Search results for: PSPICE Simulation
3132 Numerical Simulation of Cavitation and Aeration in Discharge Gated Tunnel of a Dam Based on the VOF Method
Authors: Razieh Jalalabadi, Norouz Mohammad Nouri
Abstract:
Cavitation, usually known as a destructive phenomenon, involves turbulent unsteady two-phase flow. Having such features, cavitating flows have been turned to a challenging topic in numerical studies and many researches are being done for better understanding of bubbly flows and proposing solutions to reduce its consequent destructive effects. Aeration may be regarded as an effective protection against cavitation erosion in many hydraulic structures, like gated tunnels. The paper concerns numerical simulation of flow in discharge gated tunnel of a dam using ing RNG k -ε model coupled with the volume of fluid (VOF) method and the zone which is susceptible of cavitation inception in the tunnel is predicted. In the second step, a vent is considered in the mentioned zone for aeration and the numerical simulation is done again to study the effects of aeration. The results show that aeration is an impressively useful method to exclude cavitation in mentioned tunnels.Keywords: Aeration, Cavitation, Two-phase flow, TurbulentFlow, Volume of Fluid (VOF) method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21893131 SCR-Stacking Structure with High Holding Voltage for I/O and Power Clamp
Authors: Hyun-Young Kim, Chung-Kwang Lee, Han-Hee Cho, Sang-Woon Cho, Yong-Seo Koo
Abstract:
In this paper, we proposed a novel SCR (Silicon Controlled Rectifier) - based ESD (Electrostatic Discharge) protection device for I/O and power clamp. The proposed device has a higher holding voltage characteristic than conventional SCR. These characteristics enable to have latch-up immunity under normal operating conditions as well as superior full chip ESD protection. The proposed device was analyzed to figure out electrical characteristics and tolerance robustness in term of individual design parameters (D1, D2, D3). They are investigated by using the Synopsys TCAD simulator. As a result of simulation, holding voltage increased with different design parameters. The holding voltage of the proposed device changes from 3.3V to 7.9V. Also, N-Stack structure ESD device with the high holding voltage is proposed. In the simulation results, 2-stack has holding voltage of 6.8V and 3-stack has holding voltage of 10.5V. The simulation results show that holding voltage of stacking structure can be larger than the operation voltage of high-voltage application.Keywords: ESD, SCR, holding voltage, stack, power clamp.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20613130 Large Eddy Simulation of Flow Separation Control over a NACA2415 Airfoil
Authors: M. Tahar Bouzaher
Abstract:
This study involves a numerical simulation of the flow around a NACA2415 airfoil, with a 15°angle of attack, and flow separation control using a rod, It reposes inputting a cylindrical rod upstream of the leading edge in order to accelerate the transition of the boundary layer by interaction between the rod wake and the boundary layer. The viscous, non-stationary flow is simulated using ANSYS FLUENT 13. Our results showed a substantial modification in the flow behavior and a maximum drag reduction of 51%.
