Search results for: Normal strength
1752 A Forward Automatic Censored Cell-Averaging Detector for Multiple Target Situations in Log-Normal Clutter
Authors: Musa'ed N. Almarshad, Saleh A. Alshebeili, Mourad Barkat
Abstract:
A challenging problem in radar signal processing is to achieve reliable target detection in the presence of interferences. In this paper, we propose a novel algorithm for automatic censoring of radar interfering targets in log-normal clutter. The proposed algorithm, termed the forward automatic censored cell averaging detector (F-ACCAD), consists of two steps: removing the corrupted reference cells (censoring) and the actual detection. Both steps are performed dynamically by using a suitable set of ranked cells to estimate the unknown background level and set the adaptive thresholds accordingly. The F-ACCAD algorithm does not require any prior information about the clutter parameters nor does it require the number of interfering targets. The effectiveness of the F-ACCAD algorithm is assessed by computing, using Monte Carlo simulations, the probability of censoring and the probability of detection in different background environments.Keywords: CFAR, Log-normal clutter, Censoring, Probabilityof detection, Probability of false alarm, Probability of falsecensoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19161751 Study on Compressive Strength and Setting Times of Fly Ash Concrete after Slump Recovery Using Superplasticizer
Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert
Abstract:
Fresh concrete has one of dynamic properties known as slump. Slump of concrete is design to compatible with placing method. Due to hydration reaction of cement, the slump of concrete is loss through time. Therefore, delayed concrete probably get reject because slump is unacceptable. In order to recover the slump of delayed concrete the second dose of superplasticizer (naphthalene based type F) is added into the system, the slump recovery can be done as long as the concrete is not setting. By adding superplasticizer as solution for recover unusable slump loss concrete may affects other concrete properties. Therefore, this paper was observed setting times and compressive strength of concrete after being re-dose with chemical admixture type F (superplasticizer, naphthalene based) for slump recovery. The concrete used in this study was fly ash concrete with fly ash replacement of 0%, 30% and 50% respectively. Concrete mix designed for test specimen was prepared with paste content (ratio of volume of cement to volume of void in the aggregate) of 1.2 and 1.3, water-to-binder ratio (w/b) range of 0.3 to 0.58, initial dose of superplasticizer (SP) range from 0.5 to 1.6%. The setting times of concrete were tested both before and after re-dosed with different amount of second dose and time of dosing. The research was concluded that addition of second dose of superplasticizer would increase both initial and final setting times accordingly to dosage of addition. As for fly ash concrete, the prolongation effect was higher as the replacement of fly ash increase. The prolongation effect can reach up to maximum about 4 hours. In case of compressive strength, the re-dosed concrete has strength fluctuation within acceptable range of ±10%.Keywords: Compressive strength, Fly ash concrete, Second dose of superplasticizer, Slump recovery, Setting times.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19331750 Optimization of Asphalt Binder Modified with PP/SBS/Nanoclay Nanocomposite using Taguchi Method
Authors: Abolghasem Yazdani, Sara Pourjafar
Abstract:
This study has applied the L16 orthogonal array of the Taguchi method to determine the optimized polymeric Nanocomposite asphalt binder. Three control factors are defined as polypropylene plastomer (PP), styrene-butadiene-styrene elastomer (SBS) and Nanoclay. Four level of concentration contents are introduced for prepared asphalt binder samples. all samples were prepared with 4.5% of bitumen 60/70 content. Compressive strength tests were carried out for defining the optimized sample via QUALITEK-4 software. SBS with 3%, PP with 5 % and Nanoclay with 1.5% of concentrations are defined as the optimized Nanocomposite asphalt binders. The confirmation compressive strength and also softening point tests showed that modification of asphalt binders with this method, improved the compressive strength and softening points of asphalt binders up to 55%.Keywords: modified asphalt, Polypropylene, SBS, Nanoclay, Taguchi method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31751749 Influence of Alccofine on Semi-Light Weight Concrete under Accelerated Curing and Conventional Curing Regimes
Authors: P. Parthiban, J. Karthikeyan
Abstract:
This paper deals with the performance of semi-light weight concrete, prepared by using wood ash pellets as coarse aggregates which were improved by partial replacement of cement with alccofine. Alccofine is a mineral admixture which contains high glass content obtained through the process of controlled granulation. This is finer than cement which carries its own pozzolanic property. Therefore, cement could be replaced by alccofine as 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, and 70% to enhance the strength and durability properties of concrete. High range water reducing admixtures (HRWA) were used in these mixes which were dosed up to 1.5% weight of the total cementitious content (alccofine & cement). It also develops the weaker transition zone into more impermeable layer. Specimens were subjected in both the accelerated curing method as well as conventional curing method. Experimental results were compared and reported, in that the maximum compressive strength of 32.6 MPa was achieved on 28th day with 30% replacement level in a density of 2200 kg/m3 to a conventional curing, while in the accelerated curing, maximum compressive strength was achieved at 40% replacement level. Rapid chloride penetration test (RCPT) output results for the conventional curing method at 0% and 70% give 3296.7 and 545.6 coulombs.
