Search results for: safe bearing pressure
1585 Educational Plan and Program of the Subject Maintenance of Electric Power Equipment
Authors: Rade Ciric, Sasa Mandic
Abstract:
Students of Higher Education Technical School of Professional Studies in Novi Sad follow the subject ‘Maintenance of Electric Power Equipment’ at the Electrotechnical Department. This paper presents educational plan and program of the subject Maintenance of Electric Power Equipment. The course deals with the problems of preventive and investing maintenance of transformer stations (TS), performing and maintenance of grounding of TS and pillars, as well as tracing and detection the location of the cables failure. There is a special elaborated subject concerning the safe work conditions for the electrician during network maintenance, as well as the basics of making and keeping technical documentation of the equipment.
Keywords: Educational plan and program, electric power equipment, maintenance, technical documentation, safe work.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13701584 Springback Simulations of Monolithic and Layered Steels Used for Pressure Equipment
Authors: Anish H. Gandhi, Harit K. Raval
Abstract:
Carbon steel is used in boilers, pressure vessels, heat exchangers, piping, structural elements and other moderatetemperature service systems in which good strength and ductility are desired. ASME Boiler and Pressure Vessel Code, Section II Part A (2004) provides specifications of ferrous materials for construction of pressure equipment, covering wide range of mechanical properties including high strength materials for power plants application. However, increased level of springback is one of the major problems in fabricating components of high strength steel using bending. Presented work discuss the springback simulations for five different steels (i.e. SA-36, SA-299, SA-515 grade 70, SA-612 and SA-724 grade B) using finite element analysis of air V-bending. Analytical springback simulations of hypothetical layered materials are presented. Result shows that; (i) combination of the material property parameters controls the springback, (ii) layer of the high ductility steel on the high strength steel greatly suppresses the springback.Keywords: Carbon steel, Finite element analysis, Layeredmaterial, Springback
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22331583 Numerical Study of Liquefied Petroleum Gas Laminar Flow in Cylindrical Elliptic Pipes
Authors: Olumuyiwa A. Lasode, Tajudeen O. Popoola, B. V. S. S. S. Prasad
Abstract:
Fluid flow in cylinders of elliptic cross-section was investigated. Fluid used is Liquefied petroleum gas (LPG). LPG found in Nigeria contains majorly butane with percentages of propane. Commercial available code FLUENT which uses finite volume method was used to solve fluid flow governing equations. There has been little attention paid to fluid flow in cylindrical elliptic pipes. The present work aims to predict the LPG gas flow in cylindrical pipes of elliptic cross-section. Results of flow parameters of velocity and pressure distributions are presented. Results show that the pressure drop in elliptic pipes is higher than circular pipe of the same cross-sectional area. This is an important result as the pressure drop is related to the pump power needed to drive the flow. Results show that the velocity increases towards centre of the pipe as the flow moves downstream, and also increases towards the outlet of the pipe.
Keywords: Elliptic Pipes, Liquefied Petroleum Gas, Numerical Study, Pressure Drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29101582 Design and Fabrication of a Programmable Stiffness-Sensitive Gripper for Object Handling
Authors: Mehdi Modabberifar, Sanaz Jabary, Mojtaba Ghodsi
Abstract:
Stiffness sensing is an important issue in medical diagnostic, robotics surgery, safe handling, and safe grasping of objects in production lines. Detecting and obtaining the characteristics in dwelling lumps embedded in a soft tissue and safe removing and handling of detected lumps is needed in surgery. Also in industry, grasping and handling an object without damaging in a place where it is not possible to access a human operator is very important. In this paper, a method for object handling is presented. It is based on the use of an intelligent gripper to detect the object stiffness and then setting a programmable force for grasping the object to move it. The main components of this system includes sensors (sensors for measuring force and displacement), electrical (electrical and electronic circuits, tactile data processing and force control system), mechanical (gripper mechanism and driving system for the gripper) and the display unit. The system uses a rotary potentiometer for measuring gripper displacement. A microcontroller using the feedback received by the load cell, mounted on the finger of the gripper, calculates the amount of stiffness, and then commands the gripper motor to apply a certain force on the object. Results of Experiments on some samples with different stiffness show that the gripper works successfully. The gripper can be used in haptic interfaces or robotic systems used for object handling.Keywords: Gripper, haptic, stiffness, robotic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11551581 Study on Discharge Current Phenomena of Epoxy Resin Insulator Specimen
Authors: Waluyo, Ngapuli I. Sinisuka, Suwarno, Maman A. Djauhari
Abstract:
This paper presents the experimental results of discharge current phenomena on various humidity, temperature, pressure and pollutant conditions of epoxy resin specimen. The leakage distance of specimen was 3 cm, that it was supplied by high voltage. The polluted condition was given with NaCl artificial pollutant. The conducted measurements were discharge current and applied voltage. The specimen was put in a hermetically sealed chamber, and the current waveforms were analyzed with FFT. The result indicated that on discharge condition, the fifth harmonics still had dominant, rather than third one. The third harmonics tent to be appeared on low pressure heavily polluted condition, and followed by high humidity heavily polluted condition. On the heavily polluted specimen, the peaks discharge current points would be high and more frequent. Nevertheless, the specimen still had capacitive property. Besides that, usually discharge current points were more frequent. The influence of low pressure was still dominant to be easier to discharge. The non-linear property would be appear explicitly on low pressure and heavily polluted condition.Keywords: discharge current, third harmonic, fifth harmonic, epoxy resin, non-linear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14371580 An Experimental Study to Mitigate Swelling Pressure of Expansive Tabuk Shale, Saudi Arabia
Authors: A. A. Embaby, A. Abu Halawa, M. Ramadan
Abstract:
In Kingdom of Saudi Arabia, there are several areas where expansive soil exists in the form of variable-thicknesses layers in the developed regions. Severe distress to infrastructures can be caused by the development of heave and swelling pressure in this kind of expansive shale. Among the various techniques for expansive soil mitigation, the removal and replacement technique is very popular for lightly loaded structures and shallow foundations. This paper presents the result of an experimental study conducted for evaluating the effect of type and thickness of the cushion soils on mitigation of swelling characteristics of expanded shale. Seven undisturbed shale samples collected from Al Qadsiyah district, which is located in the Tabuk town north Kingdom of Saudi Arabia, are treated with two types of cushion coarse-grained sediments (CCS); sand and gravel. Each type is represented with three thicknesses, 22%, 33% and 44% in relation to the depth of the active zone. The test results indicated that the replacement of expansive shale by CCS reduces the swelling potential and pressure. It is found that the reduction in swelling depends on the type and thickness of CCS. The treatment by removing the original expansive shale and replacing it by cushion sand with 44% thickness reduced the swelling potential and pressure of about 53.29% and 62.78 %, respectively.
Keywords: Cushion coarse-grained sediments, expansive soil, Saudi Arabia, swelling pressure, Tabuk Shale.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15411579 Flow Characteristics Impeller Change of an Axial Turbo Fan
Authors: Young-Kyun Kim, Tae-Gu Lee, Jin-Huek Hur, Sung-Jae Moon, Jae-Heon Lee
Abstract:
In this paper, three dimensional flow characteristic was presented by a revision of an impeller of an axial turbo fan for improving the airflow rate and the static pressure. TO consider an incompressible steady three-dimensional flow, the RANS equations are used as the governing equations, and the standard k-ε turbulence model is chosen. The pitch angles of 44°, 54°, 59°, and 64° are implemented for the numerical model. The numerical results show that airflow rates of each pitch angle are 1,175 CMH, 1,270 CMH, 1,340 CMH, and 800 CMH, respectively. The difference of the static pressure at impeller inlet and outlet are 120 Pa, 214 Pa, 242 Pa, and 60 Pa according to respective pitch angles. It means that the 59° of the impeller pitch angle is optimal to improve the airflow rate and the static pressure.Keywords: Axial turbo fan, Impeller, Blade, Pitch angle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26951578 Study of Unsteady Behaviour of Dynamic Shock Systems in Supersonic Engine Intakes
Authors: Siddharth Ahuja, T. M. Muruganandam
Abstract:
An analytical investigation is performed to study the unsteady response of a one-dimensional, non-linear dynamic shock system to external downstream pressure perturbations in a supersonic flow in a varying area duct. For a given pressure ratio across a wind tunnel, the normal shock's location can be computed as per one-dimensional steady gas dynamics. Similarly, for some other pressure ratio, the location of the normal shock will change accordingly, again computed using one-dimensional gas dynamics. This investigation focuses on the small-time interval between the first steady shock location and the new steady shock location (corresponding to different pressure ratios). In essence, this study aims to shed light on the motion of the shock from one steady location to another steady location. Further, this study aims to create the foundation of the Unsteady Gas Dynamics field enabling further insight in future research work. According to the new pressure ratio, a pressure pulse, generated at the exit of the tunnel which travels and perturbs the shock from its original position, setting it into motion. During such activity, other numerous physical phenomena also happen at the same time. However, three broad phenomena have been focused on, in this study - Traversal of a Wave, Fluid Element Interactions and Wave Interactions. The above mentioned three phenomena create, alter and kill numerous waves for different conditions. The waves which are created by the above-mentioned phenomena eventually interact with the shock and set it into motion. Numerous such interactions with the shock will slowly make it settle into its final position owing to the new pressure ratio across the duct, as estimated by one-dimensional gas dynamics. This analysis will be extremely helpful in the prediction of inlet 'unstart' of the flow in a supersonic engine intake and its prominence with the incoming flow Mach number, incoming flow pressure and the external perturbation pressure is also studied to help design more efficient supersonic intakes for engines like ramjets and scramjets.
