Search results for: hybrid systems and recurrent neural networks.
3378 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: Crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11753377 Robust Adaptation to Background Noise in Multichannel C-OTDR Monitoring Systems
Authors: Andrey V. Timofeev, Viktor M. Denisov
Abstract:
A robust sequential nonparametric method is proposed for adaptation to background noise parameters for real-time. The distribution of background noise was modelled like to Huber contamination mixture. The method is designed to operate as an adaptation-unit, which is included inside a detection subsystem of an integrated multichannel monitoring system. The proposed method guarantees the given size of a nonasymptotic confidence set for noise parameters. Properties of the suggested method are rigorously proved. The proposed algorithm has been successfully tested in real conditions of a functioning C-OTDR monitoring system, which was designed to monitor railways.Keywords: Guaranteed estimation, multichannel monitoring systems, non-asymptotic confidence set, contamination mixture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19483376 Exact Evaluation Method for Error Performance Analysis of Arbitrary 2-D Modulation OFDM Systems with CFO
Authors: Jaeyoon Lee, Dongweon Yoon, Hoon Yoo, Sanggoo Kim
Abstract:
Orthogonal frequency division multiplexing (OFDM) has developed into a popular scheme for wideband digital communications used in consumer applications such as digital broadcasting, wireless networking and broadband internet access. In the OFDM system, carrier frequency offset (CFO) causes intercarrier interference (ICI) which significantly degrades the system error performance. In this paper we provide an exact evaluation method for error performance analysis of arbitrary 2-D modulation OFDM systems with CFO, and analyze the effect of CFO on error performance.Keywords: Carrier frequency offset, Probability of error, Inter-channel interference, Orthogonal frequency division multiplexing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16003375 Evaluation Framework for Investments in Rail Infrastructure Projects
Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki
Abstract:
Transport infrastructures are high-cost, long-term investments that serve as vital foundations for the operation of a region or nation and are essential to a country’s or business’s economic development and prosperity, by improving well-being and generating jobs and income. The development of appropriate financing options is of key importance in the decision making process in order develop viable transport infrastructures. The development of transport infrastructure has increasingly been shifting toward alternative methods of project financing such as Public Private Partnership (PPPs) and hybrid forms. In this paper, a methodological decision-making framework based on the evaluation of the financial viability of transportation infrastructure for different financial schemes is presented. The framework leads to an assessment of the financial viability which can be achieved by performing various financing scenarios analyses. To illustrate the application of the proposed methodology, a case study of rail transport infrastructure financing scenario analysis in Greece is developed.
Keywords: Rail transport infrastructure; financial viability, scenario analysis, rail project feasibility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14363374 Detecting the Nonlinearity in Time Series from Continuous Dynamic Systems Based on Delay Vector Variance Method
Authors: Shumin Hou, Yourong Li, Sanxing Zhao
Abstract:
Much time series data is generally from continuous dynamic system. Firstly, this paper studies the detection of the nonlinearity of time series from continuous dynamics systems by applying the Phase-randomized surrogate algorithm. Then, the Delay Vector Variance (DVV) method is introduced into nonlinearity test. The results show that under the different sampling conditions, the opposite detection of nonlinearity is obtained via using traditional test statistics methods, which include the third-order autocovariance and the asymmetry due to time reversal. Whereas the DVV method can perform well on determining nonlinear of Lorenz signal. It indicates that the proposed method can describe the continuous dynamics signal effectively.
Keywords: Nonlinearity, Time series, continuous dynamics system, DVV method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16263373 Frequent Itemset Mining Using Rough-Sets
Authors: Usman Qamar, Younus Javed
Abstract:
Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and roughsets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.