Keywords: Alccofine, compressive strength, RCPT, wood ash pellets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6671748 Evaluation of Shear Strength Parameters of Rudsar Sandy Soil Stabilized with Waste Rubber Chips
Authors: R. Ziaie Moayed, M. Hamidzadeh
Abstract:
The use of waste rubber chips not only can be of great importance in terms of the environment, but also can be used to increase the shear strength of soils. The purpose of this study was to evaluate the variation of the internal friction angle of liquefiable sandy soil using waste rubber chips. For this purpose, the geotechnical properties of unmodified and modified soil samples by waste lining rubber chips have been evaluated and analyzed by performing the triaxial consolidated drained test. In order to prepare the laboratory specimens, the sandy soil in part of Rudsar shores in Gilan province, north of Iran with high liquefaction potential has been replaced by two percent of waste rubber chips. Samples have been compressed until reaching the two levels of density of 15.5 and 16.7 kN/m3. Also, in order to find the optimal length of chips in sandy soil, the rectangular rubber chips with the widths of 0.5 and 1 cm and the lengths of 0.5, 1, and 2 cm were used. The results showed that the addition of rubber chips to liquefiable sandy soil greatly increases the shear resistance of these soils. Also, it can be seen that decreasing the width and increasing the length-to-width ratio of rubber chips has a direct impact on the shear strength of the modified soil samples with rubber chips.
Keywords: Improvement, shear strength, internal friction angle, sandy soil, rubber chip.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6701747 Preparation and Bioactivity Evaluation of Bone like Hydroxyapatite - Bioglass Composite
Authors: Seema Kapoor, Uma Batra
Abstract:
In this study, hydroxyapatite (HA) composites are prepared on addition of 30%CaO-30%P2O5-40%Na2 O based glass to pure HA, in proportion of 2, 5, and 10 wt %. Each composition was sintered over a range of temperatures. The quantitative phase analysis was carried out using XRD and the microstructures were studied using SEM. The density, microhardness, and compressive strength have shown increase with the increasing amount of glass addition. The resulting composites have chemical compositions that are similar to the inorganic constituent of the mineral part of bone, and constitutes trace elements like Na. X-ray diffraction showed no decomposition of HA to secondary phases, however, the glass reinforced-HA composites contained a HA phase and variable amounts of tricalcium phosphate phase, depending on the amount of bioglass added. The HA-composite material exhibited higher compressive strength compared to sintered HA. The HA composite reinforced with 10 wt % bioglass showed highest bioactivity level.Keywords: Bioactivity, Bioglass, Compressive strength, Hydroxyapatite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20091746 Characterization of Fabricated A 384.1-MgO Based Metal Matrix Composite and Optimization of Tensile Strength using Taguchi Techniques
Authors: Nripjit, Anand K Tyagi, Nirmal Singh
Abstract:
The present work consecutively on synthesis and characterization of composites, Al/Al alloy A 384.1 as matrix in which the main ingredient as Al/Al-5% MgO alloy based metal matrix composite. As practical implications the low cost processing route for the fabrication of Al alloy A 384.1 and operational difficulties of presently available manufacturing processes based in liquid manipulation methods. As all new developments, complete understanding of the influence of processing variables upon the final quality of the product. And the composite is applied comprehensively to the