Search results for: Renewable Energy Sources
309 Solar Radiation Time Series Prediction
Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs
Abstract:
A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled direct normal irradiance field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.
Keywords: Artificial Neural Networks, Resilient Propagation, Solar Radiation, Time Series Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2774308 Real-Time Recognition of Dynamic Hand Postures on a Neuromorphic System
Authors: Qian Liu, Steve Furber
Abstract:
To explore how the brain may recognise objects in its general,accurate and energy-efficient manner, this paper proposes the use of a neuromorphic hardware system formed from a Dynamic Video Sensor (DVS) silicon retina in concert with the SpiNNaker real-time Spiking Neural Network (SNN) simulator. As a first step in the exploration on this platform a recognition system for dynamic hand postures is developed, enabling the study of the methods used in the visual pathways of the brain. Inspired by the behaviours of the primary visual cortex, Convolutional Neural Networks (CNNs) are modelled using both linear perceptrons and spiking Leaky Integrate-and-Fire (LIF) neurons. In this study’s largest configuration using these approaches, a network of 74,210 neurons and 15,216,512 synapses is created and operated in real-time using 290 SpiNNaker processor cores in parallel and with 93.0% accuracy. A smaller network using only 1/10th of the resources is also created, again operating in real-time, and it is able to recognise the postures with an accuracy of around 86.4% - only 6.6% lower than the much larger system. The recognition rate of the smaller network developed on this neuromorphic system is sufficient for a successful hand posture recognition system, and demonstrates a much improved cost to performance trade-off in its approach.
Keywords: Spiking neural network (SNN), convolutional neural network (CNN), posture recognition, neuromorphic system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062307 Artificial Neural Networks Technique for Seismic Hazard Prediction Using Seismic Bumps
Authors: Belkacem Selma, Boumediene Selma, Samira Chouraqui, Hanifi Missoum, Tourkia Guerzou
Abstract:
Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. Earthquake prediction to prevent the loss of human lives and even property damage is an important factor; that, is why it is crucial to develop techniques for predicting this natural disaster. This study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 104 J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines have been analyzed. The results obtained show that the ANN is able to predict earthquake parameters with high accuracy; the classification accuracy through neural networks is more than 94%, and the models developed are efficient and robust and depend only weakly on the initial database.
Keywords: Earthquake prediction, artificial intelligence, AI, Artificial Neural Network, ANN, seismic bumps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1209306 Accurate Position Electromagnetic Sensor Using Data Acquisition System
Authors: Z. Ezzouine, A. Nakheli
Abstract:
This paper presents a high position electromagnetic sensor system (HPESS) that is applicable for moving object detection. The authors have developed a high-performance position sensor prototype dedicated to students’ laboratory. The challenge was to obtain a highly accurate and real-time sensor that is able to calculate position, length or displacement. An electromagnetic solution based on a two coil induction principal was adopted. The HPESS converts mechanical motion to electric energy with direct contact. The output signal can then be fed to an electronic circuit. The voltage output change from the sensor is captured by data acquisition system using LabVIEW software. The displacement of the moving object is determined. The measured data are transmitted to a PC in real-time via a DAQ (NI USB -6281). This paper also describes the data acquisition analysis and the conditioning card developed specially for sensor signal monitoring. The data is then recorded and viewed using a user interface written using National Instrument LabVIEW software. On-line displays of time and voltage of the sensor signal provide a user-friendly data acquisition interface. The sensor provides an uncomplicated, accurate, reliable, inexpensive transducer for highly sophisticated control systems.
Keywords: Electromagnetic sensor, data acquisition, accurately, position measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970305 Digital Twins: Towards an Overarching Framework for the Built Environment
Authors: Astrid Bagireanu, Julio Bros-Williamson, Mila Duncheva, John Currie
Abstract:
Digital Twins (DTs) have entered the built environment from more established industries like aviation and manufacturing, although there has never been a common goal for utilising DTs at scale. Their assimilation into the built environment lacked its very own handover documentation: how should DTs be implemented into a project and what responsibilities should each project stakeholder hold in the realisation of a DT vision. What is needed is an approach to translate these requirements into actionable DT dimensions. This paper presents a foundation for an overarching framework specific to the built environment. For the purposes of this research, the project timeline is established by referencing the Royal Institute of British Architects (RIBA) Plan of Work from 2020, providing a foundation for delineating project stages. The RIBA Plan of Work consists of eight stages designed to inform on the definition, briefing, design, coordination, construction, handover, and use of a built asset. Similar project stages are utilised in other countries; therefore, the recommendations from the interviews presented in this paper are applicable internationally. Simultaneously, there is not a single mainstream software resource that leverages DT abilities. This ambiguity meets an unparalleled ambition from governments and industries worldwide to achieve a national grid of interconnected DTs. For the construction industry to access these benefits, it necessitates a defined starting point. This research aims to provide a comprehensive understanding of the potential applications and ramifications of DT in the context of the built environment. This paper is an integral part of a larger research aimed at developing a conceptual framework for the Architecture, Engineering, and Construction (AEC) sector following a conventional project timeline. Therefore, this paper plays a pivotal role in providing practical insights and a tangible foundation for developing a stage-by-stage approach to assimilate the potential of DT within the built environment. First, the research focuses on a review of relevant literature, albeit acknowledging the inherent constraint of limited sources available. Secondly, a qualitative study compiling the views of 14 DT experts is presented, concluding with an inductive analysis of the interview findings - ultimately highlighting the barriers and strengths of DT in the context of framework development. As parallel developments aim to progress net-zero-centred design and improve project efficiencies across the built environment, the limited resources available to support DTs should be leveraged to propel the industry to reach its digitalisation era, in which AEC stakeholders have a fundamental role in understanding this, from the earliest stages of a project.