Keywords: CFD, Flow separation, Active control, Boundary layer, rod, NACA 2415.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24603129 Replacement of Commercial Anti-Corrosion Material with a More Effective and Cost Efficient Compound Based on Electrolytic System Simulation
Authors: Saeid Khajehmandali, Fattah Mollakarimi, Zohreh Seyf
Abstract:
There was a high rate of corrosion in Pyrolysis Gasoline Hydrogenation (PGH) unit of Arak Petrochemical Company (ARPC), and it caused some operational problem in this plant. A commercial chemical had been used as anti-corrosion in the depentanizer column overhead in order to control the corrosion rate. Injection of commercial corrosion inhibitor caused some operational problems such as fouling in some heat exchangers. It was proposed to replace this commercial material with another more effective trouble free, and well-known additive by R&D and operation specialists. At first, the system was simulated by commercial simulation software in electrolytic system to specify low pH points inside the plant. After a very comprehensive study of the situation and technical investigations ,ammonia / monoethanol amine solution was proposed as neutralizer or corrosion inhibitor to be injected in a suitable point of the plant. For this purpose, the depentanizer column and its accessories system was simulated again in case of this solution injection. According to the simulation results, injection of new anticorrosion substance has no any side effect on C5 cut product and operating conditions of the column. The corrosion rate will be cotrolled, if the pH remains at the range of 6.5 to 8 . Aactual plant test run was also carried out by injection of ammonia / monoethanol amine solution at the rate of 0.6 Kg/hr and the results of iron content of water samples and corrosion test coupons confirmed the simulation results. Now, ammonia / monoethanol amine solution is injected to a suitable pint inside the plant and corrosion rate has decreased significantly.Keywords: Corrosion, Pyrolysis Gasoline, Simulation, Corrosion test copoun.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23683128 Deoiling Hydrocyclones Flow Field-A Comparison between k-Epsilon and LES
Authors: Maysam Saidi, Reza Maddahian, Bijan Farhanieh
Abstract:
In this research a comparison between k-epsilon and LES model for a deoiling hydrocyclone is conducted. Flow field of hydrocyclone is obtained by three-dimensional simulations with OpenFOAM code. Potential of prediction for both methods of this complex swirl flow is discussed. Large eddy simulation method results have more similarity to experiment and its results are presented in figures from different hydrocyclone cross sections.Keywords: Deoiling hydrocyclones, k-epsilon model, Largeeddy simulation, OpenFOAM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25243127 Molecular Dynamics Simulation of Annular Flow Boiling in a Microchannel with 70000 Atoms
Authors: D.Toghraie, A.R.Azimian
Abstract:
Molecular dynamics simulation of annular flow boiling in a nanochannel with 70000 particles is numerically investigated. In this research, an annular flow model is developed to predict the superheated flow boiling heat transfer characteristics in a nanochannel. To characterize the forced annular boiling flow in a nanochannel, an external driving force F ext ranging from 1to12PN (PN= Pico Newton) is applied along the flow direction to inlet fluid particles during the simulation. Based on an annular flow model analysis, it is found that saturation condition and superheat degree have great influences on the liquid-vapor interface. Also, the results show that due to the relatively strong influence of surface tension in small channel, the interface between the liquid film and vapor core is fairly smooth, and the mean velocity along the stream-wise direction does not change anymore.Keywords: Lennard-Jones Potential, Molecular DynamicsSimulation, Periodic Boundary Conditions (PBC), Non-EquilibriumMolecular Dynamics (NEMD), Annular Flow Boiling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21833126 Modeling, Analysis and Simulation of 4-Phase Boost Converter
Authors: Nagulapati Kiran, V. Rangavalli, B. Vanajakshi
Abstract:
This paper designs the four-phase Boost Converter which overcomes the problem of high input ripple current and output ripple voltage. Digital control is more convenient for such a topology on basis of synchronization, phase shift operation, etc. Simulation results are presented for open-loop and closed-loop for four phase boost converter. This control scheme is applicable for PFC rectifiers as well. Thus a comparative analysis based on the obtained results is performed.
Keywords: Boost Converter, Bode plot, PI Controller, Four phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40033125 Determination of the Proper Quality Costs Parameters via Variable Step Size Steepest Descent Algorithm
Authors: Danupun Visuwan, Pongchanun Luangpaiboon
Abstract:
This paper presents the determination of the proper quality costs parameters which provide the optimum return. The system dynamics simulation was applied. The simulation model was constructed by the real data from a case of the electronic devices manufacturer in Thailand. The Steepest Descent algorithm was employed to optimise. The experimental results show that the company should spend on prevention and appraisal activities for 850 and 10 Baht/day respectively. It provides minimum cumulative total quality cost, which is 258,000 Baht in twelve months. The effect of the step size in the stage of improving the variables to the optimum was also investigated. It can be stated that the smaller step size provided a better result with more experimental runs. However, the different yield in this case is not significant in practice. Therefore, the greater step size is recommended because the region of optima could be reached more easily and rapidly.Keywords: Quality costs, Steepest Descent Algorithm, StepSize, System Dynamics Simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12673124 Design of a Novel Fractal Multiband Planar Antenna with a CPW-Feed
Authors: T. Benyetho, L. El Abdellaoui, J. Terhzaz, H. Bennis, N. Ababssi, A. Tajmouati, A. Tribak, M. Latrach
Abstract:
This work presents a new planar multiband antenna based on fractal geometry. This structure is optimized and validated into simulation by using CST-MW Studio. To feed this antenna we have used a CPW line which makes it easy to be incorporated with integrated circuits. The simulation results presents a good matching input impedance and radiation pattern in the GSM band at 900 MHz and ISM band at 2.4 GHz. The final structure is a dual band fractal antenna with 70 x 70 mm² as a total area by using an FR4 substrate.
