Search results for: likelihood estimation method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8755

Search results for: likelihood estimation method

8455 Performance of Hybrid-MIMO Receiver Scheme in Cognitive Radio Network

Authors: Tanapong Khomyat, Peerapong Uthansakul, Monthippa Uthansakul

Abstract:

In this paper, we evaluate the performance of the Hybrid-MIMO Receiver Scheme (HMRS) in Cognitive Radio network (CR-network). We investigate the efficiency of the proposed scheme which the energy level and user number of primary user are varied according to the characteristic of CR-network. HMRS can allow users to transmit either Space-Time Block Code (STBC) or Spatial-Multiplexing (SM) streams simultaneously by using Successive Interference Cancellation (SIC) and Maximum Likelihood Detection (MLD). From simulation, the results indicate that the interference level effects to the performance of HMRS. Moreover, the exact closed-form capacity of the proposed scheme is derived and compared with STBC scheme.

Keywords: Hybrid-MIMO, Cognitive radio network (CRnetwork), Symbol Error Rate (SER), Successive interference cancellation (SIC), Maximum likelihood detection (MLD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
8454 Detection and Pose Estimation of People in Images

Authors: Mousa Mojarrad, Amir Masoud Rahmani, Mehrab Mohebi

Abstract:

Detection, feature extraction and pose estimation of people in images and video is made challenging by the variability of human appearance, the complexity of natural scenes and the high dimensionality of articulated body models and also the important field in Image, Signal and Vision Computing in recent years. In this paper, four types of people in 2D dimension image will be tested and proposed. The system will extract the size and the advantage of them (such as: tall fat, short fat, tall thin and short thin) from image. Fat and thin, according to their result from the human body that has been extract from image, will be obtained. Also the system extract every size of human body such as length, width and shown them in output.

Keywords: Analysis of Image Processing, Canny Edge Detection, Human Body Recognition, Measurement, Pose Estimation, 2D Human Dimension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2300
8453 Random Access in IoT Using Naïve Bayes Classification

Authors: Alhusein Almahjoub, Dongyu Qiu

Abstract:

This paper deals with the random access procedure in next-generation networks and presents the solution to reduce total service time (TST) which is one of the most important performance metrics in current and future internet of things (IoT) based networks. The proposed solution focuses on the calculation of optimal transmission probability which maximizes the success probability and reduces TST. It uses the information of several idle preambles in every time slot, and based on it, it estimates the number of backlogged IoT devices using Naïve Bayes estimation which is a type of supervised learning in the machine learning domain. The estimation of backlogged devices is necessary since optimal transmission probability depends on it and the eNodeB does not have information about it. The simulations are carried out in MATLAB which verify that the proposed solution gives excellent performance.

Keywords: Random access, LTE/LTE-A, 5G, machine learning, Naïve Bayes estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 452
8452 Real Time Video Based Smoke Detection Using Double Optical Flow Estimation

Authors: Anton Stadler, Thorsten Ike

Abstract:

In this paper, we present a video based smoke detection algorithm based on TVL1 optical flow estimation. The main part of the algorithm is an accumulating system for motion angles and upward motion speed of the flow field. We optimized the usage of TVL1 flow estimation for the detection of smoke with very low smoke density. Therefore, we use adapted flow parameters and estimate the flow field on difference images. We show in theory and in evaluation that this improves the performance of smoke detection significantly. We evaluate the smoke algorithm using videos with different smoke densities and different backgrounds. We show that smoke detection is very reliable in varying scenarios. Further we verify that our algorithm is very robust towards crowded scenes disturbance videos.

Keywords: Low density, optical flow, upward smoke motion, video based smoke detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
8451 Analysis of a TBM Tunneling Effect on Surface Subsidence: A Case Study from Tehran, Iran

Authors: A. R. Salimi, M. Esmaeili, B. Salehi

Abstract:

The development and extension of large cities induced a need for shallow tunnel in soft ground of building areas. Estimation of ground settlement caused by the tunnel excavation is important engineering point. In this paper, prediction of surface subsidence caused by tunneling in one section of seventh line of Tehran subway is considered. On the basis of studied geotechnical conditions of the region, tunnel with the length of 26.9km has been excavated applying a mechanized method using an EPB-TBM with a diameter of 9.14m. In this regard, settlement is estimated utilizing both analytical and numerical finite element method. The numerical method shows that the value of settlement in this section is 5cm. Besides, the analytical consequences (Bobet and Loganathan-Polous) are 5.29 and 12.36cm, respectively. According to results of this study, due tosaturation of this section, there are good agreement between Bobet and numerical methods. Therefore, tunneling processes in this section needs a special consolidation measurement and support system before the passage of tunnel boring machine.