Keywords: Digital twins, decision making, design, net-zero, built environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 606304 Two Scenarios for Ultra-Light Overhead Conveyor System in Logistics Applications
Authors: Batin Latif Aylak, Bernd Noche
Abstract:
Overhead conveyor systems are in use in many installations around the world, meeting the widest range of applications possible. Overhead conveyor systems are particularly preferred in automotive industry but also at post offices. Overhead conveyor systems must always be integrated with a logistical process by finding the best way for a cheaper material flow in order to guarantee precise and fast workflows. With their help, any transport can take place without wasting ground and space, without excessive company capacity, lost or damaged products, erroneous delivery, endless travels and without wasting time. Ultra-light overhead conveyor systems are rope-based conveying systems with individually driven vehicles. The vehicles can move automatically on the rope and this can be realized by energy and signals. Crossings are realized by switches. Ultra-light overhead conveyor systems provide optimal material flow, which produces profit and saves time. This article introduces two new ultra-light overhead conveyor designs in logistics and explains their components. According to the explanation of the components, scenarios are created by means of their technical characteristics. The scenarios are visualized with the help of CAD software. After that, assumptions are made for application area. According to these assumptions scenarios are visualized. These scenarios help logistics companies achieve lower development costs as well as quicker market maturity.
Keywords: Logistics, material flow, overhead conveyor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005303 Complementing Assessment Processes with Standardized Tests: A Work in Progress
Authors: Amparo Camacho
Abstract:
ABET accredited programs must assess the development of student learning outcomes (SOs) in engineering programs. Different institutions implement different strategies for this assessment, and they are usually designed “in house.” This paper presents a proposal for including standardized tests to complement the ABET assessment model in an engineering college made up of six distinct engineering programs. The engineering college formulated a model of quality assurance in education to be implemented throughout the six engineering programs to regularly assess and evaluate the achievement of SOs in each program offered. The model uses diverse techniques and sources of data to assess student performance and to implement actions of improvement based on the results of this assessment. The model is called “Assessment Process Model” and it includes SOs A through K, as defined by ABET. SOs can be divided into two categories: “hard skills” and “professional skills” (soft skills). The first includes abilities, such as: applying knowledge of mathematics, science, and engineering and designing and conducting experiments, as well as analyzing and interpreting data. The second category, “professional skills”, includes communicating effectively, and understanding professional and ethnical responsibility. Within the Assessment Process Model, various tools were used to assess SOs, related to both “hard” as well as “soft” skills. The assessment tools designed included: rubrics, surveys, questionnaires, and portfolios. In addition to these instruments, the Engineering College decided to use tools that systematically gather consistent quantitative data. For this reason, an in-house exam was designed and implemented, based on the curriculum of each program. Even though this exam was administered during various academic periods, it is not currently considered standardized. In 2017, the Engineering College included three standardized tests: one to assess mathematical and scientific reasoning and two more to assess reading and writing abilities. With these exams, the college hopes to obtain complementary information that can help better measure the development of both hard and soft skills of students in the different engineering programs. In the first semester of 2017, the three exams were given to three sample groups of students from the six different engineering programs. Students in the sample groups were either from the first, fifth, and tenth semester cohorts. At the time of submission of this paper, the engineering college has descriptive statistical data and is working with various statisticians to have a more in-depth and detailed analysis of the sample group of students’ achievement on the three exams. The overall objective of including standardized exams in the assessment model is to identify more precisely the least developed SOs in order to define and implement educational strategies necessary for students to achieve them in each engineering program.
Keywords: Assessment, hard skills, soft skills, standardized tests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814302 Investigation on a Wave-Powered Electrical Generator Consisted of a Geared Motor-Generator Housed by a Double-Cone Rolling on Concentric Circular Rails
Authors: Barenten Suciu
Abstract:
An electrical generator able to harness energy from the water waves and designed as a double-cone geared motor-generator (DCGMG), is proposed and theoretically investigated. Similar to a differential gear mechanism, used in the transmission system of the auto vehicle wheels, an angular speed differential is created between the cones rolling on two concentric circular rails. Water wave acting on the floating DCGMG produces and a gear-box amplifies the speed differential to gain sufficient torque for power generation. A model that allows computation of the speed differential, torque, and power of the DCGMG is suggested. Influence of various parameters, regarding the construction of the DCGMG, as well as the contact between the double-cone and rails, on the electro-mechanical output, is emphasized. Results obtained indicate that the generated electrical power can be increased by augmenting the mass of the double-cone, the span of the rails, the apex angle of the cones, the friction between cones and rails, the amplification factor of the gear-box, and the efficiency of the motor-generator. Such findings are useful to formulate a design methodology for the proposed wave-powered generator.
