally brought under control and process capability is improved.

Keywords: Rice polished cylinder, statistical process control, control charts, process capability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3715
3928 Fuzzy Control of the Air Conditioning System at Different Operating Pressures

Authors: Mohanad Alata , Moh'd Al-Nimr, Rami Al-Jarrah

Abstract:

The present work demonstrates the design and simulation of a fuzzy control of an air conditioning system at different pressures. The first order Sugeno fuzzy inference system is utilized to model the system and create the controller. In addition, an estimation of the heat transfer rate and water mass flow rate injection into or withdraw from the air conditioning system is determined by the fuzzy IF-THEN rules. The approach starts by generating the input/output data. Then, the subtractive clustering algorithm along with least square estimation (LSE) generates the fuzzy rules that describe the relationship between input/output data. The fuzzy rules are tuned by Adaptive Neuro-Fuzzy Inference System (ANFIS). The results show that when the pressure increases the amount of water flow rate and heat transfer rate decrease within the lower ranges of inlet dry bulb temperatures. On the other hand, and as pressure increases the amount of water flow rate and heat transfer rate increases within the higher ranges of inlet dry bulb temperatures. The inflection in the pressure effect trend occurs at lower temperatures as the inlet air humidity increases.

Keywords: Air Conditioning, ANFIS, Fuzzy Control, Sugeno System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3366
3927 Airliner-UAV Flight Formation in Climb Regime

Authors: Pavel Zikmund, Robert Popela

Abstract:

Extreme formation is a theoretical concept of selfsustain flight when a big airliner is followed by a small UAV glider flying in the airliner wake vortex. The paper presents results of a climb analysis with the goal to lift the gliding UAV to airliners cruise altitude. Wake vortex models, the UAV drag polar and basic parameters and airliner’s climb profile are introduced at first. Afterwards, flight performance of the UAV in a wake vortex is evaluated by analytical methods. Time history of optimal distance between an airliner and the UAV during a climb is determined. The results are encouraging. Therefore available UAV drag margin for electricity generation is figured out for different vortex models.

Keywords: Flight in formation, self-sustained flight, UAV, wake vortex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
3926 Model Predictive Control Using Thermal Inputs for Crystal Growth Dynamics

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

Recently, crystal growth technologies have made progress by the requirement for the high quality of crystal materials. To control the crystal growth dynamics actively by external forces is useuful for reducing composition non-uniformity. In this study, a control method based on model predictive control using thermal inputs is proposed for crystal growth dynamics of semiconductor materials. The control system of crystal growth dynamics considered here is governed by the continuity, momentum, energy, and mass transport equations. To establish the control method for such thermal fluid systems, we adopt model predictive control known as a kind of optimal feedback control in which the control performance over a finite future is optimized with a performance index that has a moving initial time and terminal time. The objective of this study is to establish a model predictive control method for crystal growth dynamics of semiconductor materials.

Keywords: Model predictive control, optimal control, crystal growth, process control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829