Keywords: Rough-sets, Classification, Feature Selection, Entropy, Outliers, Frequent itemset mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24343372 Context-aware Recommender Systems using Data Mining Techniques
Authors: Kyoung-jae Kim, Hyunchul Ahn, Sangwon Jeong
Abstract:
This study proposes a novel recommender system to provide the advertisements of context-aware services. Our proposed model is designed to apply a modified collaborative filtering (CF) algorithm with regard to the several dimensions for the personalization of mobile devices – location, time and the user-s needs type. In particular, we employ a classification rule to understand user-s needs type using a decision tree algorithm. In addition, we collect primary data from the mobile phone users and apply them to the proposed model to validate its effectiveness. Experimental results show that the proposed system makes more accurate and satisfactory advertisements than comparative systems.Keywords: Location-based advertisement, Recommender system, Collaborative filtering, User needs type, Mobile user.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21743371 Energy Interaction among HVAC and Supermarket Environment
Authors: D. Woradechjumroen, H. Li, Y. Yu
Abstract:
Supermarkets are the most electricity-intensive type of commercial buildings. The unsuitable indoor environment of a supermarket provided by abnormal HVAC operations incurs waste energy consumption in refrigeration systems. This current study briefly describes significantly solid backgrounds and proposes easyto- use analysis terminology for investigating the impact of HVAC operations on refrigeration power consumption using the field-test data obtained from building automation system (BAS). With solid backgrounds and prior knowledge, expected energy interactions between HVAC and refrigeration systems are proposed through Pearson’s correlation analysis (R value) by considering correlations between equipment power consumption and dominantly independent variables (driving force conditions).The R value can be conveniently utilized to evaluate how strong relations between equipment operations and driving force parameters are. The calculated R values obtained from field data are compared to expected ranges of R values computed by energy interaction methodology. The comparisons can separate the operational conditions of equipment into faulty and normal conditions. This analysis can simply investigate the condition of equipment operations or building sensors because equipment could be abnormal conditions due to routine operations or faulty commissioning processes in field tests. With systematically solid and easy-to-use backgrounds of interactions provided in the present article, the procedures can be utilized as a tool to evaluate the proper commissioning and routine operations of HVAC and refrigeration systems to detect simple faults (e.g. sensors and driving force environment of refrigeration systems and equipment set-point) and optimize power consumption in supermarket buildings. Moreover, the analysis will be used to further study the FDD research for supermarkets in future.
Keywords: Energy interaction, HVAC, R-value, Supermarket buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32243370 Novel Schemes of Pilot-Aided Integer Frequency Offset Estimation for OFDM-Based DVB-T Systems
Authors: Youngyoon Lee, Dahae Chong, Myungsoo Lee, Seongho Chae, Seokho Yoon
Abstract:
This paper proposes two novel schemes for pilot-aided integer frequency offset (IFO) estimation in orthogonal frequency division multiplexing (OFDM)-based digital video broadcastingterrestrial (DVB-T) systems. The conventional scheme proposed for estimating the IFO uses only partial information of combinations that pilots can provide, which stems from a rigorous assumption that the channel responses of pilots used for estimating the IFO change very rapidly. Thus, in this paper, we propose the novel IFO estimation schemes exploiting all information of combinations that pilots can provide to improve the performance of IFO estimation. The simulation results show that the proposed schemes are highly accurate in terms of the IFO detection probability.Keywords: OFDM, DVB-T, pilot, IFO, estimation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17933369 Performance Enhancement Employing Vertical Beamforming for FFR Technique
Authors: P. Chaipanya, P. Uthansakul, M. Uthansakul
Abstract:
This paper proposes a vertical beamforming concept to a cellular network employing Fractional Frequency Reuse technique including with cell sectorization. Two different beams are utilized in cell-center and cell-edge, separately. The proposed concept is validated through computer simulation in term of SINR and channel capacity. Also, comparison when utilizing horizontal and vertical beam formation is in focus. The obtained results indicate that the proposed concept can improve the performance of the cellular networks comparing with the one using horizontal beamforming.Keywords: Beamforming, Fractional Frequency Reuse, Inter- Cell Interference, cell sectorization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21793368 Implementation of a Web-Based Wireless ECG Measuring and Recording System
Authors: Onder Yakut, Serdar Solak, Emine Dogru Bolat
Abstract:
Measuring the Electrocardiogram (ECG) signal is an essential process for the diagnosis of the heart diseases. The ECG signal has the information of the degree of how much the heart performs its functions. In medical diagnosis and treatment systems, Decision Support Systems processing the ECG signal are being developed for the use of clinicians while medical examination. In this study, a modular wireless ECG (WECG) measuring and recording system using a single board computer and e-Health sensor platform is developed. In this designed modular system, after the ECG signal is taken from the body surface by the electrodes first, it is filtered and converted to digital form. Then, it is recorded to the health database using Wi-Fi communication technology. The real time access of the ECG data is provided through the internet utilizing the developed web interface.Keywords: ECG, e-health sensor shield, raspberry Pi, wifi technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30063367 Simplified Analysis on Steel Frame Infill with FRP Composite Panel
Authors: HyunSu Seo, HoYoung Son, Sungjin Kim, WooYoung Jung
Abstract:
In order to understand the seismic behavior of steel frame structure with infill FRP composite panel, simple models for simulation on the steel frame with the panel systems were developed in this study. To achieve the simple design method of the steel framed structure with the damping panel system, 2-D finite element analysis with the springs and dashpots models was conducted in ABAQUS. Under various applied spring stiffness and dashpot coefficient, the expected hysteretic energy responses of the steel frame with damping panel systems we investigated. Using the proposed simple design method which decides the stiffness and the damping, it is possible to decide the FRP and damping materials on a steel frame system.
Keywords: Interface damping layer, steel frame, seismic, FRP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18423366 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings
Authors: Hyunchul Ahn, William X. S. Wong
Abstract:
Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.
Keywords: Corporate credit rating prediction, feature selection, genetic algorithms, instance selection, multiclass support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14113365 Secured Mutual Authentication Protocol for Radio Frequency Identification Systems
Authors: C. Kalamani, S. Sowmiya, S. Dheivambigai, G. Harihara Sudhan
Abstract:
Radio Frequency Identification (RFID) is a blooming technology which uses radio frequency to track the objects. This technology transmits signals between tag and reader to fetch information from the tag with a unique serial identity. Generally, the drawbacks of RFID technology are high cost, high consumption of power and weak authentication systems between a reader and a tag. The proposed protocol utilizes less dynamic power using reversible truncated multipliers which are implemented in RFID tag-reader with mutual authentication protocol system to reduce both leakage and dynamic power consumption. The proposed system was simulated using Xilinx and Cadence tools.Keywords: Mutual authentication, protocol, reversible gates, RFID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6803364 Achieving Net Zero Energy Building in a Hot Climate Using Integrated Photovoltaic and Parabolic trough Collectors
Authors: Adel A. Ghoneim
Abstract:
In most existing buildings in hot climate, cooling loads lead to high primary energy consumption and consequently high CO2 emissions. These can be substantially decreased with integrated renewable energy systems. Kuwait is characterized by its dry hot long summer and short warm winter. Kuwait receives annual total radiation more than 5280 MJ/m2 with approximately 3347 h of sunshine. Solar energy systems consist of PV modules and parabolic trough collectors are considered to satisfy electricity consumption, domestic water heating, and cooling loads of an existing building. This paper presents the results of an extensive program of energy conservation and energy generation using integrated photovoltaic (PV) modules and Parabolic Trough Collectors (PTC). The program conducted on an existing institutional building intending to convert it into a Net-Zero Energy Building (NZEB) or near net Zero Energy Building (nNZEB). The program consists of two phases; the first phase is concerned with energy auditing and energy conservation measures at minimum cost and the second phase considers the installation of photovoltaic modules and parabolic trough collectors. The 2-storey building under consideration is the Applied Sciences Department at the College of Technological Studies, Kuwait. Single effect lithium bromide water absorption chillers are implemented to provide air conditioning load to the building. A numerical model is developed to evaluate the performance of parabolic trough collectors in Kuwait climate. Transient simulation program (TRNSYS) is adapted to simulate the performance of different solar system components. In addition, a numerical model is developed to assess the environmental impacts of building integrated renewable energy systems. Results indicate that efficient energy conservation can play an important role in converting the existing buildings into NZEBs as it saves a significant portion of annual energy consumption of the building. The first phase results in an energy conservation of about 28% of the building consumption. In the second phase, the integrated PV completely covers the lighting and equipment loads of the building. On the other hand, parabolic trough collectors of optimum area of 765 m2 can satisfy a significant portion of the cooling load, i.e about73% of the total building cooling load. The annual avoided CO2 emission is evaluated at the optimum conditions to assess the environmental impacts of renewable energy systems. The total annual avoided CO2 emission is about 680 metric ton/year which confirms the environmental impacts of these systems in Kuwait.Keywords: Building integrated renewable systems, Net-Zero Energy Building, solar fraction, avoided CO2 emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26163363 An Axiomatic Model for Development of the Allocated Architecture in Systems Engineering Process