Keywords: Wave-powered electrical generator, double-cone, circular concentric rails, amplification of angular speed differential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731301 Directional Drilling Optimization by Non-Rotating Stabilizer
Authors: Eisa Noveiri, Adel Taheri Nia
Abstract:
The Non-Rotating Adjustable Stabilizer / Directional Solution (NAS/DS) is the imitation of a mechanical process or an object by a directional drilling operation that causes a respond mathematically and graphically to data and decision to choose the best conditions compared to the previous mode. The NAS/DS Auto Guide rotary steerable tool is undergoing final field trials. The point-the-bit tool can use any bit, work at any rotating speed, work with any MWD/LWD system, and there is no pressure drop through the tool. It is a fully closed-loop system that automatically maintains a specified curvature rate. The Non–Rotating Adjustable stabilizer (NAS) can be controls curvature rate by exactly positioning and run with the optimum bit, use the most effective weight (WOB) and rotary speed (RPM) and apply all of the available hydraulic energy to the bit. The directional simulator allowed to specify the size of the curvature rate performance errors of the NAS tool and the magnitude of the random errors in the survey measurements called the Directional Solution (DS). The combination of these technologies (NAS/DS) will provide smoother bore holes, reduced drilling time, reduced drilling cost and incredible targeting precision. This simulator controls curvature rate by precisely adjusting the radial extension of stabilizer blades on a near bit Non-Rotating Stabilizer and control process corrects for the secondary effects caused by formation characteristics, bit and tool wear, and manufacturing tolerances.Keywords: non-rotating, Adjustable stabilizer, simulator, Directional Drilling, optimization, Oil Well Drilling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3280300 Introduce Applicability of Multi-Layer Perceptron to Predict the Behaviour of Semi-Interlocking Masonry Panel
Authors: O. Zarrin, M. Ramezanshirazi
Abstract:
The Semi Interlocking Masonry (SIM) system has been developed in Masonry Research Group at the University of Newcastle, Australia. The main purpose of this system is to enhance the seismic resistance of framed structures with masonry panels. In this system, SIM panels dissipate energy through the sliding friction between rows of SIM units during earthquake excitation. This paper aimed to find the applicability of artificial neural network (ANN) to predict the displacement behaviour of the SIM panel under out-of-plane loading. The general concept of ANN needs to be trained by related force-displacement data of SIM panel. The overall data to train and test the network are 70 increments of force-displacement from three tests, which comprise of none input nodes. The input data contain height and length of panels, height, length and width of the brick and friction and geometry angle of brick along the compressive strength of the brick with the lateral load applied to the panel. The aim of designed network is prediction displacement of the SIM panel by Multi-Layer Perceptron (MLP). The mean square error (MSE) of network was 0.00042 and the coefficient of determination (R2) values showed the 0.91. The result revealed that the ANN has significant agreement to predict the SIM panel behaviour.Keywords: Semi interlocking masonry, artificial neural network, ANN, multi-layer perceptron, MLP, displacement, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827299 A Comparison of Experimental Data with Monte Carlo Calculations for Optimisation of the Sourceto- Detector Distance in Determining the Efficiency of a LaBr3:Ce (5%) Detector
Authors: H. Aldousari, T. Buchacher, N. M. Spyrou
Abstract:
Cerium-doped lanthanum bromide LaBr3:Ce(5%) crystals are considered to be one of the most advanced scintillator materials used in PET scanning, combining a high light yield, fast decay time and excellent energy resolution. Apart from the correct choice of scintillator, it is also important to optimise the detector geometry, not least in terms of source-to-detector distance in order to obtain reliable measurements and efficiency. In this study a commercially available 25 mm x 25 mm BrilLanCeTM 380 LaBr3: Ce (5%) detector was characterised in terms of its efficiency at varying source-to-detector distances. Gamma-ray spectra of 22Na, 60Co, and 137Cs were separately acquired at distances of 5, 10, 15, and 20cm. As a result of the change in solid angle subtended by the detector, the geometric efficiency reduced in efficiency with increasing distance. High efficiencies at low distances can cause pulse pile-up when subsequent photons are detected before previously detected events have decayed. To reduce this systematic error the source-to-detector distance should be balanced between efficiency and pulse pile-up suppression as otherwise pile-up corrections would need to be necessary at short distances. In addition to the experimental measurements Monte Carlo simulations have been carried out for the same setup, allowing a comparison of results. The advantages and disadvantages of each approach have been highlighted.
Keywords: BrilLanCeTM380 LaBr3:Ce(5%), Coincidence summing, GATE simulation, Geometric efficiency
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902298 A Bibliometric Assessment on Sustainability and Clustering
Authors: Fernanda M. Assef, Maria Teresinha A. Steiner, David Gabriel F. de Barros
Abstract:
Review researches are useful in terms of analysis of research problems. Between the types of review documents, we commonly find bibliometric studies. This type of application often helps the global visualization of a research problem and helps academics worldwide to understand the context of a research area better. In this document, a bibliometric view surrounding clustering techniques and sustainability problems is presented. The authors aimed at which issues mostly use clustering techniques and even which sustainability issue would be more impactful on today’s moment of research. During the bibliometric analysis, we found 10 different groups of research in clustering applications for sustainability issues: Energy; Environmental; Non-urban Planning; Sustainable Development; Sustainable Supply Chain; Transport; Urban Planning; Water; Waste Disposal; and, Others. Moreover, by analyzing the citations of each group, it was discovered that the Environmental group could be classified as the most impactful research cluster in the area mentioned. After the content analysis of each paper classified in the environmental group, it was found that the k-means technique is preferred for solving sustainability problems with clustering methods since it appeared the most amongst the documents. The authors finally conclude that a bibliometric assessment could help indicate a gap of researches on waste disposal – which was the group with the least amount of publications – and the most impactful research on environmental problems.