acquaintance for achieving superiority of information concerning the specific heat measurement of a material through the aid of thermographs. Products are evaluated concerning relative particle size and mechanical behavior under tensile strength. Furthermore, Taguchi technique was employed to examine the experimental optimum results are achieved, owing to effectiveness of this approach.Keywords: MMC, Thermographs, Tensile strength, Taguchi technique, Optimal parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16391745 A Study of Gas Metal Arc Welding Affecting Mechanical Properties of Austenitic Stainless Steel AISI 304
Authors: Sittichai K., Santirat N., Sompong., P
Abstract:
The objective of this research was to study influence parameters affecting to mechanical property of austenitic stainless steel grade 304 (AISI 304) with Gas Metal Arc Welding (GMAW). The research was applying factorial design experiment, which have following interested parameters: welding current at 80, 90, and 100 Amps, welding speeds at 250, 300, and 350 mm/min, and shield gas of 75% Ar + 25% CO2, 70% Ar + 25% CO2 + 5% O2 and 69.5% Ar + 25% CO2 + 5% O2 + 0.5% He gas. The study was done in following aspects: ultimate tensile strength and elongation. A research study of ultimate tensile strength found that main factor effect, which had the highest strength to AISI 304 welding was shield gas of 70% Ar + 25% CO2 + 5% O2 at average of 954.81 N/mm2. Result of the highest elongation was showed significantly different at interaction effect between shield gas of 69.5%Ar+25%CO2+5%O2+.5%He and welding speed at 250 mm/min at 47.94%.Keywords: Austenitic Stainless Steel AISI 304/ Mechanical Property/ Welding Gas Shield/ Gas Shield
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18361744 Effect of Be, Zr and Heat Treatment on Mechanical Behavior of Cast Al-Mg-Zn-Cu Alloys (7075)
Authors: Mahmoud M. Tash
Abstract:
The present study was undertaken to investigate the effect of aging parameters (time and temperature) on the mechanical properties of Be-and/or Zr- treated Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys containing Be and/or Zr. Different aging treatment were carried out for the as solution treated (SHT) specimens (after quenching in warm water). The specimens were aged at different conditions; Natural and artificial aging was carried out at room temperature, 120C, 150C, 180C and 220C for different periods of time. Duplex aging was performed for SHT conditions (pre-aged at different time and temperature followed by high temperature aging). Ultimate tensile strength, yield strength and % elongation data results as a function of different aging parameters are analysed. A statistical design of experiments (DOE) approach using fractional factorial design is applied to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of Be- and/or Zr- treated 7075 alloys. Mathematical models are developed to relate the alloy mechanical properties with the different aging parameters.
Keywords: Casting, Aging Treatment, Mechanical Properties, Al-Mg-Zn (7075) alloys, Be- and/or Zr-Treatment, Experimental Correlation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19741743 Long-term Flexural Behavior of HSC Beams
Authors: Andreea Muntean, Cornelia Măgureanu
Abstract:
This article presents the analysis of experimental values regarding cracking pattern, specific strains and deformability for reinforced high strength concrete beams. The beams have the concrete class C80/95 and a longitudinal reinforcement ratio of 2.01%, respectively 3.39%. The elements were subjected to flexure under static short-term and long-term loading. The experimental values are compared with calculation values using the design relationships according to Eurocode 2.