Keywords: TBM, Subsidence, Numerical Method, Analytical Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5411
8450 Trial Development the Evaluation Method of Quantification the Feeling of Preventing Visibility by Front A Pillar

Authors: T. Arakawa, H. Sato

Abstract:

There are many drivers who feel right A pillar of Japanese right-hand-drive car preventing visibility on turning right or left at intersection. On the other hand, there is a report that almost pedestrian accident is caused by the delay of finding pedestrian by drivers and this is found by drivers’ eye movement. Thus, we developed the evaluation method of quantification using drivers’ eye movement data by least squares estimation and we applied this method to commercial vehicle and evaluation the visibility. It is suggested that visibility of vehicle can be quantified and estimated by linear model obtained from experimental eye fixation data and information of vehicle dimensions.

Keywords: Eye fixation, modeling, obstacle feeling, right A pillar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
8449 A Modified Spiral Search Algorithm and Its Embedded System Architecture Design

Authors: Nikolaos Kroupis, Minas Dasygenis, Dimitrios Soudris, Antonios Thanailakis

Abstract:

One of the most growing areas in the embedded community is multimedia devices. Multimedia devices incorporate a number of complicated functions for their operation, like motion estimation. A multitude of different implementations have been proposed to reduce motion estimation complexity, such as spiral search. We have studied the implementations of spiral search and identified areas of improvement. We propose a modified spiral search algorithm, with lower computational complexity compared to the original spiral search. We have implemented our algorithm on an embedded ARM based architecture, with custom memory hierarchy. The resulting system yields energy consumption reduction up to 64% and performance increase up to 77%, with a small penalty of 2.3 dB, in average, of video quality compared with the original spiral search algorithm.

Keywords: Spiral Search, Motion Estimation, Embedded Systems, Low Power

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774
8448 New Corneal Reflection Removal Method Used In Iris Recognition System

Authors: Walid Aydi, Nouri Masmoudi, Lotfi Kamoun

Abstract:

Images of human iris contain specular highlights due to the reflective properties of the cornea. This corneal reflection causes many errors not only in iris and pupil center estimation but also to locate iris and pupil boundaries especially for methods that use active contour. Each iris recognition system has four steps: Segmentation, Normalization, Encoding and Matching. In order to address the corneal reflection, a novel reflection removal method is proposed in this paper. Comparative experiments of two existing methods for reflection removal method are evaluated on CASIA iris image databases V3. The experimental results reveal that the proposed algorithm provides higher performance in reflection removal.

Keywords: iris, pupil, specular highlights, reflection removal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3208
8447 Target Signal Detection Using MUSIC Spectrum in Noise Environment

Authors: Sangjun Park, Sangbae Jeong, Moonsung Han, Minsoo hahn

Abstract:

In this paper, a target signal detection method using multiple signal classification (MUSIC) algorithm is proposed. The MUSIC algorithm is a subspace-based direction of arrival (DOA) estimation method. The algorithm detects the DOAs of multiple sources using the inverse of the eigenvalue-weighted eigen spectra. To apply the algorithm to target signal detection for GSC-based beamforming, we utilize its spectral response for the target DOA in noisy conditions. For evaluation of the algorithm, the performance of the proposed target signal detection method is compared with that of the normalized cross-correlation (NCC), the fixed beamforming, and the power ratio method. Experimental results show that the proposed algorithm significantly outperforms the conventional ones in receiver operating characteristics(ROC) curves.