Keywords: Antenna, CPW, Fractal, GSM, Multiband.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27183123 Simulation on the Performance of Carbon Dioxide and HFC-125 Heat Pumpsfor Medium-and High-Temperature Heating
Authors: Young-Jin Baikand, Minsung Kim
Abstract:
In order to compare the performance of the carbon dioxide and HFC-125 heat pumps for medium-and high-temperature heating, both heat pump cycles were optimized using a simulation method. To fairly compare the performance of the cycles by using different working fluids, each cycle was optimized from the viewpoint of heating COP by two design parameters. The first is the gas cooler exit temperature and the other is the ratio of the overall heat conductance of the gas cooler to the combined overall heat conductance of the gas cooler and the evaporator. The inlet and outlet temperatures of secondary fluid of the gas cooler were fixed at 40/90°C and 40/150°C.The results shows that the HFC-125 heat pump has 6% higher heating COP than carbon dioxide heat pump when the heat sink exit temperature is fixed at 90ºC, while the latter outperforms the former when the heat sink exit temperature is fixed at 150ºC under the simulation conditions considered in the present study.
Keywords: Carbon dioxide, HFC-125, trans critical, heat pump.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16243122 Simulation Data Management Approach for Developing Adaptronic Systems – The W-Model Methodology
Authors: Roland S. Nattermann, Reiner Anderl
Abstract:
Existing proceeding-models for the development of mechatronic systems provide a largely parallel action in the detailed development. This parallel approach is to take place also largely independent of one another in the various disciplines involved. An approach for a new proceeding-model provides a further development of existing models to use for the development of Adaptronic Systems. This approach is based on an intermediate integration and an abstract modeling of the adaptronic system. Based on this system-model a simulation of the global system behavior, due to external and internal factors or Forces is developed. For the intermediate integration a special data management system is used. According to the presented approach this data management system has a number of functions that are not part of the "normal" PDM functionality. Therefore a concept for a new data management system for the development of Adaptive system is presented in this paper. This concept divides the functions into six layers. In the first layer a system model is created, which divides the adaptronic system based on its components and the various technical disciplines. Moreover, the parameters and properties of the system are modeled and linked together with the requirements and the system model. The modeled parameters and properties result in a network which is analyzed in the second layer. From this analysis necessary adjustments to individual components for specific manipulation of the system behavior can be determined. The third layer contains an automatic abstract simulation of the system behavior. This simulation is a precursor for network analysis and serves as a filter. By the network analysis and simulation changes to system components are examined and necessary adjustments to other components are calculated. The other layers of the concept treat the automatic calculation of system reliability, the "normal" PDM-functionality and the integration of discipline-specific data into the system model. A prototypical implementation of an appropriate data management with the addition of an automatic system development is being implemented using the data management system ENOVIA SmarTeam V5 and the simulation system MATLAB.