Keywords: High strength concrete, beams, flexure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15931742 Model Parameters Estimating on Lyman–Kutcher–Burman Normal Tissue Complication Probability for Xerostomia on Head and Neck Cancer
Authors: Tsair-Fwu Lee , Hui-Min Ting , Pei-Ju Chao, Jing-Chuan Jiang, Min-Yuan Chao, Wen-Cheng Chen, Long-Chang Chen, Jia-Ming Wu
Abstract:
The purpose of this study is to derive parameters estimating for the Lyman–Kutcher–Burman (LKB) normal tissue complication probability (NTCP) model using analysis of scintigraphy assessments and quality of life (QoL) measurement questionnaires for the parotid gland (xerostomia). In total, 31 patients with head-and-neck (HN) cancer were enrolled. Salivary excretion factor (SEF) and EORTC QLQ-H&N35 questionnaires datasets are used for the NTCP modeling to describe the incidence of grade 4 xerostomia. Assuming that n= 1, NTCP fitted parameters are given as TD50= 43.6 Gy, m= 0.18 in SEF analysis, and as TD50= 44.1 Gy, m= 0.11 in QoL measurements, respectively. SEF and QoL datasets can validate the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) guidelines well, resulting in NPV-s of 100% for the both datasets and suggests that the QUANTEC 25/20Gy gland-spared guidelines are suitable for clinical used for the HN cohort to effectively avoid xerostomia.Keywords: HN, NTCP, SEF, QoL, QUANTEC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21011741 Study of EEGs from Somatosensory Cortex and Alzheimer's Disease Sources
Authors: Md R. Bashar, Yan Li, Peng Wen
Abstract:
This study is to investigate the electroencephalogram (EEG) differences generated from a normal and Alzheimer-s disease (AD) sources. We also investigate the effects of brain tissue distortions due to AD on EEG. We develop a realistic head model from T1 weighted magnetic resonance imaging (MRI) using finite element method (FEM) for normal source (somatosensory cortex (SC) in parietal lobe) and AD sources (right amygdala (RA) and left amygdala (LA) in medial temporal lobe). Then, we compare the AD sourced EEGs to the SC sourced EEG for studying the nature of potential changes due to sources and 5% to 20% brain tissue distortions. We find an average of 0.15 magnification errors produced by AD sourced EEGs. Different brain tissue distortion models also generate the maximum 0.07 magnification. EEGs obtained from AD sources and different brain tissue distortion levels vary scalp potentials from normal source, and the electrodes residing in parietal and temporal lobes are more sensitive than other electrodes for AD sourced EEG.
Keywords: Alzheimer's disease (AD), brain tissue distortion, electroencephalogram, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19191740 The Impact of Alumina Cement on Properties of Portland Cement Slurries and Mortars
Authors: Krzysztof Zieliński, Dariusz Kierzek
Abstract:
The addition of a small amount of alumina cement to Portland cement results in immediate setting, a rapid increase in the compressive strength and a clear increase of the adhesion to concrete substrate. This phenomenon is used, among others, for the production of liquid floor self-levelling compounds. Alumina cement is several times more expensive than Portland cement and is a component having a significant impact on prices of products manufactured with its use. For the production of liquid floor self-levelling compounds, low-alumina cement containing approximately 40% Al2O3 is normally used. The aim of the study was to determine the impact of Portland cement with the addition of alumina cement on the basic physical and mechanical properties of cement slurries and mortars. CEM I 42.5R and three types of alumina cement containing 40%, 50% and 70% of Al2O3 were used for the tests. Mixes containing 4%, 6%, 8%, 10% and 12% of different varieties of alumina cement were prepared; for which, the time of initial and final setting, compressive and flexural strength and adhesion to concrete substrate were determined. The analysis of the obtained test results showed that a similar immediate setting effect and clearly better adhesion strength can be obtained using the addition of 6% of high-alumina cement than 12% of low-alumina cement. As the prices of these cements are similar, this can give significant financial savings in the production of liquid floor self-levelling compounds.
Keywords: Alumina cement, immediate setting, compression strength, adhesion to substrate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6571739 Effect of Addition Rate of Expansive Additive on Autogenous Shrinkage and Delayed Expansion of Ultra-High Strength Mortar
Authors: Yulu Zhang, Atushi Teramoto, Taka-Aki Ohkubo
Abstract:
In this study, the effect of expansive additives on autogenous shrinkage and delayed expansion of ultra-high strength mortar was explored. The specimens made for the study were composed of ultra-high strength mortar, which was mixed with ettringite-lime composite type expansive additive. Two series of experiments were conducted with the specimens. The experimental results confirmed that the autogenous shrinkage of specimens was effectively decreased by increasing the proportion of the expansive additive. On the other hand, for the specimens, which had 7% expansive additive, and were cured for seven days at a constant temperature of 20°C, and then cured for a long time in either in an underwater, moist (Relative humidity: 100%) or dry air (Relative humidity: 60%) environment, excessively large expansion strain occurred. Specifically, typical turtle shell-like swelling expansion cracks were confirmed in the specimens that underwent long-term curing in an underwater and moist environment. According to the result of hydration analysis, the formation of expansive substances, calcium hydroxide and alumina, ferric oxide, tri-sulfate contribute to the occurrence of delayed expansion.