Keywords: Analytical investigation, compression and expansion waves, fluid element interactions, shock trajectory, supersonic flow, unsteady gas dynamics, varying area duct, wave interactions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8821577 Simulation of Concrete Wall Subjected to Airblast by Developing an Elastoplastic Spring Model in Modelica Modelling Language
Authors: Leo Laine, Morgan Johansson
Abstract:
To meet the civilizations future needs for safe living and low environmental footprint, the engineers designing the complex systems of tomorrow will need efficient ways to model and optimize these systems for their intended purpose. For example, a civil defence shelter and its subsystem components needs to withstand, e.g. airblast and ground shock from decided design level explosion which detonates with a certain distance from the structure. In addition, the complex civil defence shelter needs to have functioning air filter systems to protect from toxic gases and provide clean air, clean water, heat, and electricity needs to also be available through shock and vibration safe fixtures and connections. Similar complex building systems can be found in any concentrated living or office area. In this paper, the authors use a multidomain modelling language called Modelica to model a concrete wall as a single degree of freedom (SDOF) system with elastoplastic properties with the implemented option of plastic hardening. The elastoplastic model was developed and implemented in the open source tool OpenModelica. The simulation model was tested on the case with a transient equivalent reflected pressure time history representing an airblast from 100 kg TNT detonating 15 meters from the wall. The concrete wall is approximately regarded as a concrete strip of 1.0 m width. This load represents a realistic threat on any building in a city like area. The OpenModelica model results were compared with an Excel implementation of a SDOF model with an elastic-plastic spring using simple fixed timestep central difference solver. The structural displacement results agreed very well with each other when it comes to plastic displacement magnitude, elastic oscillation displacement, and response times.
Keywords: Airblast from explosives, elastoplastic spring model, Modelica modelling language, SDOF, structural response of concrete structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9081576 Traction Behavior of Linear Piezo-Viscous Lubricants in Rough Elastohydrodynamic Lubrication Contacts
Authors: Punit Kumar, Niraj Kumar
Abstract:
The traction behavior of lubricants with the linear pressure-viscosity response in EHL line contacts is investigated numerically for smooth as well as rough surfaces. The analysis involves the simultaneous solution of Reynolds, elasticity and energy equations along with the computation of lubricant properties and surface temperatures. The temperature modified Doolittle-Tait equations are used to calculate viscosity and density as functions of fluid pressure and temperature, while Carreau model is used to describe the lubricant rheology. The surface roughness is assumed to be sinusoidal and it is present on the nearly stationary surface in near-pure sliding EHL conjunction. The linear P-V oil is found to yield much lower traction coefficients and slightly thicker EHL films as compared to the synthetic oil for a given set of dimensionless speed and load parameters. Besides, the increase in traction coefficient attributed to surface roughness is much lower for the former case. The present analysis emphasizes the importance of employing realistic pressure-viscosity response for accurate prediction of EHL traction.Keywords: EHL, linear pressure-viscosity, surface roughness, traction, water/glycol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12591575 Thermodynamic Equilibrium of Nitrogen Species Discharge: Comparison with Global Model
Authors: Saktioto, F.D Ismail, P.P. Yupapin, J. Ali
Abstract:
The equilibrium process of plasma nitrogen species by chemical kinetic reactions along various pressures is successfully investigated. The equilibrium process is required in industrial application to obtain the stable condition when heating up the material for having homogenous reaction. Nitrogen species densities is modeled by a continuity equation and extended Arrhenius form. These equations are used to integrate the change of density over the time. The integration is to acquire density and the reaction rate of each reaction where temperature and time dependence are imposed. A comparison is made with global model within pressure range of 1- 100mTorr and the temperature of electron is set to be higher than other nitrogen species. The results shows that the chemical kinetic model only agrees for high pressure because of no power imposed; while the global model considers the external power along the pressure range then the electron and nitrogen species give highly quantity densities by factor of 3 to 5.Keywords: chemical kinetic model, Arrhenius equation, nitrogen plasma, low pressure discharge