Keywords: Adaptronic, Data-Management, LOEWE-CentreAdRIA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23673121 Predicting Radiative Heat Transfer in Arbitrary Two and Three-Dimensional Participating Media
Authors: Mohammad Hadi Bordbar, Timo Hyppänen
Abstract:
The radiative exchange method is introduced as a numerical method for the simulation of radiative heat transfer in an absorbing, emitting and isotropically scattering media. In this method, the integro-differential radiative balance equation is solved by using a new introduced concept for the exchange factor. Even though the radiative source term is calculated in a mesh structure that is coarser than the structure used in computational fluid dynamics, calculating the exchange factor between different coarse elements by using differential integration elements makes the result of the method close to that of integro-differential radiative equation. A set of equations for calculating exchange factors in two and threedimensional Cartesian coordinate system is presented, and the method is used in the simulation of radiative heat transfer in twodimensional rectangular case and a three-dimensional simple cube. The result of using this method in simulating different cases is verified by comparing them with those of using other numerical radiative models.Keywords: Exchange factor, Numerical simulation, Thermal radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20213120 Dynamic Modeling of Tow Flexible Link Manipulators
Authors: E. Abedi, A. Ahmadi Nadooshan, S. Salehi
Abstract:
Modeling and vibration of a flexible link manipulator with tow flexible links and rigid joints are investigated which can include an arbitrary number of flexible links. Hamilton principle and finite element approach is proposed to model the dynamics of flexible manipulators. The links are assumed to be deflection due to bending. The association between elastic displacements of links is investigated, took into account the coupling effects of elastic motion and rigid motion. Flexible links are treated as Euler-Bernoulli beams and the shear deformation is thus abandoned. The dynamic behavior due to flexibility of links is well demonstrated through numerical simulation. The rigid-body motion and elastic deformations are separated by linearizing the equations of motion around the rigid body reference path. Simulation results are shown on for both position and force trajectory tracking tasks in the presence of varying parameters and unknown dynamics remarkably well. The proposed method can be used in both dynamic simulation and controller design.Keywords: Flexible manipulator, flexible link, dynamicmodeling, end point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24793119 Simulation and Realization of a Battery Charge Regulator
Authors: B. Nasri, M. Bensaada
Abstract:
We present a simulation and realization of a battery charge regulator (BCR) in microsatellite earth observation. The tests were performed on battery pack 12volt, capacity 24Ah and the solar array open circuit voltage of 100 volt and optimum power of about 250 watt. The battery charge is made by solar module. The principle is to adapt the output voltage of the solar module to the battery by using the technique of pulse width modulation (PWM). Among the different techniques of charge battery, we opted for the technique of the controller ON/OFF is a standard technique and simple, it-s easy to be board executed validation will be made by simulation "Proteus Isis Professional software ". The circuit and the program of this prototype are based on the PIC16F877 microcontroller, a serial interface connecting a PC is also realized, to view and save data and graphics in real time, for visualization of data and graphs we develop an interface tool “visual basic.net (VB)--.Keywords: Battery Charge Regulator, Batteries, Buck converter, Power System, Power Conditioning, Power Distribution, Solar arrays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32133118 On Modified Numerical Schemes in Vortex Element Method for 2D Flow Simulation Around Airfoils
Authors: Ilia Marchevsky, Victoriya Moreva
Abstract:
The problem of incompressible steady flow simulation around an airfoil is discussed. For some simplest airfoils (circular, elliptical, Zhukovsky airfoils) the exact solution is known from complex analysis. It allows to compute the intensity of vortex layer which simulates the airfoil. Some modifications of the vortex element method are proposed and test computations are carried out. It-s shown that the these approaches are much more effective in comparison with the classical numerical scheme.