Keywords: Bibliometric assessment, clustering, sustainability, territorial partitioning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 399297 Dew and Rain Water Collection in South Croatia
Authors: Daniel Beysens, Imad Lekouch, Marina Mileta, Iryna Milimouk, Marc Muselli
Abstract:
Dew harvesting needs only weak investment and exploits a free, clean and inexhaustible energy. This study aims to measure the relative contributions of dew and rain water in the Mediterranean Dalmatian coast and islands of Croatia and determine whether dew water is potable. Two sites were chosen, an open site on the coast favourable to dew formation (Zadar) and a less favourable site in a circus of mountains in Komiža (Vis Island). Between July 1st, 2003 and October 31st, 2006, dew hasbeen daily collected on a 1 m2 tilted (30°) test dew condenser together with ordinary meteorological data (air temperature and relative humidity, cloud coverage, windspeed and direction). The mean yearly cumulative dew yields were found to be 20 mm (Zadar) and 9.3 mm (Komiža ). During the dry season (May to October), monthly cumulative dew water yield can represent up to 38% of water collected by rain fall. In July 2003 and 2006, dew water represented about 120% of the monthly cumulative rain water. Dew and rain water were analyzed in Zadar. The corresponding parameters were measured: pH, electrical conductivity, major anions (HCO3 -, Cl-, SO4 2- , NO3 - , ,) and major cations (NH4 +, Na+, K+, Ca2+, Mg2+. Both dew and rain water are in conformity with the WHO directives for potability except Mg2+. Using existing roofs and refurbishing the abandoned impluviums to permit dew collection could then provide a useful supplementary amount of water, especially during the dry season.Keywords: atmospheric water, dew chemistry, dew collection, radiative cooling, rain chemistry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087296 A Structural and Magnetic Investigation of the Inversion Degree in Spinel NiFe2O4, ZnFe2O4 and Ni0.5Zn0.5Fe2O4 Ferrites Prepared by Soft Mechanochemical Synthesis
Authors: Z. Ž. Lazarević, D. L. Sekulić, V. N. Ivanovski, N. Ž. Romčević
Abstract:
NiFe2O4 (nickel ferrite), ZnFe2O4 (zinc ferrite) and Ni0.5Zn0.5Fe2O4 (nickel-zinc ferrite) were prepared by mechanochemical route in a planetary ball mill starting from mixture of the appropriate quantities of the Ni(OH)2/Fe(OH)3, Zn(OH)2/Fe(OH)3 and Ni(OH)2/Zn(OH)2/Fe(OH)3 hydroxide powders. In order to monitor the progress of chemical reaction and confirm phase formation, powder samples obtained after 25 h, 18 h and 10 h of milling were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), IR, Raman and Mössbauer spectroscopy. It is shown that the soft mechanochemical method, i.e. mechanochemical activation of hydroxides, produces high quality single phase ferrite samples in much more efficient way. From the IR spectroscopy of single phase samples it is obvious that energy of modes depends on the ratio of cations. It is obvious that all samples have more than 5 Raman active modes predicted by group theory in the normal spinel structure. Deconvolution of measured spectra allows one to conclude that all complex bands in the spectra are made of individual peaks with the intensities that vary from spectrum to spectrum. The deconvolution of Raman spectra allows to separate contributions of different cations to a particular type of vibration and to estimate the degree of inversion.Keywords: Ferrites, Raman spectroscopy, IR spectroscopy, Mössbauer measurements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3007295 Parametric and Analysis Study of the Melting in Slabs Heated by a Laminar Heat Transfer Fluid in Downward and Upward Flows
Authors: Radouane Elbahjaoui, Hamid El Qarnia
Abstract:
The present work aims to investigate numerically the thermal and flow characteristics of a rectangular latent heat storage unit (LHSU) during the melting process of a phase change material (PCM). The LHSU consists of a number of vertical and identical plates of PCM separated by rectangular channels. The melting process is initiated when the LHSU is heated by a heat transfer fluid (HTF: water) flowing in channels in a downward or upward direction. The proposed study is motivated by the need to optimize the thermal performance of the LHSU by accelerating the charging process. A mathematical model is developed and a fixed-grid enthalpy formulation is adopted for modeling the melting process coupling with convection-conduction heat transfer. The finite volume method was used for discretization. The obtained numerical results are compared with experimental, analytical and numerical ones found in the literature and reasonable agreement is obtained. Thereafter, the numerical investigations were carried out to highlight the effects of the HTF flow direction and the aspect ratio of the PCM slabs on the heat transfer characteristics and thermal performance enhancement of the LHSU.