Keywords: Beamforming, direction of arrival, multiple signal classification, target signal detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2542
8446 Motion Estimator Architecture with Optimized Number of Processing Elements for High Efficiency Video Coding

Authors: Seongsoo Lee

Abstract:

Motion estimation occupies the heaviest computation in HEVC (high efficiency video coding). Many fast algorithms such as TZS (test zone search) have been proposed to reduce the computation. Still the huge computation of the motion estimation is a critical issue in the implementation of HEVC video codec. In this paper, motion estimator architecture with optimized number of PEs (processing element) is presented by exploiting early termination. It also reduces hardware size by exploiting parallel processing. The presented motion estimator architecture has 8 PEs, and it can efficiently perform TZS with very high utilization of PEs.

Keywords: Motion estimation, test zone search, high efficiency video coding, processing element, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
8445 Performance Optimization of Data Mining Application Using Radial Basis Function Classifier

Authors: M. Govindarajan, R. M.Chandrasekaran

Abstract:

Text data mining is a process of exploratory data analysis. Classification maps data into predefined groups or classes. It is often referred to as supervised learning because the classes are determined before examining the data. This paper describes proposed radial basis function Classifier that performs comparative crossvalidation for existing radial basis function Classifier. The feasibility and the benefits of the proposed approach are demonstrated by means of data mining problem: direct Marketing. Direct marketing has become an important application field of data mining. Comparative Cross-validation involves estimation of accuracy by either stratified k-fold cross-validation or equivalent repeated random subsampling. While the proposed method may have high bias; its performance (accuracy estimation in our case) may be poor due to high variance. Thus the accuracy with proposed radial basis function Classifier was less than with the existing radial basis function Classifier. However there is smaller the improvement in runtime and larger improvement in precision and recall. In the proposed method Classification accuracy and prediction accuracy are determined where the prediction accuracy is comparatively high.

Keywords: Text Data Mining, Comparative Cross-validation, Radial Basis Function, runtime, accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
8444 Further Thoughtson a Sequential Life Testing Approach Using an Inverse Weibull Model

Authors: D. I. De Souza, G. P. Azevedo, D. R. Fonseca

Abstract:

In this paper we will develop further the sequential life test approach presented in a previous article by [1] using an underlying two parameter Inverse Weibull sampling distribution. The location parameter or minimum life will be considered equal to zero. Once again we will provide rules for making one of the three possible decisions as each observation becomes available; that is: accept the null hypothesis H0; reject the null hypothesis H0; or obtain additional information by making another observation. The product being analyzed is a new electronic component. There is little information available about the possible values the parameters of the corresponding Inverse Weibull underlying sampling distribution could have.To estimate the shape and the scale parameters of the underlying Inverse Weibull model we will use a maximum likelihood approach for censored failure data. A new example will further develop the proposed sequential life testing approach.

Keywords: Sequential Life Testing, Inverse Weibull Model, Maximum Likelihood Approach, Hypothesis Testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
8443 Robust Fuzzy Observer Design for Nonlinear Systems

Authors: Michal Polanský, C. Ardil

Abstract:

This paper shows a new method for design of fuzzy observers for Takagi-Sugeno systems. The method is based on Linear matrix inequalities (LMIs) and it allows to insert H constraint into the design procedure. The speed of estimation can tuned be specification of a decay rate of the observer closed loop system. We discuss here also the influence of parametric uncertainties at the output control system stability.

Keywords: H norm, Linear Matrix Inequalities, Observers, Takagi-Sugeno Systems, Parallel Distributed Compensation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541
8442 Estimation of Natural Convection Heat Transfer from Plate-Fin Heat Sinks in a Closed Enclosure

Authors: Han-Taw Chen, Chung-Hou Lai, Tzu-Hsiang Lin, Ge-Jang He

Abstract:

This study applies the inverse method and three- dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a closed rectangular enclosure for various values of fin height. The inverse method with the finite difference method and the experimental temperature data is applied to determine the heat transfer coefficient. The k-ε turbulence model is used to obtain the heat transfer and fluid flow characteristics within the fins. To validate the accuracy of the results obtained, the comparison of the average heat transfer coefficient is made. The calculated temperature at selected measurement locations on the plate-fin is also compared with experimental data.