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17351574 Effects of Pipe Curvature and Internal Pressure on Stiffness and Buckling Phenomenon of Circular Thin-Walled Pipes
Authors: V. Polenta, S. D. Garvey, D. Chronopoulos, A. C. Long, H. P. Morvan
Abstract:
A parametric study on circular thin-walled pipes subjected to pure bending is performed. Both straight and curved pipes are considered. Ratio D/t, initial pipe curvature and internal pressure are the parameters varying in the analyses. The study is mainly FEA-based. It is found that negative curvatures (opposite to bending moment) considerably increase stiffness and buckling limit of the pipe when no internal pressure is acting and, similarly, positive curvatures decrease the stiffness and buckling limit. For internal pressurised pipes the effects of initial pipe curvature are less relevant. Results show that this phenomenon is in relationship with the cross-section deformation due to bending moment, which undergoes relevant ovalisation for no pressurised pipes and little ovalisation for pressurised pipes.
Keywords: Buckling, curved pipes, internal pressure, ovalisation, pure bending, thin-walled pipes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43271573 A Second Law Assessment of Organic Rankine Cycle Depending on Source Temperature
Authors: Kyoung Hoon Kim
Abstract:
Organic Rankine Cycle (ORC) has potential in reducing fossil fuels and relaxing environmental problems. In this work performance analysis of ORC is conducted based on the second law of thermodynamics for recovery of low temperature heat source from 100oC to 140oC using R134a as the working fluid. Effects of system parameters such as turbine inlet pressure or source temperature are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as net work production or exergy efficiency. Results show that the net work or exergy efficiency has a peak with respect to the turbine inlet pressure when the source temperature is low, however, increases monotonically with increasing turbine inlet pressure when the source temperature is high.
Keywords: Organic Rankine cycle (ORC), low temperature heat source, exergy, source temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18801572 Consolidation of Al-2024 Powder by Conventional P/M Route and ECAP – A Comparative Study
Authors: Nishtha Gupta , S.Ramesh Kumar , B.Ravisankar, S.Kumaran
Abstract:
In this study, mechanically alloyed Al 2024 powder is densified by conventional sintering and by equal channel angular pressing (ECAP) with and without back pressure. The powder was encapsulated in an aluminium can for consolidation through ECAP. The properties obtained in the compacts by conventional sintering route and by ECAP are compared. The effect of conventional sintering and ECAP on consolidation behaviour of powder, microstructure, density and hardness is discussed. Room temperature back pressure aided ECAP results in nearly full denser (97% of its theoretical density) compact at room temperature. NanoIndentation technique was used to determine the modulus of the consolidated compacts.Keywords: Al-2024, Back Pressure, ECAP, Nanoindentation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25171571 Research on Pressed Pile Test and Finite Element Analysis of Large-diameter Steel Pipe Pile of Zhanjiang Port
Authors: Ran Zhao, Zhi-liang Dong, You-yuan Wang, Lin-wang Su
Abstract:
In order to study pressed pile test and ultimate bearing capacity character of large-diameter steel pipe pile, based on two high-piled wharfs of Zhanjiang Port, pressed pile test and numerical simulation of three large-diameter steel pipe piles are analyzed in this paper. Anchored pile method is used to pressed pile test, and the curves of Q-s and ultimate bearing capacity are attained. Then the three piles are numerically simulated by ABAQUS, and results of numerical simulation and those of field test are comparatively analyzed. The results show that settlement value of numerical simulation is larger than that of field test in the process of loading, the difference value is widening with the increasing of load, and the ultimate difference value of settlement is 20% to 30%.Keywords: Large-diameter steel pipe pile, field test, finite element analysis, comparative analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19961570 Spatial Objects Shaping with High-Pressure Abrasive Water Jet Controlled By Virtual Image Luminance
Authors: P. J. Borkowski, J. A. Borkowski
Abstract:
The paper presents a novel method for the 3D shaping of different materials using a high-pressure abrasive water jet and a flat target image. For steering movement process of the jet a principle similar to raster image way of record and readout was used. However, respective colors of pixel of such a bitmap are connected with adequate jet feed rate that causes erosion of material with adequate depth. Thanks to that innovation, one can observe spatial imaging of the object. Theoretical basis as well as spatial model of material shaping and experimental stand including steering program are presented in. There are also presented methodic and some experimental erosion results as well as practical example of object-s bas-relief made of metal.Keywords: High-pressure, abrasive, water jet, material shaping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14261569 Arduino Pressure Sensor Cushion for Tracking and Improving Sitting Posture
Authors: Andrew Hwang
Abstract:
The average American worker sits for thirteen hours a day, often with poor posture and infrequent breaks, which can lead to health issues and back problems. The Smart Cushion was created to alert individuals of their poor postures, and may potentially alleviate back problems and correct poor posture. The Smart Cushion is a portable, rectangular, foam cushion, with five strategically placed pressure sensors, that utilizes an Arduino Uno circuit board and specifically designed software, allowing it to collect data from the five pressure sensors and store the data on an SD card. The data is then compiled into graphs and compared to controlled postures. Before volunteers sat on the cushion, their levels of back pain were recorded on a scale from 1-10. Data was recorded for an hour during sitting, and then a new, corrected posture was suggested. After using the suggested posture for an hour, the volunteers described their level of discomfort on a scale from 1-10. Different patterns of sitting postures were generated that were able to serve as early warnings of potential back problems. By using the Smart Cushion, the areas where different volunteers were applying the most pressure while sitting could be identified, and the sitting postures could be corrected. Further studies regarding the relationships between posture and specific regions of the body are necessary to better understand the origins of back pain; however, the Smart Cushion is sufficient for correcting sitting posture and preventing the development of additional back pain.
Keywords: Arduino Sketch Algorithm, biomedical technology, pressure sensors, Smart Cushion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12981568 Investigation of Pre-Treatment Parameters of Rye and Triticale for Bioethanol Production
Authors: Algirdas Jasinskas, Egidijus Šarauskis, Raimondas Šarauskis, Antanas Sakalauskas
Abstract:
This paper presents the new results of energy plant – rye and triticale at yellow ripeness and ripe, pre-treatment in high pressure steam reactor and monosaccharide extraction. There were investigated the influence of steam pressure (20 to 22 bar), retention duration (180 to 240 s) and catalytic sulphuric acid concentration strength (0 to 0.5 %) on the pre-treatment process, contents of monosaccharides (glucose, arabinose, xylose, mannose) and undesirable by-compounds (furfural and HMF) in the reactor. The study has determined that the largest amount of monosaccharides (37.2 % of glucose, 2.7 % of arabinose, 8.4 % of xylose, and 1.3 % of mannose) was received in the rye at ripe, the samples of which were mixed with 0.5 % concentration of catalytic sulphuric acid, and hydrolysed in the reactor, where the pressure was 20 bar, whereas the reaction time – 240 s.Keywords: Bioethanol, Pre-treatment, Rye, Triticale.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14221567 The Pressure Losses in the Model of Human Lungs
Authors: Michaela Chovancova, Pavel Niedoba
Abstract:
For the treatment of acute and chronic lung diseases it is preferred to deliver medicaments by inhalation. The drug is delivered directly to tracheobronchial tree. This way allows the given medicament to get directly into the place of action and it makes rapid onset of action and maximum efficiency. The transport of aerosol particles in the particular part of the lung is influenced by their size, anatomy of the lungs, breathing pattern and airway resistance. This article deals with calculation of airway resistance in the lung model of Horsfield. It solves the problem of determination of the pressure losses in bifurcation and thus defines the pressure drop at a given location in the bronchial tree. The obtained data will be used as boundary conditions for transport of aerosol particles in a central part of bronchial tree realized by Computational Fluid Dynamics (CFD) approach. The results obtained from CFD simulation will allow us to provide information on the required particle size and optimal inhalation technique for particle transport into particular part of the lung.