Keywords: Ultra-high strength mortar, expansive additive, autogenous shrinkage, delayed expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7571738 Bose-Einstein Condensation in Neutral Many Bosonic System
Authors: M. Al-Sugheir, M. Sakhreya, G. Alna'washi, F. Al-Dweri
Abstract:
In this work, the condensation fraction and transition temperature of neutral many bosonic system are studied within the static fluctuation approximation (SFA). The effect of the potential parameters such as the strength and range on the condensate fraction was investigated. A model potential consisting of a repulsive step potential and an attractive potential well was used. As the potential strength or the core radius of the repulsive part increases, the condensation fraction is found to be decreased at the same temperature. Also, as the potential depth or the range of the attractive part increases, the condensation fraction is found to be increased. The transition temperature is decreased as the potential strength or the core radius of the repulsive part increases, and it increases as the potential depth or the range of the attractive part increases.Keywords: About four key words or phrases in alphabetical order, separated by commas
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12071737 The Effects of Shot and Grit Blasting Process Parameters on Steel Pipes Coating Adhesion
Authors: Saeed Khorasanizadeh
Abstract:
Adhesion strength of exterior or interior coating of steel pipes is too important. Increasing of coating adhesion on surfaces can increase the life time of coating, safety factor of transmitting line pipe and decreasing the rate of corrosion and costs. Preparation of steel pipe surfaces before doing the coating process is done by shot and grit blasting. This is a mechanical way to do it. Some effective parameters on that process, are particle size of abrasives, distance to surface, rate of abrasive flow, abrasive physical properties, shapes, selection of abrasive, kind of machine and its power, standard of surface cleanness degree, roughness, time of blasting and weather humidity. This search intended to find some better conditions which improve the surface preparation, adhesion strength and corrosion resistance of coating. So, this paper has studied the effect of varying abrasive flow rate, changing the abrasive particle size, time of surface blasting on steel surface roughness and over blasting on it by using the centrifugal blasting machine. After preparation of numbers of steel samples (according to API 5L X52) and applying epoxy powder coating on them, to compare strength adhesion of coating by Pull-Off test. The results have shown that, increasing the abrasive particles size and flow rate, can increase the steel surface roughness and coating adhesion strength but increasing the blasting time can do surface over blasting and increasing surface temperature and hardness too, change, decreasing steel surface roughness and coating adhesion strength.Keywords: surface preparation, abrasive particles, adhesionstrength
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 90771736 Homogeneity of Microstructure and Mechanical Properties in Horizontal Continuous Cast Billet
Authors: V. Arbabi , I. Ebrahimzadeh, H. Ghanbari, M.M. Kaykha
Abstract:
Horizontal continuous casting is widely used to produce semi-finished non-Ferrous products. Homogeneity in the metallurgical characteristics and mechanical properties for this product is vital for industrial application. In the present work, the microstructure and mechanical properties of a horizontal continuous cast two-phase brass billet have been studied. Impact strength and hardness variations were examined and the phase composition and porosity studied with image analysis software. Distinct differences in mechanical properties were observed between the upper, middle and lower parts of the billet, which are explained in terms of the morphology and size of the phase in the microstructure. Hardness variation in the length of billet is higher in upper area but impact strength is higher in lower areas.Keywords: Horizontal Continuous Casting, Two-phase brasses, CuZn40Al1 alloy, Microstructure, Impact Strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21821735 Combination of Tensile Strength and Elongation of Reverse Rolled TaNbHfZrTi Refractory High Entropy Alloy
Authors: M. Veerasham
Abstract:
The refractory high entropy alloys are potential materials for high-temperature applications because of their ability to retain high strength up to 1600°C. However, their practical applications were limited due to poor elongation at room temperature. Therefore, decreasing the average valence electron concentrations (VEC) is an effective design strategy to improve the intrinsic ductility of refractory high entropy alloys. In this work, the high-entropy alloy TaNbHfZrTi was processed at room temperature by each step reverse rolling up to a 90% reduction in thickness. Subsequently, the reverse rolled 90% samples were utilized for annealing treatment at 800°C and 1000°C for 1 h to understand phase stability, microstructure, texture, and mechanical properties. The reverse rolled 90% condition contains body-centered cubic (BCC) single-phase; upon annealing at 800 °C, the formation of secondary phase BCC-2 prevailed. The partial recrystallization and complete recrystallization microstructures were developed for annealed at 800°C and 1000°C, respectively. The reverse rolled condition and 1000°C annealed temperature exhibit extraordinary room temperature tensile properties with high ultimate tensile strength (UTS) without compromising loss of ductility called “strength-ductility” trade-off. The reverse-rolled 90% and annealing treatment carried out at temperature about 1000°C for 1 h consist of UTS 1430 MPa and 1556 MPa with an appreciable amount of 21% and 20% elongation, respectively. The development of hierarchical microstructure prevailed for the annealed 1000°C which led to the simultaneous increase in tensile strength and elongation.