Authors: A. Sharahi, R. Tehrani, A. Mollajan
Abstract:
The final step to complete the “Analytical Systems Engineering Process” is the “Allocated Architecture” in which all Functional Requirements (FRs) of an engineering system must be allocated into their corresponding Physical Components (PCs). At this step, any design for developing the system’s allocated architecture in which no clear pattern of assigning the exclusive “responsibility” of each PC for fulfilling the allocated FR(s) can be found is considered a poor design that may cause difficulties in determining the specific PC(s) which has (have) failed to satisfy a given FR successfully. The present study utilizes the Axiomatic Design method principles to mathematically address this problem and establishes an “Axiomatic Model” as a solution for reaching good alternatives for developing the allocated architecture. This study proposes a “loss Function”, as a quantitative criterion to monetarily compare non-ideal designs for developing the allocated architecture and choose the one which imposes relatively lower cost to the system’s stakeholders. For the case-study, we use the existing design of U. S. electricity marketing subsystem, based on data provided by the U.S. Energy Information Administration (EIA). The result for 2012 shows the symptoms of a poor design and ineffectiveness due to coupling among the FRs of this subsystem.
Keywords: Allocated Architecture, Analytical Systems Engineering Process, Functional Requirements (FRs), Physical Components (PCs), Responsibility of a Physical Component, System’s Stakeholders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19733362 Learning Classifier Systems Approach for Automated Discovery of Censored Production Rules
Authors: Suraiya Jabin, Kamal K. Bharadwaj
Abstract:
In the recent past Learning Classifier Systems have been successfully used for data mining. Learning Classifier System (LCS) is basically a machine learning technique which combines evolutionary computing, reinforcement learning, supervised or unsupervised learning and heuristics to produce adaptive systems. A LCS learns by interacting with an environment from which it receives feedback in the form of numerical reward. Learning is achieved by trying to maximize the amount of reward received. All LCSs models more or less, comprise four main components; a finite population of condition–action rules, called classifiers; the performance component, which governs the interaction with the environment; the credit assignment component, which distributes the reward received from the environment to the classifiers accountable for the rewards obtained; the discovery component, which is responsible for discovering better rules and improving existing ones through a genetic algorithm. The concatenate of the production rules in the LCS form the genotype, and therefore the GA should operate on a population of classifier systems. This approach is known as the 'Pittsburgh' Classifier Systems. Other LCS that perform their GA at the rule level within a population are known as 'Mitchigan' Classifier Systems. The most predominant representation of the discovered knowledge is the standard production rules (PRs) in the form of IF P THEN D. The PRs, however, are unable to handle exceptions and do not exhibit variable precision. The Censored Production Rules (CPRs), an extension of PRs, were proposed by Michalski and Winston that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: IF P THEN D UNLESS C, where Censor C is an exception to the rule. Such rules are employed in situations, in which conditional statement IF P THEN D holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence are tight or there is simply no information available as to whether it holds or not. Thus, the IF P THEN D part of CPR expresses important information, while the UNLESS C part acts only as a switch and changes the polarity of D to ~D. In this paper Pittsburgh style LCSs approach is used for automated discovery of CPRs. An appropriate encoding scheme is suggested to represent a chromosome consisting of fixed size set of CPRs. Suitable genetic operators are designed for the set of CPRs and individual CPRs and also appropriate fitness function is proposed that incorporates basic constraints on CPR. Experimental results are presented to demonstrate the performance of the proposed learning classifier system.Keywords: Censored Production Rule, Data Mining, GeneticAlgorithm, Learning Classifier System, Machine Learning, PittsburgApproach, , Reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15303361 A Study of Under Actuator Dynamic System by Comparing between Minimum Energy and Minimum Jerk Problems
Authors: Tawiwat V., Phermsak S., Noppasit C.