Keywords: Human lungs, bronchial tree, pressure losses, airways resistance, flow, breathing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25591566 Experimental and Numerical Studies of Drag Reduction on a Circular Cylinder
Authors: A.O. Ladjedel, B.T.Yahiaoui, C.L.Adjlout, D.O.Imine
Abstract:
In the present paper; an experimental and numerical investigations of drag reduction on a grooved circular cylinder have been performed. The experiments were carried out in closed circuit subsonic wind tunnel (TE44); the pressure distribution on the cylinder was conducted using a TE44DPS differential pressure scanner and the drag forces were measured using the TE81 balance. The display unit is linked to a computer, loaded with DATASLIM software for data analysis and logging of result. The numerical study was performed using the code ANSYS FLUENT solving the Reynolds Averaged Navier-Stokes (RANS) equations. The k-ε and k- ω SST models were tested. The results obtained from the experimental and numerical investigations have showed a reduction in the drag when using longitudinal grooves namely 2 and 6 on the cylinder.Keywords: Circular cylinder, Drag, grooves, pressure distribution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28241565 Natural Gas Sweetening by Wetted-Wire Column
Authors: Sarah Taheri, Shahram Ghanbari Pakdehi, Arash Rezaei
Abstract:
Natural gas usually includes H2S component which is very toxic, hazardous and corrosive to environment, human being and process equipments, respectively. Therefore, sweetening of the gas (separation of H2S) is inevitable. To achieve this purpose, using packed-bed columns with liquid absorbents such as MEA or DEA is very common. Due to some problems of usual packed columns especially high pressure drop of gas phase, a novel kind of them called wetted-wire column (WWC) has been invented. The column decreases the pressure drop significantly and improves the absorption efficiency. The packings are very thin rods (like wire) and as long as column. The column has 100 wires with a triangular arrangement and counter current flows of gas and liquid phases. The observation showed that at the same conditions, the absorption performance was quite comparable to conventional packed-bed towers and a very low pressure drop.Keywords: H2S, Natural gas, separation, wetted-wire column (WWC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20061564 Instability of Ties in Compression
Authors: T. Cornelius
Abstract:
Masonry cavity walls are loaded by wind pressure and vertical load from upper floors. These loads results in bending moments and compression forces in the ties connecting the outer and the inner wall in a cavity wall. Large cavity walls are furthermore loaded by differential movements from the temperature gradient between the outer and the inner wall, which results in critical increase of the bending moments in the ties. Since the ties are loaded by combined compression and moment forces, the loadbearing capacity is derived from instability equilibrium equations. Most of them are iterative, since exact instability solutions are complex to derive, not to mention the extra complexity introducing dimensional instability from the temperature gradients. Using an inverse variable substitution and comparing an exact theory with an analytical instability solution a method to design tie-connectors in cavity walls was developed. The method takes into account constraint conditions limiting the free length of the wall tie, and the instability in case of pure compression which gives an optimal load bearing capacity. The model is illustrated with examples from praxis.
Keywords: Masonry, tie connectors, cavity wall, instability, differential movements, combined bending and compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16971563 Research and Design on a Portable Intravehicular Ultrasonic Leak Detector for Manned Spacecraft
Authors: Yan Rongxin, Sun Wei, Li Weidan
Abstract:
Based on the acoustics cascade sound theory, the mechanism of air leak sound producing, transmitting and signal detecting has been analyzed. A formula of the sound power, leak size and air pressure in the spacecraft has been built, and the relationship between leak sound pressure and receiving direction and distance has been studied. The center frequency in millimeter diameter leak is more than 20 kHz. The situation of air leaking from spacecraft to space has been simulated and an experiment of different leak size and testing distance and direction has been done. The sound pressure is in direct proportion to the cosine of the angle of leak to sensor. The portable ultrasonic leak detector has been developed, whose minimal leak rate is 10-1 Pa·m3/s, the testing radius is longer than 20 mm, the mass is less than 1.0 kg, and the electric power is less than 2.2 W.