Keywords: refractory high entropy alloys, reverse rolling, recrystallization, microstructure, tensile properties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5461734 Polymorphic Marker Designed from Bioinformatics Sequences Related to Cell Wall Strength for Discrimination of Mangosteen (Garcinia mangostana L.) Clones Resistant to Gamboge Disorder
Authors: E. Mansyah, Sobir, E. Santosa, A. Sisharmini, Sulassih
Abstract:
Gamboge disorder (GD) or fruit damage by the yellow sap is a major problem in mangosteen. Mangosteen plants varied in the level of GD, from very low or non GD to low, moderate and high GD. However it was difficult to differentiate between GD and non GD plants because evaluation of the disorder is strongly influenced by environment. In this study we investigated the usefulness of primer designed from bioinformatics related to cell wall strength, termed as MCWS, to predict GD. Plant materials used were 28 mangosteen plants selected based on percentage of GD categorized as high, moderate, low and very low or non GD. The result showed that the specific DNA fragments were absent in the high GD accessions. The MCWS marker suggests as a novel polymorphic marker for GD in mangosteen as well as a marker for detect variability in mangosteen as apomictic plant.
Keywords: Bioinformatics, cell wall strength, gamboge disorder, mangosteen, polymorphic marker.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24251733 Thermoelastic Waves in Anisotropic Platesusing Normal Mode Expansion Method with Thermal Relaxation Time
Authors: K.L. Verma
Abstract:
Analysis for the generalized thermoelastic Lamb waves, which propagates in anisotropic thin plates in generalized thermoelasticity, is presented employing normal mode expansion method. The displacement and temperature fields are expressed by a summation of the symmetric and antisymmetric thermoelastic modes in the surface thermal stresses and thermal gradient free orthotropic plate, therefore the theory is particularly appropriate for waveform analyses of Lamb waves in thin anisotropic plates. The transient waveforms excited by the thermoelastic expansion are analyzed for an orthotropic thin plate. The obtained results show that the theory provides a quantitative analysis to characterize anisotropic thermoelastic stiffness properties of plates by wave detection. Finally numerical calculations have been presented for a NaF crystal, and the dispersion curves for the lowest modes of the symmetric and antisymmetric vibrations are represented graphically at different values of thermal relaxation time. However, the methods can be used for other materials as wellKeywords: Anisotropic, dispersion, frequency, normal, thermoelasticity, wave modes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18501732 Microstructure, Mechanical, Electrical and Thermal Properties of the Al-Si-Ni Ternary Alloy
Authors: Aynur Aker, Hasan Kaya
Abstract:
In recent years, the use of the aluminum based alloys in the industry and technology are increasing. Alloying elements in aluminum have further been improving the strength and stiffness properties that provide superior compared to other metals. In this study, investigation of physical properties (microstructure, microhardness, tensile strength, electrical conductivity and thermal properties) in the Al-12.6wt.%Si-%2wt.Ni ternary alloy were investigated. Al-Si-Ni alloy was prepared in vacuum atmosphere. The samples were directionally solidified upwards with different growth rate V (8.3−165.45 μm/s) at constant temperature gradient G (7.73 K/mm). The flake spacings (λ), microhardness (HV), ultimate tensile strength (σ), electrical resistivity (ρ) and thermal properties (H, Cp, Tm) of the samples were measured. Influence of the growth rate and spacings on microhardness, ultimate tensile strength and electrical resistivity were investigated and relationships between them were obtained. According to results, λ values decrease with increasing V, but HV, σ and ρ values increase with increasing V. Variations of electrical resistivity (ρ) of solidified samples were also measured. The enthalpy of fusion (H) and specific heat (Cp) for the alloy was also determined by differential scanning calorimeter (DSC) from heating trace during the transformation from liquid to solid. The results in this work were compared with the previous similar experimental results.Keywords: Electrical resistivity, enthalpy, microhardness, solidification, tensile stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20261731 Evaluation of Static Modulus of Elasticity Depending on Concrete Compressive Strength