Keywords: Phase change material, thermal energy storage, latent heat storage unit, melting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 916294 The Wavelet-Based DFT: A New Interpretation, Extensions and Applications
Authors: Abdulnasir Hossen, Ulrich Heute
Abstract:
In 1990 [1] the subband-DFT (SB-DFT) technique was proposed. This technique used the Hadamard filters in the decomposition step to split the input sequence into low- and highpass sequences. In the next step, either two DFTs are needed on both bands to compute the full-band DFT or one DFT on one of the two bands to compute an approximate DFT. A combination network with correction factors was to be applied after the DFTs. Another approach was proposed in 1997 [2] for using a special discrete wavelet transform (DWT) to compute the discrete Fourier transform (DFT). In the first step of the algorithm, the input sequence is decomposed in a similar manner to the SB-DFT into two sequences using wavelet decomposition with Haar filters. The second step is to perform DFTs on both bands to obtain the full-band DFT or to obtain a fast approximate DFT by implementing pruning at both input and output sides. In this paper, the wavelet-based DFT (W-DFT) with Haar filters is interpreted as SB-DFT with Hadamard filters. The only difference is in a constant factor in the combination network. This result is very important to complete the analysis of the W-DFT, since all the results concerning the accuracy and approximation errors in the SB-DFT are applicable. An application example in spectral analysis is given for both SB-DFT and W-DFT (with different filters). The adaptive capability of the SB-DFT is included in the W-DFT algorithm to select the band of most energy as the band to be computed. Finally, the W-DFT is extended to the two-dimensional case. An application in image transformation is given using two different types of wavelet filters.
Keywords: Image Transform, Spectral Analysis, Sub-Band DFT, Wavelet DFT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678293 On the Catalytic Combustion Behaviors of CH4 in a MCFC Power Generation System
Authors: Man Young Kim
Abstract:
Catalytic combustion is generally accepted as an environmentally preferred alternative for the generation of heat and power from fossil fuels mainly due to its advantages related to the stable combustion under very lean conditions with low emissions of NOx, CO, and UHC at temperatures lower than those occurred in conventional flame combustion. Despite these advantages, the commercial application of catalytic combustion has been delayed because of complicated reaction processes and the difficulty in developing appropriate catalysts with the required stability and durability. To develop the catalytic combustors, detailed studies on the combustion characteristics of catalytic combustion should be conducted. To the end, in current research, quantitative studies on the combustion characteristics of the catalytic combustors, with a Pd-based catalyst for MCFC power generation systems, relying on numerical simulations have been conducted. In addition, data from experimental studies of variations in outlet temperatures and fuel conversion, taken after operating conditions have been used to validate the present numerical approach. After introducing the governing equations for mass, momentum, and energy equations as well as a description of catalytic combustion kinetics, the effects of the excess air ratio, space velocity, and inlet gas temperature on the catalytic combustion characteristics are extensively investigated. Quantitative comparisons are also conducted with previous experimental data. Finally, some concluding remarks are presented.
Keywords: Catalytic combustion, Methane, BOP, MCFC power generation system, Inlet temperature, Excess air ratio, Space velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2182292 Influence of Power Flow Controller on Energy Transaction Charges in Restructured Power System
Authors: Manisha Dubey, Gaurav Gupta, Anoop Arya
Abstract:
The demand for power supply increases day by day in developing countries like India henceforth demand of reactive power support in the form of ancillary services provider also has been increased. The multi-line and multi-type Flexible alternating current transmission system (FACTS) controllers are playing a vital role to regulate power flow through the transmission line. Unified power flow controller and interline power flow controller can be utilized to control reactive power flow through the transmission line. In a restructured power system, the demand of such controller is being popular due to their inherent capability. The transmission pricing by using reactive power cost allocation through modified matrix methodology has been proposed. The FACTS technologies have quite costly assembly, so it is very useful to apportion the expenses throughout the restructured electricity industry. Therefore, in this work, after embedding the FACTS devices into load flow, the impact on the costs allocated to users in fraction to the transmission framework utilization has been analyzed. From the obtained results, it is clear that the total cost recovery is enhanced towards the Reactive Power flow through the different transmission line for 5 bus test system. The fair pricing policy towards reactive power can be achieved by the proposed method incorporating FACTS controller towards cost recovery of the transmission network.
Keywords: Inter line power flow controller, Transmission Pricing, Unified power flow controller, cost allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695291 Tree Based Data Fusion Clustering Routing Algorithm for Illimitable Network Administration in Wireless Sensor Network
Authors: Y. Harold Robinson, M. Rajaram, E. Golden Julie, S. Balaji
Abstract:
In wireless sensor networks, locality and positioning information can be captured using Global Positioning System (GPS). This message can be congregated initially from spot to identify the system. Users can retrieve information of interest from a wireless sensor network (WSN) by injecting queries and gathering results from the mobile sink nodes. Routing is the progression of choosing optimal path in a mobile network. Intermediate node employs permutation of device nodes into teams and generating cluster heads that gather the data from entity cluster’s node and encourage the collective data to base station. WSNs are widely used for gathering data. Since sensors are power-constrained devices, it is quite vital for them to reduce the power utilization. A tree-based data fusion clustering routing algorithm (TBDFC) is used to reduce energy consumption in wireless device networks. Here, the nodes in a tree use the cluster formation, whereas the elevation of the tree is decided based on the distance of the member nodes to the cluster-head. Network simulation shows that this scheme improves the power utilization by the nodes, and thus considerably improves the lifetime.