Keywords: Leak detection, manned spacecraft, ultrasonic, sound transmitting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9641562 Rolling Element Bearing Diagnosis by Improved Envelope Spectrum: Optimal Frequency Band Selection
Authors: Juan David Arango, Alejandro Restrepo-Martinez
Abstract:
The Rolling Element Bearing (REB) vibration diagnosis is worth of special interest by the variety of REB and the wide necessity of those elements in industrial applications. The presence of a localized fault in a REB gives rise to a vibrational response, characterized by the modulation of a carrier signal. Frequency content of carrier signal (Spectral Frequency –f) is mainly related to resonance frequencies of the REB. This carrier signal is modulated by another signal, governed by the periodicity of the fault impact (Cyclic Frequency –α). In this sense, REB fault vibration response gives rise to a second-order cyclostationary signal. Second order cyclostationary signals could be represented in a bi-spectral map, where Spectral Coherence –SCoh are plotted against f and α. The Improved Envelope Spectrum –IES, is a useful approach to execute REB fault diagnosis. IES could be applied by the integration of SCoh over a predefined bandwidth on the f axis. Approaches to select f-bandwidth have been recently exposed by the definition of a metric which intends to evaluate the magnitude of the IES at the fault characteristics frequencies. This metric is represented in a 1/3-binary tree as a function of the frequency bandwidth and centre. Based on this binary tree the optimal frequency band is selected. However, some advantages have been seen if the metric is changed, which in fact tends to dictate different optimal f-bandwidth and so improve the IES representation. This paper evaluates the behaviour of the IES from a different metric optimization. This metric is based on the sample correlation coefficient, detecting high peaks in the selected frequencies while penalizing high peaks in the neighbours of the selected frequencies. Prior results indicate an improvement on the signal-noise ratio (SNR) on around 86% of samples analysed, which belong to IMS database.
Keywords: Sample Correlation IESFOgram, cyclostationary analysis, improved envelope spectrum, IES, rolling element bearing diagnosis, spectral coherence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7421561 Stress Solitary Waves Generated by a Second-Order Polynomial Constitutive Equation
Authors: Tsun-Hui Huang, Shyue-Cheng Yang, Chiou-Fen Shieh
Abstract:
In this paper, a nonlinear constitutive law and a curve fitting, two relationships between the stress-strain and the shear stress-strain for sandstone material were used to obtain a second-order polynomial constitutive equation. Based on the established polynomial constitutive equations and Newton’s second law, a mathematical model of the non-homogeneous nonlinear wave equation under an external pressure was derived. The external pressure can be assumed as an impulse function to simulate a real earthquake source. A displacement response under nonlinear two-dimensional wave equation was determined by a numerical method and computer-aided software. The results show that a suit pressure in the sandstone generates the phenomenon of stress solitary waves.
Keywords: Polynomial constitutive equation, solitary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16661560 Synthesis of Temperature Sensitive Nano/Microgels by Soap-Free Emulsion Polymerization and Their Application in Hydrate Sediments Drilling Operations
Authors: Xuan Li, Weian Huang, Jinsheng Sun, Fuhao Zhao, Zhiyuan Wang, Jintang Wang
Abstract:
Natural gas hydrates (NGHs) as promising alternative energy sources have gained increasing attention. Hydrate-bearing formation in marine areas is highly unconsolidated formation and is fragile, which is composed of weakly cemented sand-clay and silty sediments. During the drilling process, the invasion of drilling fluid can easily lead to excessive water content in the formation. It will change the soil liquid plastic limit index, which significantly affects the formation quality, leading to wellbore instability due to the metastable character of hydrate-bearing sediments. Therefore, controlling the filtrate loss into the formation in the drilling process has to be highly regarded for protecting the stability of the wellbore. In this study, the temperature-sensitive nanogel of P(NIPAM-co-AMPS-co-tBA) was prepared by soap-free emulsion polymerization, and the temperature-sensitive behavior was employed to achieve self-adaptive plugging in hydrate sediments. First, the effects of additional amounts of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), tert-butyl acrylate (tBA), and methylene-bis-acrylamide (MBA) on the microgel synthesis process and temperature-sensitive behaviors were investigated. Results showed that, as a reactive emulsifier, AMPS can not only participate in the polymerization reaction but also act as an emulsifier to stabilize micelles and enhance the stability of nanoparticles. The volume phase transition temperature (VPTT) of nanogels gradually decreased with the increase of the contents of hydrophobic monomer tBA. An increase in the content of the cross-linking agent MBA can lead to a rise in the coagulum content and instability of the emulsion. The plugging performance of nanogel was evaluated in a core sample with a pore size distribution range of 100-1000 nm. The temperature-sensitive nanogel can effectively improve the microfiltration performance of drilling fluid. Since a combination of a series of nanogels could have a wide particle size distribution at any temperature, around 200 nm to 800 nm, the self-adaptive plugging capacity of nanogels for the hydrate sediments was revealed. Thermosensitive nanogel is a potential intelligent plugging material for drilling operations in NGH-bearing sediments.