Authors: K. Krizova, R. Hela
Abstract:
The paper is focused on monitoring of dependencies of different composition concretes on elastic modulus values. To obtain a summary of elastic modulus development in dependence of concrete composition design variability was the objective of the experiment. Essential part of this work was initiated as a reaction to building practice when questions of elastic moduli arose at the same time and which mostly did not obtain the required and expected values from concrete constructions.Keywords: Concrete, Compressive strength, Modulus of elasticity, EuroCode 2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28551730 Cyclic Behaviour of Wide Beam-Column Joints with Shear Strength Ratios of 1.0 and 1.7
Authors: Roy Y. C. Huang, J. S. Kuang, Hamdolah Behnam
Abstract:
Beam-column connections play an important role in the reinforced concrete moment resisting frame (RCMRF), which is one of the most commonly used structural systems around the world. The premature failure of such connections would severely limit the seismic performance and increase the vulnerability of RCMRF. In the past decades, researchers primarily focused on investigating the structural behaviour and failure mechanisms of conventional beam-column joints, the beam width of which is either smaller than or equal to the column width, while studies in wide beam-column joints were scarce. This paper presents the preliminary experimental results of two full-scale exterior wide beam-column connections, which are mainly designed and detailed according to ACI 318-14 and ACI 352R-02, under reversed cyclic loading. The ratios of the design shear force to the nominal shear strength of these specimens are 1.0 and 1.7, respectively, so as to probe into differences of the joint shear strength between experimental results and predictions by design codes of practice. Flexural failure dominated in the specimen with ratio of 1.0 in which full-width plastic hinges were observed, while both beam hinges and post-peak joint shear failure occurred for the other specimen. No sign of premature joint shear failure was found which is inconsistent with ACI codes’ prediction. Finally, a modification of current codes of practice is provided to accurately predict the joint shear strength in wide beam-column joint.
Keywords: Joint shear strength, reversed cyclic loading, seismic codes, wide beam-column joints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10721729 FEM Study of Different Methods of Fiber Reinforcement Polymer Strengthening of a High Strength Concrete Beam-Column Connection
Authors: Talebi Aliasghar, Ebrahimpour Komeleh Hooman, Maghsoudi Ali Akbar
Abstract:
In reinforced concrete (RC) structures, beam-column connection region has a considerable effect on the behavior of structures. Using fiber reinforcement polymer (FRP) for the strengthening of connections in RC structures can be one of the solutions to retrofitting this zone which result in the enhanced behavior of structure. In this paper, these changes in behavior by using FRP for high strength concrete beam-column connection have been studied by finite element modeling. The concrete damage plasticity (CDP) model has been used to analyze the RC. The results illustrated a considerable development in load-bearing capacity but also a noticeable reduction in ductility. The study also assesses these qualities for several modes of strengthening and suggests the most effective mode of strengthening. Using FRP in flexural zone and FRP with 45-degree oriented fibers in shear zone of joint showed the most significant change in behavior.