Keywords: WSN, TBDFC, LEACH, PEGASIS, TREEPSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1125290 Continuous Plug Flow and Discrete Particle Phase Coupling Using Triangular Parcels
Authors: Anders Schou Simonsen, Thomas Condra, Kim Sørensen
Abstract:
Various processes are modelled using a discrete phase, where particles are seeded from a source. Such particles can represent liquid water droplets, which are affecting the continuous phase by exchanging thermal energy, momentum, species etc. Discrete phases are typically modelled using parcel, which represents a collection of particles, which share properties such as temperature, velocity etc. When coupling the phases, the exchange rates are integrated over the cell, in which the parcel is located. This can cause spikes and fluctuating exchange rates. This paper presents an alternative method of coupling a discrete and a continuous plug flow phase. This is done using triangular parcels, which span between nodes following the dynamics of single droplets. Thus, the triangular parcels are propagated using the corner nodes. At each time step, the exchange rates are spatially integrated over the surface of the triangular parcels, which yields a smooth continuous exchange rate to the continuous phase. The results shows that the method is more stable, converges slightly faster and yields smooth exchange rates compared with the steam tube approach. However, the computational requirements are about five times greater, so the applicability of the alternative method should be limited to processes, where the exchange rates are important. The overall balances of the exchanged properties did not change significantly using the new approach.Keywords: CFD, coupling, discrete phase, parcel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 614289 Development of Cellulose Panels with Porous Structure for Sustainable Building Insulation
Authors: P. Garbagnoli, M. Musitelli, B. Del Curto, MP. Pedeferri
Abstract:
The study and development of an innovative material for building insulation is really important for a sustainable society in order to improve comfort and reducing energy consumption. The aim of this work is the development of insulating panels for sustainable buildings based on an innovative material made by cardboard and Phase Change Materials (PCMs). The research has consisted in laboratory tests whose purpose has been the obtaining of the required properties for insulation panels: lightweight, porous structures and mechanical resistance. PCMs have been used for many years in the building industry as smart insulation technology because of their properties of storage and release high quantity of latent heat at useful specific temperatures [1]- [2]. The integration of PCMs into cellulose matrix during the waste paper recycling process has been developed in order to obtain a composite material. Experiments on the productive process for the realization of insulating panels were done in order to make the new material suitable for building application. The addition of rising agents demonstrated the possibility to obtain a lighter structure with better insulation properties. Several tests were conducted to verify the new panel properties. The results obtained have shown the possibility to realize an innovative and sustainable material suitable to replace insulating panels currently used.Keywords: Sustainability, recycling, waste cardboard, PCM, cladding system, insulating materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2307288 Investigating the Process Kinetics and Nitrogen Gas Production in Anammox Hybrid Reactor with Special Emphasis on the Role of Filter Media
Authors: Swati Tomar, Sunil Kumar Gupta
Abstract:
Anammox is a novel and promising technology that has changed the traditional concept of biological nitrogen removal. The process facilitates direct oxidation of ammonical nitrogen under anaerobic conditions with nitrite as an electron acceptor without addition of external carbon sources. The present study investigated the feasibility of Anammox Hybrid Reactor (AHR) combining the dual advantages of suspended and attached growth media for biodegradation of ammonical nitrogen in wastewater. Experimental unit consisted of 4 nos. of 5L capacity AHR inoculated with mixed seed culture containing anoxic and activated sludge (1:1). The process was established by feeding the reactors with synthetic wastewater containing NH4-H and NO2-N in the ratio 1:1 at HRT (hydraulic retention time) of 1 day. The reactors were gradually acclimated to higher ammonium concentration till it attained pseudo steady state removal at a total nitrogen concentration of 1200 mg/l. During this period, the performance of the AHR was monitored at twelve different HRTs varying from 0.25-3.0 d with increasing NLR from 0.4 to 4.8 kg N/m3d. AHR demonstrated significantly higher nitrogen removal (95.1%) at optimal HRT of 1 day. Filter media in AHR contributed an additional 27.2% ammonium removal in addition to 72% reduction in the sludge washout rate. This may be attributed to the functional mechanism of filter media which acts as a mechanical sieve and reduces the sludge washout rate many folds. This enhances the biomass retention capacity of the reactor by 25%, which is the key parameter for successful operation of high rate bioreactors. The effluent nitrate concentration, which is one of the bottlenecks of anammox process was also minimised significantly (42.3-52.3 mg/L). Process kinetics was evaluated using first order and Grau-second order models. The first-order substrate removal rate constant was found as 13.0 d-1. Model validation revealed that Grau second order model was more precise and predicted effluent nitrogen concentration with least error (1.84±10%). A new mathematical model based on mass balance was developed to predict N2 gas in AHR. The mass balance model derived from total nitrogen dictated significantly higher correlation (R2=0.986) and predicted N2 gas with least error of precision (0.12±8.49%). SEM study of biomass indicated the presence of heterogeneous population of cocci and rod shaped bacteria of average diameter varying from 1.2-1.5 mm. Owing to enhanced NRE coupled with meagre production of effluent nitrate and its ability to retain high biomass, AHR proved to be the most competitive reactor configuration for dealing with nitrogen laden wastewater.