Keywords: Vortex element method, vortex layer, integral equation, ill-conditioned matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16703117 Numerical Analysis of Turbulent Natural Convection in a Square Cavity using Large- Eddy Simulation in Lattice Boltzmann Method
Authors: H. Sajjadi, M. Gorji, GH.R. Kefayati, D. D. Ganji, M. Shayan Nia
Abstract:
In this paper Lattice Boltzmann simulation of turbulent natural convection with large-eddy simulations (LES) in a square cavity which is filled by water has been investigated. The present results are validated by finds of other investigations which have been done with different numerical methods. Calculations were performed for high Rayleigh numbers of Ra=108 and 109. The results confirm that this method is in acceptable agreement with other verifications of such a flow. In this investigation is tried to present Large-eddy turbulence flow model by Lattice Boltzmann Method (LBM) with a clear and simple statement. Effects of increase in Rayleigh number are displayed on streamlines, isotherm counters and average Nusselt number. Result shows that the average Nusselt number enhances with growth of the Rayleigh numbers.Keywords: Turbulent natural convection, Large Eddy Simulation, Lattice Boltzmann Method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20193116 Testing a Flexible Manufacturing System Facility Production Capacity through Discrete Event Simulation: Automotive Case Study
Authors: Justyna Rybicka, Ashutosh Tiwari, Shane Enticott
Abstract:
In the age of automation and computation aiding manufacturing, it is clear that manufacturing systems have become more complex than ever before. Although technological advances provide the capability to gain more value with fewer resources, sometimes utilisation of the manufacturing capabilities available to organisations is difficult to achieve. Flexible manufacturing systems (FMS) provide a unique capability to manufacturing organisations where there is a need for product range diversification by providing line efficiency through production flexibility. This is very valuable in trend driven production set-ups or niche volume production requirements. Although FMS provides flexible and efficient facilities, its optimal set-up is key in achieving production performance. As many variables are interlinked due to the flexibility provided by the FMS, analytical calculations are not always sufficient to predict the FMS’ performance. Simulation modelling is capable of capturing the complexity and constraints associated with FMS. This paper demonstrates how discrete event simulation (DES) can address complexity in an FMS to optimise the production line performance. A case study of an automotive FMS is presented. The DES model demonstrates different configuration options depending on prioritising objectives: utilisation and throughput. Additionally, this paper provides insight into understanding the impact of system set-up constraints on the FMS performance and demonstrates the exploration into the optimal production set-up.
Keywords: Automotive, capacity performance, discrete event simulation, flexible manufacturing system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29303115 Autonomous Underwater Vehicle (AUV) Dynamics Modeling and Performance Evaluation
Authors: K. M. Tan, A. Anvar, T.F. Lu
Abstract:
A sophisticated simulator provides a cost-effective measure to carry out preliminary mission testing and diagnostic while reducing potential failures for real life at sea trials. The presented simulation framework covers three key areas: AUV modeling, sensor modeling, and environment modeling. AUV modeling mainly covers the area of AUV dynamics. Sensor modeling deals with physics and mathematical models that govern each sensor installed onto the AUV. Environment model incorporates the hydrostatic, hydrodynamics, and ocean currents that will affect the AUV in a real-time mission. Based on this designed simulation framework, custom scenarios provided by the user can be modeled and its corresponding behaviors can be observed. This paper focuses on the accuracy of the simulated data from AUV model and environmental model derived from a developed AUV test-bed which was jointly upgraded by DSTO and the University of Adelaide. The main contribution of this paper is to experimentally verify the accuracy of the proposed simulation framework.
Keywords: Autonomous Underwater Vehicle (AUV), simulator, framework, robotics, maritime robot, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47303114 Simulation and Validation of Spur Gear Heated by Induction using 3d Model
Authors: A. Chebak, N. Barka, A. Menou, J. Brousseau, D. S. Ramdenee
Abstract:
This paper presents the study of hardness profile of spur gear heated by induction heating process in function of the machine parameters, such as the power (kW), the heating time (s) and the generator frequency (kHz). The global work is realized by 3D finite-element simulation applied to the process by coupling and resolving the electromagnetic field and the heat transfer problems, and it was performed in three distinguished steps. First, a Comsol 3D model was built using an adequate formulation and taking into account the material properties and the machine parameters. Second, the convergence study was conducted to optimize the mesh. Then, the surface temperatures and the case depths were deeply analyzed in function of the initial current density and the heating time in medium frequency (MF) and high frequency (HF) heating modes and the edge effect were studied. Finally, the simulations results are validated using experimental tests.