Abstract:
This paper deals with under actuator dynamic systems such as spring-mass-damper system when the number of control variable is less than the number of state variable. In order to apply optimal control, the controllability must be checked. There are many objective functions to be selected as the goal of the optimal control such as minimum energy, maximum energy and minimum jerk. As the objective function is the first priority, if one like to have the second goal to be applied; however, it could not fit in the objective function format and also avoiding the vector cost for the objective, this paper will illustrate the problem of under actuator dynamic systems with the easiest to deal with comparing between minimum energy and minimum jerk.
Keywords: Under actuator, Dynamic optimal control, Minimumjerk, Minimum energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13223360 Development of Non-functional Requirements for Decision Support Systems
Authors: Kassem Saleh
Abstract:
Decision Support System (DSS) are interactive software systems that are built to assist the management of an organization in the decision making process when faced with nonroutine problems in a specific application domain. Non-functional requirements (NFRs) for a DSS deal with the desirable qualities and restrictions that the DSS functionalities must satisfy. Unlike the functional requirements, which are tangible functionalities provided by the DSS, NFRs are often hidden and transparent to DSS users but affect the quality of the provided functionalities. NFRs are often overlooked or added later to the system in an ad hoc manner, leading to a poor overall quality of the system. In this paper, we discuss the development of NFRs as part of the requirements engineering phase of the system development life cycle of DSSs. To help eliciting NFRs, we provide a comprehensive taxonomy of NFRs for DSSs.Keywords: Decision support system, Development, Elicitation, Non-functional requirements, Taxonomy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24693359 Annotations of Gene Pathways Images in Biomedical Publications Using Siamese Network
Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu
Abstract:
As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Manually annotating pathway diagrams is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.
Keywords: Biological pathway, gene identification, object detection, Siamese network, ResNet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473358 The Impact of Rapid Urbanisation on Public Transport Systems in the Gauteng Region of South Africa
Authors: J. Chakwizira, P. Bikam, T. A. Adeboyejo
Abstract:
This paper seeks to illustrate the impact of rapid urbanization (in terms of both increase in people and vehicles) in the Gauteng region (which includes Johannesburg, Pretoria and Ekurhuleni). The impact that existing transport systems and options place on the capacity of residents from low income areas to travel and conduct various socio-economic activities is discussed. The findings are drawn from a 2013 analysis of a random transport household survey of 1550 households carried out in Gauteng province. 91.4% of the study respondents had access to public transport, while 8.6% had no access to public transport. Of the 91.4% who used public transport, the main reason used to explain this state of affairs was that it was affordable (54.3%), convenient (15.9%), Accessible (11.9%), lack of alternatives (6.4%) and reliable at 4.1%. Recommendations advanced revolve around the need to reverse land use and transportation effects of apartheid planning, growing and developing a sustainable critical mass of public transport interventions supported by appropriate transport systems that are environmentally sustainable through proper governance. 38.5% of the respondents indicated that developing compact, smart and integrated urban land spaces was key to reducing travel challenges in the study area. 23.4% indicated that the introduction and upgrading of BRT buses to cover all areas in the study area was a step in the right direction because it has great potential in shifting travel patterns to favor public modes of transport. 15.1% indicated that all open spaces should be developed so that fragmentation of land uses can be addressed. This would help to fight disconnected and fragmented space and trip making challenges in Gauteng. 13.4% indicated that improving the metro rail services was critical since this is a mass mover of commuters. 9.6% of the respondents highlighted that the bus subsidy policy has to be retained in the short to medium term since the spatial mismatches and challenges created by apartheid are yet to be fully reversed.