Keywords: Anammox, filter media, kinetics, nitrogen removal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561287 Investigating the Potential for Introduction of Warm Mix Asphalt in Kuwait Using the Volcanic Ash
Authors: H. Al-Baghli, F. Al-Asfour
Abstract:
The current applied asphalt technology for Kuwait roads pavement infrastructure is the hot mix asphalt (HMA) pavement, including both pen grade and polymer modified bitumen (PMBs), that is produced and compacted at high temperature levels ranging from 150 to 180 °C. There are no current specifications for warm and cold mix asphalts in Kuwait’s Ministry of Public Works (MPW) asphalt standard and specifications. The process of the conventional HMA is energy intensive and directly responsible for the emission of greenhouse gases and other environmental hazards into the atmosphere leading to significant environmental impacts and raising health risk to labors at site. Warm mix asphalt (WMA) technology, a sustainable alternative preferred in multiple countries, has many environmental advantages because it requires lower production temperatures than HMA by 20 to 40 °C. The reduction of temperatures achieved by WMA originates from multiple technologies including foaming and chemical or organic additives that aim to reduce bitumen and improve mix workability. This paper presents a literature review of WMA technologies and techniques followed by an experimental study aiming to compare the results of produced WMA samples, using a water containing additive (foaming process), at different compaction temperatures with the HMA control volumetric properties mix designed in accordance to the new MPW’s specifications and guidelines.
Keywords: Warm-mix asphalt, water-bearing additives, foaming-based process, chemical additives, organic additives.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 507286 Effect of Moisture Content Compaction in the Geometry Definition of Earth Dams
Authors: Julian B. García, Virginie Q. R. Pinto, André P. Assis
Abstract:
This paper presents numerical flow and slope stability simulations in three typical sections of earth dams built in tropical regions, two homogeneous with different slope inclinations, and the other one heterogeneous with impermeable core. The geotechnical material parameters used in this work were obtained from a lab testing of physical characterization, compaction, consolidation, variable load permeability and saturated triaxial type CD for compacted soil samples with standard proctor energy at optimum moisture content (23%), optimum moisture content + 2% and optimum moisture content +5%. The objective is to analyze the general behavior of earth dams built in rainy regions where optimum moisture is exceeded. The factor of safety is satisfactory for the three sections compacted in all moisture content during the stages of operation and end of construction. On The other hand, the rapid drawdown condition is the critical phase for homogeneus dams configuration, the factor of safety obtained were unsatisfactory. In general, the heterogeneous dam behavior is more efficient due to the fact that the slopes are made up of gravel, which favors the dissipation of pore pressures during the rapid drawdown. For the critical phase, the slopes should have lower inclinations of the upstream and downstream slopes to guarantee stability, although it increases the costs.
Keywords: Earth dams, flow, moisture content, slope stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941285 Effects of Signaling on the Performance of Directed Diffusion Routing Protocol
Authors: Apidet Booranawong
Abstract:
In an original directed diffusion routing protocol, a sink requests sensing data from a source node by flooding interest messages to the network. Then, the source finds the sink by sending exploratory data messages to all nodes that generate incoming interest messages. This protocol signaling can cause heavy traffic in the network, an interference of the radio signal, collisions, great energy consumption of sensor nodes, etc. According to this research problem, this paper investigates the effect of sending interest and exploratory data messages on the performance of directed diffusion routing protocol. We demonstrate the research problem occurred from employing directed diffusion protocol in mobile wireless environments. For this purpose, we perform a set of experiments by using NS2 (network simulator 2). The radio propagation models; Two-ray ground reflection with and without shadow fading are included to investigate the effect of signaling. The simulation results show that the number of times of sent and received protocol signaling in the case of sending interest and exploratory data messages are larger than the case of sending other protocol signals, especially in the case of shadowing model. Additionally, the number of exploratory data message is largest in one round of the protocol procedure.
Keywords: Directed diffusion, Flooding, Interest message, Exploratory data message, Radio propagation model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791284 Comparative Economic Analysis of Floating Photovoltaic Systems Using a Synthesis Approach
Authors: Ching-Feng Chen, Shih-Kai Chen
Abstract:
The Floating Photovoltaic (FPV) system highlights economic benefits and energy performance to carbon dioxide (CO2) discharges. Due to land resource scarcity and many negligent water territories, such as reservoirs, dams, and lakes in Japan and Taiwan, both countries are actively developing FPV and responding to the pricing of the emissions trading systems (ETS). This paper performs a case study through a synthesis approach to compare the economic indicators between the FPVs of Taiwan’s Agongdian Reservoir and Japan’s Yamakura Dam. The research results show that the metrics of the system capacity, installation costs, bank interest rates, and ETS and Electricity Bills affect FPV operating gains. In the post-Feed-In-Tariff (FIT) phase, investing in FPV in Japan is more profitable than in Taiwan. The former’s positive net present value (NPV), eminent internal rate of return (IRR) (11.6%), and benefit-cost ratio (BCR) above 1 (2.0) at the discount rate of 10% indicate that investing the FPV in Japan is more favorable than in Taiwan. In addition, the breakeven point is modest (about 61.3%). The presented methodology in the study helps investors evaluate schemes’ pros and cons and determine whether a decision is beneficial while funding PV or FPV projects.