Keywords: Induction heating, simulation, experimental validation, 3D model, hardness profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16513113 Wind Fragility for Soundproof Wall with the Variation of Section Shape of Frame
Authors: Seong Do Kim, Woo Young Jung
Abstract:
Recently, damages due to typhoons and strong wind are on the rise. Considering this issue, we evaluated the performance of soundproofing walls based on the strong wind fragility by means of numerical analysis. Among the components of the soundproof wall, aluminum frame was the most vulnerable member, thus we have considered different section of aluminum frame in the determination of wind fragility. Wind load was randomly generated using Monte Carlo Simulation method. Moreover, limit state was based on the test standard of road construction soundproofing wall. In this study, the strong wind fragility was determined by considering the influence factors of wind exposure category, soundproof wall’s installation position, and shape of aluminum frame section. Results of this study could be used to determine the section shape of the frame that has high resistance to the wind during construction of the soundproofing wall.
Keywords: Aluminum frame soundproofing wall, Monte Carlo Simulation, numerical simulation, wind fragility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8873112 Designing of the Heating Process for Fiber- Reinforced Thermoplastics with Middle-Wave Infrared Radiators
Abstract:
Manufacturing components of fiber-reinforced thermoplastics requires three steps: heating the matrix, forming and consolidation of the composite and terminal cooling the matrix. For the heating process a pre-determined temperature distribution through the layers and the thickness of the pre-consolidated sheets is recommended to enable forming mechanism. Thus, a design for the heating process for forming composites with thermoplastic matrices is necessary. To obtain a constant temperature through thickness and width of the sheet, the heating process was analyzed by the help of the finite element method. The simulation models were validated by experiments with resistance thermometers as well as with an infrared camera. Based on the finite element simulation, heating methods for infrared radiators have been developed. Using the numeric simulation many iteration loops are required to determine the process parameters. Hence, the initiation of a model for calculating relevant process parameters started applying regression functions.Keywords: Fiber-reinforced thermoplastics, heating strategies, middle-wave infrared radiator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17413111 Nodal Load Profiles Estimation for Time Series Load Flow Using Independent Component Analysis
Authors: Mashitah Mohd Hussain, Salleh Serwan, Zuhaina Hj Zakaria
Abstract:
This paper presents a method to estimate load profile in a multiple power flow solutions for every minutes in 24 hours per day. A method to calculate multiple solutions of non linear profile is introduced. The Power System Simulation/Engineering (PSS®E) and python has been used to solve the load power flow. The result of this power flow solutions has been used to estimate the load profiles for each load at buses using Independent Component Analysis (ICA) without any knowledge of parameter and network topology of the systems. The proposed algorithm is tested with IEEE 69 test bus system represents for distribution part and the method of ICA has been programmed in MATLAB R2012b version. Simulation results and errors of estimations are discussed in this paper.Keywords: Electrical Distribution System, Power Flow Solution, Distribution Network, Independent Component Analysis, Newton Raphson, Power System Simulation for Engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29143110 Monitoring of Belt-Drive Defects Using the Vibration Signals and Simulation Models
Authors: A. Nabhan, Mohamed R. El-Sharkawy, A. Rashed
Abstract:
The main aim of this paper is to dedicate the belt drive system faults like cogs missing, misalignment and belt worm using vibration analysis technique. Experimentally, the belt drive test-rig is equipped to measure vibrations signals under different operating conditions. Finite element 3D model of belt drive system is created and vibration response analyzed using commercial finite element software ABAQUS/CAE. Root mean square (RMS) and Crest Factor will serve as indicators of average amplitude of envelope analysis signals. The vibration signals pattern obtained from the simulation model and experimental data have the same characteristics. It can be concluded that each case of the RMS is more effective in detecting the defect for acceleration response. While Crest Factor parameter has a response with the displacement and velocity of vibration signals. Also it can be noticed that the model has difficulty in completing the solution when the misalignment angle is higher than 1 degree.