Keywords: Urbanisation, population, public, transport systems, Gauteng.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59613357 Automated Driving Deep Neural Network Model Accuracy and Performance Assessment in a Simulated Environment
Authors: David Tena-Gago, Jose M. Alcaraz Calero, Qi Wang
Abstract:
The evolution and integration of automated vehicles have become more and more tangible in recent years. State-of-the-art technological advances in the field of camera-based Artificial Intelligence (AI) and computer vision greatly favor the performance and reliability of Advanced Driver Assistance System (ADAS), leading to a greater knowledge of vehicular operation and resembling the human behaviour. However, the exclusive use of this technology still seems insufficient to control the vehicular operation at 100%. To reveal the degree of accuracy of the current camera-based automated driving AI modules, this paper studies the structure and behavior of one of the main solutions in a controlled testing environment. The results obtained clearly outline the lack of reliability when using exclusively the AI model in the perception stage, thereby entailing using additional complementary sensors to improve its safety and performance.
Keywords: Accuracy assessment, AI-Driven Mobility, Artificial Intelligence, automated vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4373356 Comparative Study of Scheduling Algorithms for LTE Networks
Authors: Samia Dardouri, Ridha Bouallegue
Abstract:
Scheduling is the process of dynamically allocating physical resources to User Equipment (UE) based on scheduling algorithms implemented at the LTE base station. Various algorithms have been proposed by network researchers as the implementation of scheduling algorithm which represents an open issue in Long Term Evolution (LTE) standard. This paper makes an attempt to study and compare the performance of PF, MLWDF and EXP/PF scheduling algorithms. The evaluation is considered for a single cell with interference scenario for different flows such as Best effort, Video and VoIP in a pedestrian and vehicular environment using the LTE-Sim network simulator. The comparative study is conducted in terms of system throughput, fairness index, delay, packet loss ratio (PLR) and total cell spectral efficiency.
Keywords: LTE, Multimedia flows, Scheduling algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48113355 Performance Analysis of Adaptive OFDM Pre and Post-FTT Beamforming System
Authors: S. Elnobi, Iman El-Zahaby, Amr M. Mahros
Abstract:
In mobile communication systems, performance and capacity are affected by multi-path fading, delay spread and Co-Channel Interference (CCI). For this reason Orthogonal Frequency Division Multiplexing (OFDM) and adaptive antenna array are used is required. The goal of the OFDM is to improve the system performance against Inter-Symbol Interference (ISI). An array of adaptive antennas has been employed to suppress CCI by spatial technique. To suppress CCI in OFDM systems two main schemes the pre-FFT and the post-FFT have been proposed. In this paper, through a system level simulation, the behavior of the pre-FFT and post-FFT beamformers for OFDM system has been investigated based on two algorithms namely, Least Mean Squares (LMS) and Recursive Least Squares (RLS). The performance of the system is also discussed in multipath fading channel system specified by 3GPP Long Term Evolution (LTE).
Keywords: OFDM, Beamforming, Adaptive Antennas Array.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24403354 Using Vulnerability to Reduce False Positive Rate in Intrusion Detection Systems
Authors: Nadjah Chergui, Narhimene Boustia
Abstract:
Intrusion Detection Systems are an essential tool for network security infrastructure. However, IDSs have a serious problem which is the generating of massive number of alerts, most of them are false positive ones which can hide true alerts and make the analyst confused to analyze the right alerts for report the true attacks. The purpose behind this paper is to present a formalism model to perform correlation engine by the reduction of false positive alerts basing on vulnerability contextual information. For that, we propose a formalism model based on non-monotonic JClassicδє description logic augmented with a default (δ) and an exception (є) operator that allows a dynamic inference according to contextual information.Keywords: Context, exception, default, IDS, Non-monotonic Description Logic JClassicδє, vulnerability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14303353 Design of a Robust Controller for AGC with Combined Intelligence Techniques
Authors: R. N. Patel, S. K. Sinha, R. Prasad
Abstract:
In this work Artificial Intelligence (AI) techniques like Fuzzy logic, Genetic Algorithms and Particle Swarm Optimization have been used to improve the performance of the Automatic Generation Control (AGC) system. Instead of applying Genetic Algorithms and Particle swarm optimization independently for optimizing the parameters of the conventional AGC with PI controller, an intelligent tuned Fuzzy logic controller (acting as the secondary controller in the AGC system) has been designed. The controller gives an improved dynamic performance for both hydrothermal and thermal-thermal power systems under a variety of operating conditions.