Keywords: Carbon Border Adjustment Mechanism, Floating Photovoltaic, Emissions Trading Systems, Net Present Value, NPV, Internal Rate of Return, IRR, Benefit-Cost Ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162283 Vortex-Shedding Suppression in Mixed Convective Flow past a Heated Square Cylinder
Abstract:
The present study investigates numerically the phenomenon of vortex-shedding and its suppression in twodimensional mixed convective flow past a square cylinder under the joint influence of buoyancy and free-stream orientation with respect to gravity. The numerical experiments have been conducted at a fixed Reynolds number (Re) of 100 and Prandtl number (Pr) of 0.71, while Richardson number (Ri) is varied from 0 to 1.6 and freestream orientation, α, is kept in the range 0o≤ α ≤ 90o, with 0o corresponding to an upward flow and 90o representing a cross-flow scenario, respectively. The continuity, momentum and energy equations, subject to Boussinesq approximation, are discretized using a finite difference method and are solved by a semi-explicit pressure correction scheme. The critical Richardson number, leading to the suppression of the vortex-shedding (Ric), is estimated by using Stuart-Landau theory at various free-stream orientations and the neutral curve is obtained in the Ri-α plane. The neutral curve exhibits an interesting non-monotonic behavior with Ric first increasing with increasing values of α upto 45o and then decreasing till 70o. Beyond 70o, the neutral curve again exhibits a sharp increasing asymptotic trend with Ric approaching very large values as α approaches 90o. The suppression of vortex shedding is not observed at α = 90o (cross-flow). In the unsteady flow regime, the Strouhal number (St) increases with the increase in Richardson number.Keywords: bluff body, buoyancy, free-stream orientation, vortex-shedding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277282 Numerical Simulation on Deformation Behaviour of Additively Manufactured AlSi10Mg Alloy
Authors: Racholsan Raj Nirmal, B. S. V. Patnaik, R. Jayaganthan
Abstract:
The deformation behaviour of additively manufactured AlSi10Mg alloy under low strains, high strain rates and elevated temperature conditions is essential to analyse and predict its response against dynamic loading such as impact and thermomechanical fatigue. The constitutive relation of Johnson-Cook is used to capture the strain rate sensitivity and thermal softening effect in AlSi10Mg alloy. Johnson-Cook failure model is widely used for exploring damage mechanics and predicting the fracture in many materials. In this present work, Johnson-Cook material and damage model parameters for additively manufactured AlSi10Mg alloy have been determined numerically from four types of uniaxial tensile test. Three different uniaxial tensile tests with dynamic strain rates (0.1, 1, 10, 50, and 100 s-1) and elevated temperature tensile test with three different temperature conditions (450 K, 500 K and 550 K) were performed on 3D printed AlSi10Mg alloy in ABAQUS/Explicit. Hexahedral elements are used to discretize tensile specimens and fracture energy value of 43.6 kN/m was used for damage initiation. Levenberg Marquardt optimization method was used for the evaluation of Johnson-Cook model parameters. It was observed that additively manufactured AlSi10Mg alloy has shown relatively higher strain rate sensitivity and lower thermal stability as compared to the other Al alloys.
Keywords: ABAQUS, additive manufacturing, AlSi10Mg, Johnson-Cook model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162281 Effects of Initial Moisture Content on the Physical and Mechanical Properties of Norway Spruce Briquettes
Authors: Miloš Matúš, Peter Križan, Ľubomír Šooš, Juraj Beniak
Abstract:
The moisture content of densified biomass is a limiting parameter influencing the quality of this solid biofuel. It influences its calorific value, density, mechanical strength and dimensional stability as well as affecting its production process. This paper deals with experimental research into the effect of moisture content of the densified material on the final quality of biofuel in the form of logs (briquettes or pellets). Experiments based on the singleaxis densification of the spruce sawdust were carried out with a hydraulic piston press (piston and die), where the densified logs were produced at room temperature. The effect of moisture content on the qualitative properties of the logs, including density, change of moisture, expansion and physical changes, and compressive and impact resistance were studied. The results show the moisture ranges required for producing good-quality logs. The experiments were evaluated and the moisture content of the tested material was optimized to achieve the optimum value for the best quality of the solid biofuel. The dense logs also have high-energy content per unit volume. The research results could be used to develop and optimize industrial technologies and machinery for biomass densification to achieve high quality solid biofuel.Keywords: Biomass, briquettes, densification, fuel quality, moisture content, density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2775280 Design Criteria for Achieving Acceptable Indoor Radon Concentration
Authors: T. Valdbjørn Rasmussen
Abstract:
Design criteria for achieving an acceptable indoor radon concentration are presented in this paper. The paper suggests three design criteria. These criteria have to be considered at the early stage of the building design phase to meet the latest recommendations from the World Health Organization in most countries. The three design criteria are; first, establishing a radon barrier facing the ground; second, lowering the air pressure in the lower zone of the slab on ground facing downwards; third, diluting the indoor air with outdoor air. The first two criteria can prevent radon from infiltrating from the ground, and the third criteria can dilute the indoor air. By combining these three criteria, the indoor radon concentration can be lowered achieving an acceptable level. In addition, a cheap and reliable method for measuring the radon concentration in the indoor air is described. The provision on radon in the Danish Building Regulations complies with the latest recommendations from the World Health Organization. Radon can cause lung cancer and it is not known whether there is a lower limit for when it is not harmful to human beings. Therefore, it is important to reduce the radon concentration as much as possible in buildings. Airtightness is an important factor when dealing with buildings. It is important to avoid air leakages in the building envelope both facing the atmosphere, e.g. in compliance with energy requirements, but also facing the ground, to meet the requirements to ensure and control the indoor environment. Infiltration of air from the ground underneath a building is the main providing source of radon to the indoor air.Keywords: Radon, natural radiation, barrier, pressure lowering, ventilation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1196