Keywords: Simulation model, misalignment, cogs missing and vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8873109 Modeling of Flood Mitigation Structures for Sarawak River Sub-basin Using Info Works River Simulation (RS)
Authors: Rosmina Bustami, Charles Bong, Darrien Mah, Afnie Hamzah, Marina Patrick
Abstract:
The distressing flood scenarios that occur in recent years at the surrounding areas of Sarawak River have left damages of properties and indirectly caused disruptions of productive activities. This study is meant to reconstruct a 100-year flood event that took place in this river basin. Sarawak River Subbasin was chosen and modeled using the one-dimensional hydrodynamic modeling approach using InfoWorks River Simulation (RS), in combination with Geographical Information System (GIS). This produces the hydraulic response of the river and its floodplains in extreme flooding conditions. With different parameters introduced to the model, correlations of observed and simulated data are between 79% – 87%. Using the best calibrated model, flood mitigation structures are imposed along the sub-basin. Analysis is done based on the model simulation results. Result shows that the proposed retention ponds constructed along the sub-basin provide the most efficient reduction of flood by 34.18%.Keywords: Flood, Flood mitigation structure, InfoWorks RS, Retention pond, Sarawak River sub-basin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27153108 Comparative Study of Virtual Sickness between a Single-screen and Three-screen from Parallax Affect
Authors: Chompoonuch Jinjakam, Yuta Odagiri, Kobchai Dejhan, Hamamoto Kazuhiko
Abstract:
Virtual environment induces simulator sickness effect for some users. The purpose of this research is to compare the simulation sickness relative with parallax affect in one-screen and three-screen HoloStageTM system, measured by Simulation Sickness Questionnaire (SSQ). The results show the subjects tested in three-screen has less sickness than one-screen and effect from the Oculomotor (O) more than from the Disorientation (D) and more than from the Nausea (N) or represented in O>D>N.Keywords: Virtual environment, virtual sickness, simulationsickness questionnaire, HoloStageTM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16613107 Developing Efficient Testing and Unloading Procedures for a Local Sewage Holding Pit
Authors: Esra E. Aleisa
Abstract:
A local municipality has decided to build a sewage pit to receive residential sewage waste arriving by tank trucks. Daily accumulated waste are to be pumped to a nearby waste water treatment facility to be re-consumed for agricultural and construction projects. A discrete-event simulation model using Arena Software was constructed to assist in defining the capacity of the system in cubic meters, number of tank trucks to use the system, number of unload docks required, number of standby areas needed and manpower required for data collection at entrance checkpoint and truck tank load toxicity testing. The results of the model are statistically validated. Simulation turned out to be an excellent tool in the facility planning effort for the pit project, as it insured smooth flow lines of tank trucks load discharge and best utilization of facilities on site.Keywords: Discrete-event simulation, Facilities Planning, Layout, Pit, Sewage management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16813106 The New Semi-Experimental Method for Simulation of Turbine Flow Meters Rotation in the Transitional Flow
Authors: J. Tonkonogij, A. Pedišius, A. Stankevičius
Abstract:
The new semi-experimental method for simulation of the turbine flow meters rotation in the transitional flow has been developed. The method is based on the experimentally established exponential low of changing of dimensionless relative turbine gas meter rotation frequency and meter inertia time constant. For experimental evaluation of the meter time constant special facility has been developed. The facility ensures instant switching of turbine meter under test from one channel to the other channel with different flow rate and measuring the meter response. The developed method can be used for evaluation and predication of the turbine meters response and dynamic error in the transitional flow with any arbitrary law of flow rate changing. The examples of the method application are presented.Keywords: Dynamic error, pulsing flow, numerical simulation, response, turbine gas meters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22013105 Forming Simulation of Thermoplastic Pre-Impregnated Textile Composite
Authors: Masato Nishi, Tetsushi Kaburagi, Masashi Kurose, Tei Hirashima, Tetsusei Kurasiki
Abstract:
The process of thermoforming a carbon fiber reinforced thermoplastic (CFRTP) has increased its presence in the automotive industry for its wide applicability to the mass production car. A non-isothermal forming for CFRTP can shorten its cycle time to less than 1 minute. In this paper, the textile reinforcement FE model which the authors proposed in a previous work is extended to the CFRTP model for non-isothermal forming simulation. The effect of thermoplastic is given by adding shell elements which consider thermal effect to the textile reinforcement model. By applying Reuss model to the stress calculation of thermoplastic, the proposed model can accurately predict in-plane shear behavior, which is the key deformation mode during forming, in the range of the process temperature. Using the proposed model, thermoforming simulation was conducted and the results are in good agreement with the experimental results.