Keywords: Inverse method, FLUENT, k-ε model, Heat transfer characteristics, Plate-fin heat sink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3838
8441 Human Body Configuration using Bayesian Model

Authors: Rui. Zhang, Yiming. Pi

Abstract:

In this paper we present a novel approach for human Body configuration based on the Silhouette. We propose to address this problem under the Bayesian framework. We use an effective Model based MCMC (Markov Chain Monte Carlo) method to solve the configuration problem, in which the best configuration could be defined as MAP (maximize a posteriori probability) in Bayesian model. This model based MCMC utilizes the human body model to drive the MCMC sampling from the solution space. It converses the original high dimension space into a restricted sub-space constructed by the human model and uses a hybrid sampling algorithm. We choose an explicit human model and carefully select the likelihood functions to represent the best configuration solution. The experiments show that this method could get an accurate configuration and timesaving for different human from multi-views.

Keywords: Bayesian framework, MCMC, model based, human body configuration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318
8440 Application of GM (1, 1) Model Group Based on Recursive Solution in China's Energy Demand Forecasting

Authors: Yeqing Guan, Fen Yang

Abstract:

To learn about China-s future energy demand, this paper first proposed GM(1,1) model group based on recursive solutions of parameters estimation, setting up a general solving-algorithm of the model group. This method avoided the problems occurred on the past researches that remodeling, loss of information and large amount of calculation. This paper established respectively all-data-GM(1,1), metabolic GM(1,1) and new information GM (1,1)model according to the historical data of energy consumption in China in the year 2005-2010 and the added data of 2011, then modeling, simulating and comparison of accuracies we got the optimal models and to predict. Results showed that the total energy demand of China will be 37.2221 billion tons of equivalent coal in 2012 and 39.7973 billion tons of equivalent coal in 2013, which are as the same as the overall planning of energy demand in The 12th Five-Year Plan.

Keywords: energy demands, GM(1, 1) model group, least square estimation, prediction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
8439 Efficient Spectral Analysis of Quasi Stationary Time Series

Authors: Khalid M. Aamir, Mohammad A. Maud

Abstract:

Power Spectral Density (PSD) of quasi-stationary processes can be efficiently estimated using the short time Fourier series (STFT). In this paper, an algorithm has been proposed that computes the PSD of quasi-stationary process efficiently using offline autoregressive model order estimation algorithm, recursive parameter estimation technique and modified sliding window discrete Fourier Transform algorithm. The main difference in this algorithm and STFT is that the sliding window (SW) and window for spectral estimation (WSA) are separately defined. WSA is updated and its PSD is computed only when change in statistics is detected in the SW. The computational complexity of the proposed algorithm is found to be lesser than that for standard STFT technique.

Keywords: Power Spectral Density (PSD), quasi-stationarytime series, short time Fourier Transform, Sliding window DFT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
8438 Formant Tracking Linear Prediction Model using HMMs for Noisy Speech Processing

Authors: Zaineb Ben Messaoud, Dorra Gargouri, Saida Zribi, Ahmed Ben Hamida

Abstract:

This paper presents a formant-tracking linear prediction (FTLP) model for speech processing in noise. The main focus of this work is the detection of formant trajectory based on Hidden Markov Models (HMM), for improved formant estimation in noise. The approach proposed in this paper provides a systematic framework for modelling and utilization of a time- sequence of peaks which satisfies continuity constraints on parameter; the within peaks are modelled by the LP parameters. The formant tracking LP model estimation is composed of three stages: (1) a pre-cleaning multi-band spectral subtraction stage to reduce the effect of residue noise on formants (2) estimation stage where an initial estimate of the LP model of speech for each frame is obtained (3) a formant classification using probability models of formants and Viterbi-decoders. The evaluation results for the estimation of the formant tracking LP model tested in Gaussian white noise background, demonstrate that the proposed combination of the initial noise reduction stage with formant tracking and LPC variable order analysis, results in a significant reduction in errors and distortions. The performance was evaluated with noisy natual vowels extracted from international french and English vocabulary speech signals at SNR value of 10dB. In each case, the estimated formants are compared to reference formants.