Keywords: Artificial intelligence, Automatic generation control, Fuzzy control, Genetic Algorithm, Particle swarm optimization, Power systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17873352 Effect of Different Treatments on the Periphyton Quantity and Quality in Experimental Fishponds
Authors: T. Kosáros, D. Gál, F. Pekár, Gy. Lakatos
Abstract:
Periphyton development and composition were studied in three different treatments: (i) two fishpond units of wetland-type wastewater treatment pond systems, (ii) two fishponds in combined intensive-extensive fish farming systems and (iii) three traditional polyculture fishponds. Results showed that amounts of periphyton developed in traditional polyculture fishponds (iii) were different compared to the other treatments (i and ii), where the main function of ponds was stated wastewater treatment. Negative correlation was also observable between water quality parameters and periphyton production. The lower trophity, halobity and saprobity level of ponds indicated higher amount of periphyton. The dry matter content of periphyton was significantly higher in the samples, which were developed in traditional polyculture fishponds (2.84±3.02 g m-2 day-1, whereby the ash content in dry matter 74%), than samples taken from (i) (1.60±2.32 g m-2 day-1, 61%) and (ii) fishponds (0.65±0.45 g m-2 day-1, 81%).Keywords: Artificial substrate, fishpond, periphyton, waterquality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14503351 Integrating Wearable Devices in Real-Time Computer Applications of Petrochemical Systems
Authors: Paul B. Stone, Subhashini Ganapathy, Mary E. Fendley, Layla Akilan
Abstract:
As notifications become more common through mobile devices, it is important to understand the impact of wearable devices for improved user experience of man-machine interfaces. This study examined the use of a wearable device for a real-time system using a computer simulated petrochemical system. The key research question was to determine how using information provided by the wearable device can improve human performance through measures of situational awareness and decision making. Results indicate that there was a reduction in response time when using the watch and there was no difference in situational awareness. Perception of using the watch was positive, with 83% of users finding value in using the watch and receiving haptic feedback.
Keywords: computer applications, haptic feedback, petrochemical systems, situational awareness, wearable technology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5743350 Unified Power Flow Controller Placement to Improve Damping of Power Oscillations
Authors: M. Salehi, A. A. Motie Birjandi, F. Namdari
Abstract:
Weak damping of low frequency oscillations is a frequent phenomenon in electrical power systems. These frequencies can be damped by power system stabilizers. Unified power flow controller (UPFC), as one of the most important FACTS devices, can be applied to increase the damping of power system oscillations and the more effect of this controller on increasing the damping of oscillations depends on its proper placement in power systems. In this paper, a technique based on controllability is proposed to select proper location of UPFC and the best input control signal in order to enhance damping of power oscillations. The effectiveness of the proposed technique is demonstrated in IEEE 9 bus power system.
Keywords: Unified power flow controller (UPFC), controllability, small signal analysis, eigenvalues.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19033349 Partial Connection Architecture for Mobile Computing
Authors: Phyoung Jung Kim, Seogyun Kim
Abstract:
In mobile computing environments, there are many new non existing problems in the distributed system, which is consisted of stationary hosts because of host mobility, sudden disconnection by handoff in wireless networks, voluntary disconnection for efficient power consumption of a mobile host, etc. To solve the problems, we proposed the architecture of Partial Connection Manager (PCM) in this paper. PCM creates the limited number of mobile agents according to priority, sends them in parallel to servers, and combines the results to process the user request rapidly. In applying the proposed PCM to the mobile market agent service, we understand that the mobile agent technique could be suited for the mobile computing environment and the partial connection problem management.Keywords: Mobile agent, mobile computing, partial connection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611