Keywords: Temperature-sensitive nanogel, NIPAM, self-adaptive plugging performance, drilling operations, hydrate-bearing sediments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311559 Powering Pacemakers from Heart Pressure Variation with Piezoelectric Energy Harvesters
Authors: A. Mathieu, B. Aubry, E. Chhim, M. Jobe, M. Arnaud
Abstract:
Present project consists in a study and a development of piezoelectric devices for supplying power to new generation pacemakers. They are miniaturized leadless implants without battery placed directly in right ventricle. Amongst different acceptable energy sources in cardiac environment, we choose the solution of a device based on conversion of the energy produced by pressure variation inside the heart into electrical energy. The proposed energy harvesters can meet the power requirements of pacemakers, and can be a good solution to solve the problem of regular surgical operation. With further development, proposed device should provide enough energy to allow pacemakers autonomy, and could be good candidate for next pacemaker generation.Keywords: Energy harvester, heart, leadless pacemaker, piezoelectric cells, pressure variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14361558 Evaluation of Urban Development Proposals An ANP Approach
Authors: T. Gómez-Navarro, M. García-Melón, D. Díaz-Martín, S. Acuna-Dutra,
Abstract:
In this paper a new approach to prioritize urban planning projects in an efficient and reliable way is presented. It is based on environmental pressure indices and multicriteria decision methods. The paper introduces a rigorous method with acceptable complexity of rank ordering urban development proposals according to their environmental pressure. The technique combines the use of Environmental Pressure Indicators, the aggregation of indicators in an Environmental Pressure Index by means of the Analytic Network Process method and interpreting the information obtained from the experts during the decision-making process. The ANP method allows the aggregation of the experts- judgments on each of the indicators into one Environmental Pressure Index. In addition, ANP is based on utility ratio functions which are the most appropriate for the analysis of uncertain data, like experts- estimations. Finally, unlike the other multicriteria techniques, ANP allows the decision problem to be modelled using the relationships among dependent criteria. The method has been applied to the proposal for urban development of La Carlota airport in Caracas (Venezuela). The Venezuelan Government would like to see a recreational project develop on the abandoned area and mean a significant improvement for the capital. There are currently three options on their table which are currently under evaluation. They include a Health Club, a Residential area and a Theme Park. The participating experts coincided in the appreciation that the method proposed in this paper is useful and an improvement from traditional techniques such as environmental impact studies, lifecycle analysis, etc. They find the results obtained coherent, the process seems sufficiently rigorous and precise, and the use of resources is significantly less than in other methods.
Keywords: Environmental pressure indicators, multicriteria decision analysis, analytic network process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18031557 Effect of Twelve Weeks Brisk Walking on Blood Pressure, Body Mass Index, and Anthropometric Circumference of Obese Males
Authors: Kaukab Azeem
Abstract:
Introduction: Obesity is a major health risk issue in the present day of life for one and all globally. Obesity is one of the major concerns for public health according to recent increasing trends in obesity-related diseases such as Type 2 diabetes. ( Kazuya, 1994).and hyperlipidemia, (Sakata,1990) .which are more prevalent in Japanese adults with body mass index (BMI) values Z25 kg/m2.( Japanese Ministry of Health and Welfare,1997). The purpose of the study was to assess the effect of twelve weeks of brisk walking on blood pressure and body mass index, anthropometric measurements of obese males. Method: Thirty obese (BMI= above 30) males, aged 18 to 22 years, were selected from King Fahd University of Petroleum & Minerals, Saudi Arabia. The subject-s height (cm) was measured using a stadiometer and body mass (kg) was measured with a electronic weighing machine. BMI was subsequently calculated (kg/m2). The blood pressure was measured with standardized sphygmomanometer in mm of Hg. All the measurements were taken twice before and twice after the experimental period. The pre and post anthropometric measurements of waist and hip circumference were measured with the steel tape in cm. The subjects underwent walking schedule two times in a week for 12 weeks. The 45 minute sessions of brisk walking were undertaken at an average intensity of 65% to 85% of maximum HR (HRmax; calculated as 220-age). Results & Discussion: Statistical findings revealed significant changes from pre test to post test in case of both systolic blood pressure and diastolic blood pressure in the walking group. Results also showed significant decrease in their body mass index and anthropometric measurements i.e. (waist & hip circumference). Conclusion: It was concluded that twelve weeks brisk walking is beneficial for lowering of blood pressure, body mass index, and anthropometric circumference of obese males.Keywords: Anthropometric, Blood pressure, Body mass index
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30741556 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%-40% compared to a traditional RL model.
Keywords: Control system, hydroponics, machine learning, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 208