Keywords: Formants Estimation, HMM, Multi Band Spectral Subtraction, Variable order LPC coding, White Gauusien Noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
8437 Software Effort Estimation Using Soft Computing Techniques

Authors: Parvinder S. Sandhu, Porush Bassi, Amanpreet Singh Brar

Abstract:

Various models have been derived by studying large number of completed software projects from various organizations and applications to explore how project sizes mapped into project effort. But, still there is a need to prediction accuracy of the models. As Neuro-fuzzy based system is able to approximate the non-linear function with more precision. So, Neuro-Fuzzy system is used as a soft computing approach to generate model by formulating the relationship based on its training. In this paper, Neuro-Fuzzy technique is used for software estimation modeling of on NASA software project data and performance of the developed models are compared with the Halstead, Walston-Felix, Bailey-Basili and Doty Models mentioned in the literature.

Keywords: Effort Estimation, Neural-Fuzzy Model, Halstead Model, Walston-Felix Model, Bailey-Basili Model, Doty Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
8436 Distortion Estimation in Digital Image Watermarking using Genetic Programming

Authors: Labiba Gilani, Asifullah Khan, Anwar M. Mirza

Abstract:

This paper introduces a technique of distortion estimation in image watermarking using Genetic Programming (GP). The distortion is estimated by considering the problem of obtaining a distorted watermarked signal from the original watermarked signal as a function regression problem. This function regression problem is solved using GP, where the original watermarked signal is considered as an independent variable. GP-based distortion estimation scheme is checked for Gaussian attack and Jpeg compression attack. We have used Gaussian attacks of different strengths by changing the standard deviation. JPEG compression attack is also varied by adding various distortions. Experimental results demonstrate that the proposed technique is able to detect the watermark even in the case of strong distortions and is more robust against attacks.

Keywords: Blind Watermarking, Genetic Programming (GP), Fitness Function, Discrete Cosine Transform (DCT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
8435 A Self Adaptive Genetic Based Algorithm for the Identification and Elimination of Bad Data

Authors: A. A. Hossam-Eldin, E. N. Abdallah, M. S. El-Nozahy

Abstract:

The identification and elimination of bad measurements is one of the basic functions of a robust state estimator as bad data have the effect of corrupting the results of state estimation according to the popular weighted least squares method. However this is a difficult problem to handle especially when dealing with multiple errors from the interactive conforming type. In this paper, a self adaptive genetic based algorithm is proposed. The algorithm utilizes the results of the classical linearized normal residuals approach to tune the genetic operators thus instead of making a randomized search throughout the whole search space it is more likely to be a directed search thus the optimum solution is obtained at very early stages(maximum of 5 generations). The algorithm utilizes the accumulating databases of already computed cases to reduce the computational burden to minimum. Tests are conducted with reference to the standard IEEE test systems. Test results are very promising.

Keywords: Bad Data, Genetic Algorithms, Linearized Normal residuals, Observability, Power System State Estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
8434 Prediction of the Thermal Parameters of a High-Temperature Metallurgical Reactor Using Inverse Heat Transfer

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study presents an inverse analysis for predicting the thermal conductivities and the heat flux of a high-temperature metallurgical reactor simultaneously. Once these thermal parameters are predicted, the time-varying thickness of the protective phase-change bank that covers the inside surface of the brick walls of a metallurgical reactor can be calculated. The enthalpy method is used to solve the melting/solidification process of the protective bank. The inverse model rests on the Levenberg-Marquardt Method (LMM) combined with the Broyden method (BM). A statistical analysis for the thermal parameter estimation is carried out. The effect of the position of the temperature sensors, total number of measurements and measurement noise on the accuracy of inverse predictions is investigated. Recommendations are made concerning the location of temperature sensors.

Keywords: Inverse heat transfer, phase change, metallurgical reactor, Levenberg–Marquardt method, Broyden method, bank thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
8433 Networks with Unreliable Nodes and Edges: Monte Carlo Lifetime Estimation

Authors: Y. Shpungin

Abstract:

Estimating the lifetime distribution of computer networks in which nodes and links exist in time and are bound for failure is very useful in various applications. This problem is known to be NP-hard. In this paper we present efficient combinatorial approaches to Monte Carlo estimation of network lifetime distribution. We also present some simulation results.