Keywords: Carbon fiber reinforced thermoplastic (CFRTP), Finite element analysis (FEA), Pre-impregnated textile composite, Non-isothermal forming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34683104 A Comparison of Energy Calculations for a Single-Family Detached Home with Two Energy Simulation Methods
Authors: Amir Sattari
Abstract:
For newly produced houses and energy renovations, an energy calculation needs to be conducted. This is done to verify whether the energy consumption criteria of the house -to reach the energy targets by 2020 and 2050- are in-line with the norms. The main purpose of this study is to confirm whether easy to use energy calculation software or hand calculations used by small companies or individuals give logical results compared to advanced energy simulation program used by researchers or bigger companies. There are different methods for calculating energy consumption. In this paper, two energy calculation programs are used and the relation of energy consumption with solar radiation is compared. A hand calculation is also done to validate whether the hand calculations are still reasonable. The two computer programs which have been used are TMF Energi (the easy energy calculation variant used by small companies or individuals) and IDA ICE - Indoor Climate and Energy (the advanced energy simulation program used by researchers or larger companies). The calculations are done for a standard house from the Swedish house supplier Fiskarhedenvillan. The method is based on having the same conditions and inputs in the different calculation forms so that the results can be compared and verified. The house has been faced differently to see how the orientation affects energy consumption in different methods. The results for the simulations are close to each other and the hand calculation differs from the computer programs by only 5%. Even if solar factors differ due to the orientation of the house, energy calculation results from different computer programs and even hand calculation methods are in line with each other.
Keywords: Energy calculation, energy consumption, energy simulation, IDA ICE, TMF Energi.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10523103 Thermal Analysis of a Transport Refrigeration Power Pack Unit Using a Coupled 1D/3D Simulation Approach
Authors: A. Kospach, A. Mladek, M. Waltenberger, F. Schilling
Abstract:
In this work, a coupled 1D/3D simulation approach for thermal protection and optimization of a trailer refrigeration power pack unit was developed. With the developed 1D/3D simulation approach thermal critical scenarios, such as summer, high-load scenarios are investigated. The 1D thermal model was built up consisting of the thermal network, which includes different point masses and associated heat transfers, the coolant and oil circuits, as well as the fan unit. The 3D computational fluid dynamics (CFD) model was developed to model the air flow through the power pack unit considering convective heat transfer effects. In the 1D thermal model the temperatures of the individual point masses were calculated, which served as input variables for the 3D CFD model. For the calculation of the point mass temperatures in the 1D thermal model, the convective heat transfer rates from the 3D CFD model were required as input variables. These two variables (point mass temperatures and convective heat transfer rates) were the main couple variables for the coupled 1D/3D simulation model. The coupled 1D/3D model was validated with measurements under normal operating conditions. Coupled simulations for summer high-load case were than performed and compared with a reference case under normal operation conditions. Hot temperature regions and components could be identified. Due to the detailed information about the flow field, temperatures and heat fluxes, it was possible to directly derive improvement suggestions for the cooling design of the transport refrigeration power pack unit.
Keywords: Coupled thermal simulation, thermal analysis, transport refrigeration unit, 3D computational fluid dynamics, 1D thermal modelling, thermal management systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204