Keywords: Combinatorial spectrum, Monte Carlo, Networklifetime, Unreliable nodes and edges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
8432 Analysis of Sonographic Images of Breast

Authors: M. Bastanfard, S. Jafari, B.Jalaeian

Abstract:

Ultrasound images are very useful diagnostic tool to distinguish benignant from malignant masses of the breast. However, there is a considerable overlap between benignancy and malignancy in ultrasonic images which makes it difficult to interpret. In this paper, a new noise removal algorithm was used to improve the images and classification process. The masses are classified by wavelet transform's coefficients, morphological and textural features as a novel feature set for this goal. The Bayesian estimation theory is used to classify the tissues in three classes according to their features.

Keywords: Bayesian estimation theory, breast, ultrasound, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
8431 Radar Hydrology: New Z/R Relationships for Klang River Basin Malaysia based on Rainfall Classification

Authors: R. Suzana, T. Wardah, A.B. Sahol Hamid

Abstract:

The use of radar in Quantitative Precipitation Estimation (QPE) for radar-rainfall measurement is significantly beneficial. Radar has advantages in terms of high spatial and temporal condition in rainfall measurement and also forecasting. In Malaysia, radar application in QPE is still new and needs to be explored. This paper focuses on the Z/R derivation works of radarrainfall estimation based on rainfall classification. The works developed new Z/R relationships for Klang River Basin in Selangor area for three different general classes of rain events, namely low (<10mm/hr), moderate (>10mm/hr, <30mm/hr) and heavy (>30mm/hr) and also on more specific rain types during monsoon seasons. Looking at the high potential of Doppler radar in QPE, the newly formulated Z/R equations will be useful in improving the measurement of rainfall for any hydrological application, especially for flood forecasting.

Keywords: Radar, Quantitative Precipitation Estimation, Z/R development, flood forecasting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151
8430 Proteins Length and their Phenotypic Potential

Authors: Tom Snir, Eitan Rubin

Abstract:

Mendelian Disease Genes represent a collection of single points of failure for the various systems they constitute. Such genes have been shown, on average, to encode longer proteins than 'non-disease' proteins. Existing models suggest that this results from the increased likeli-hood of longer genes undergoing mutations. Here, we show that in saturated mutagenesis experiments performed on model organisms, where the likelihood of each gene mutating is one, a similar relationship between length and the probability of a gene being lethal was observed. We thus suggest an extended model demonstrating that the likelihood of a mutated gene to produce a severe phenotype is length-dependent. Using the occurrence of conserved domains, we bring evidence that this dependency results from a correlation between protein length and the number of functions it performs. We propose that protein length thus serves as a proxy for protein cardinality in different networks required for the organism's survival and well-being. We use this example to argue that the collection of Mendelian Disease Genes can, and should, be used to study the rules governing systems vulnerability in living organisms.

Keywords: Systems Biology, Protein Length

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
8429 Effects of Different Meteorological Variables on Reference Evapotranspiration Modeling: Application of Principal Component Analysis

Authors: Akinola Ikudayisi, Josiah Adeyemo

Abstract:

The correct estimation of reference evapotranspiration (ETₒ) is required for effective irrigation water resources planning and management. However, there are some variables that must be considered while estimating and modeling ETₒ. This study therefore determines the multivariate analysis of correlated variables involved in the estimation and modeling of ETₒ at Vaalharts irrigation scheme (VIS) in South Africa using Principal Component Analysis (PCA) technique. Weather and meteorological data between 1994 and 2014 were obtained both from South African Weather Service (SAWS) and Agricultural Research Council (ARC) in South Africa for this study. Average monthly data of minimum and maximum temperature (°C), rainfall (mm), relative humidity (%), and wind speed (m/s) were the inputs to the PCA-based model, while ETₒ is the output. PCA technique was adopted to extract the most important information from the dataset and also to analyze the relationship between the five variables and ETₒ. This is to determine the most significant variables affecting ETₒ estimation at VIS. From the model performances, two principal components with a variance of 82.7% were retained after the eigenvector extraction. The results of the two principal components were compared and the model output shows that minimum temperature, maximum temperature and windspeed are the most important variables in ETₒ estimation and modeling at VIS. In order words, ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity are less important and cannot be used to provide enough information about ETₒ estimation at VIS. The outcome of this study has helped to reduce input variable dimensionality from five to the three most significant variables in ETₒ modelling at VIS, South Africa.

Keywords: Irrigation, principal component analysis, reference evapotranspiration, Vaalharts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1062
8428 Estimation of the Spent Fuel Pool Water Temperature at a Loss-of-Pool-Cooling Accident

Authors: Chan Hee Park, Arim Lee, Jung Min Lee, Joo Hyun Moon

Abstract:

Accident in spent fuel pool (SFP) of Fukushima Daiichi Unit 4 showed the importance of continuous monitoring of the key environmental parameters such as water temperature, water level, and radiation level in the SFP at accident conditions. Because the SFP water temperature is one of the key parameters indicating SFP conditions, its behavior at accident conditions shall be understood to prepare appropriate measures. This study estimated temporal change in the SFP water temperature at Kori Unit 1 with 587 MWe for 1 hour after initiation of a loss-of-pool-cooling accident. For the estimation, ANSYS CFX 13.0 code was used. The estimation showed that the increasing rate of the water temperature was 3.90C per hour and the SFP water temperature could reach 1000C in 25.6 hours after the initiation of loss-of-pool-cooling accident.

Keywords: Spent fuel pool, water temperature, Kori Unit 1, a loss-of-pool-cooling accident.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2689
8427 An Energy Detection-Based Algorithm for Cooperative Spectrum Sensing in Rayleigh Fading Channel

Authors: H. Bakhshi, E. Khayyamian

Abstract:

Cognitive radios have been recognized as one of the most promising technologies dealing with the scarcity of the radio spectrum. In cognitive radio systems, secondary users are allowed to utilize the frequency bands of primary users when the bands are idle. Hence, how to accurately detect the idle frequency bands has attracted many researchers’ interest. Detection performance is sensitive toward noise power and gain fluctuation. Since signal to noise ratio (SNR) between primary user and secondary users are not the same and change over the time, SNR and noise power estimation is essential. In this paper, we present a cooperative spectrum sensing algorithm using SNR estimation to improve detection performance in the real situation.

Keywords: Cognitive radio, cooperative spectrum sensing, energy detection, SNR estimation, spectrum sensing, Rayleigh fading channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
8426 Modeling a Multinomial Logit Model of Intercity Travel Mode Choice Behavior for All Trips in Libya

Authors: Manssour A. Abdulsalam Bin Miskeen, Ahmed Mohamed Alhodairi, Riza Atiq Abdullah Bin O. K. Rahmat

Abstract:

In the planning point of view, it is essential to have mode choice, due to the massive amount of incurred in transportation systems. The intercity travellers in Libya have distinct features, as against travellers from other countries, which includes cultural and socioeconomic factors. Consequently, the goal of this study is to recognize the behavior of intercity travel using disaggregate models, for projecting the demand of nation-level intercity travel in Libya. Multinomial Logit Model for all the intercity trips has been formulated to examine the national-level intercity transportation in Libya. The Multinomial logit model was calibrated using nationwide revealed preferences (RP) and stated preferences (SP) survey. The model was developed for deference purpose of intercity trips (work, social and recreational). The variables of the model have been predicted based on maximum likelihood method. The data needed for model development were obtained from all major intercity corridors in Libya. The final sample size consisted of 1300 interviews. About two-thirds of these data were used for model calibration, and the remaining parts were used for model validation. This study, which is the first of its kind in Libya, investigates the intercity traveler’s mode-choice behavior. The intercity travel mode-choice model was successfully calibrated and validated. The outcomes indicate that, the overall model is effective and yields higher precision of estimation. The proposed model is beneficial, due to the fact that, it is receptive to a lot of variables, and can be employed to determine the impact of modifications in the numerous characteristics on the need for various travel modes. Estimations of the model might also be of valuable to planners, who can estimate possibilities for various modes and determine the impact of unique policy modifications on the need for intercity travel.

Keywords: Multinomial logit model, improved intercity transport, intercity mode-choice behavior, disaggregate analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7869