Keywords: High strength concrete, beam-column connection, FRP, FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8231728 Strength of Fine Concrete Used in Textile Reinforced Concrete by Changing Water-Binder Ratio
Authors: Taekyun Kim, Jongho Park, Jinwoong Choi, Sun-Kyu Park
Abstract:
Recently, the abnormal climate phenomenon has enlarged due to the global warming. As a result, temperature variation is increasing and the term is being prolonged, frequency of high and low temperature is increasing by heat wave and severe cold. Especially for reinforced concrete structure, the corrosion of reinforcement has occurred by concrete crack due to temperature change and the durability of the structure that has decreased by concrete crack. Accordingly, the textile reinforced concrete (TRC) which does not corrode due to using textile is getting the interest and the investigation of TRC is proceeding. The study of TRC structure behavior has proceeded, but the characteristic study of the concrete used in TRC is insufficient. Therefore, characteristic of the concrete by changing mixing ratio is studied in this paper. As a result, mixing ratio with different water-binder ratio has influenced to the strength of concrete. Also, as the water-binder ratio has decreased, strength of concrete has increased.
Keywords: Concrete, mixing ratio, textile, TRC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20131727 Classification of Germinatable Mung Bean by Near Infrared Hyperspectral Imaging
Authors: Kaewkarn Phuangsombat, Arthit Phuangsombat, Anupun Terdwongworakul
Abstract:
Hard seeds will not grow and can cause mold in sprouting process. Thus, the hard seeds need to be separated from the normal seeds. Near infrared hyperspectral imaging in a range of 900 to 1700 nm was implemented to develop a model by partial least squares discriminant analysis to discriminate the hard seeds from the normal seeds. The orientation of the seeds was also studied to compare the performance of the models. The model based on hilum-up orientation achieved the best result giving the coefficient of determination of 0.98, and root mean square error of prediction of 0.07 with classification accuracy was equal to 100%.
Keywords: Mung bean, near infrared, germinatability, hard seed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11621726 Investigation of Effective Parameters on Pullout Capacity in Soil Nailing with Special Attention to International Design Codes
Authors: R. Ziaie Moayed, M. Mortezaee
Abstract:
An important and influential factor in design and determining the safety factor in Soil Nailing is the ultimate pullout capacity, or, in other words, bond strength. This important parameter depends on several factors such as material and soil texture, method of implementation, excavation diameter, friction angle between the nail and the soil, grouting pressure, the nail depth (overburden pressure), the angle of drilling and the degree of saturation in soil. Federal Highway Administration (FHWA), a customary regulation in the design of nailing, is considered only the effect of the soil type (or rock) and the method of implementation in determining the bond strength, which results in non-economic design. The other regulations are each of a kind, some of the parameters affecting bond resistance are not taken into account. Therefore, in the present paper, at first the relationships and tables presented by several valid regulations are presented for estimating the ultimate pullout capacity, and then the effect of several important factors affecting on ultimate Pullout capacity are studied. Finally, it was determined, the effect of overburden pressure (in method of injection with pressure), soil dilatation and roughness of the drilling surface on pullout strength is incremental, and effect of degree of soil saturation on pullout strength to a certain degree of saturation is increasing and then decreasing. therefore it is better to get help from nail pullout-strength test results and numerical modeling to evaluate the effect of parameters such as overburden pressure, dilatation, and degree of soil saturation, and so on to reach an optimal and economical design.
Keywords: Soil nailing, pullout capacity, FHWA, grout.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6891725 Marble Powder’s Effect on Permeability and Mechanical Properties of Concrete
Authors: Shams Ul Khaliq, Khan Shahzada, Bashir Alam, Fawad Bilal, Mushtaq Zeb, Faizan Akbar
Abstract:
Marble industry contributes its fair share in environmental deterioration, producing voluminous amounts of mud and other excess residues obtained from marble and granite processing, polluting soil, water and air. Reusing these products in other products will not just prevent our environment from polluting but also help with economy. In this research, an attempt has been made to study the expediency of waste Marble Powder (MP) in concrete production. Various laboratory tests were performed to investigate permeability, physical and mechanical properties, such as slump, compressive strength, split tensile test, etc. Concrete test samples were fabricated with varying MP content (replacing 5-30% cement), furnished from two different sources. 5% replacement of marble dust caused 6% and 12% decrease in compressive and tensile strength respectively. These parameters gradually decreased with increasing MP content up to 30%. Most optimum results were obtained with 10% replacement. Improvement in consistency and permeability were noticed. The permeability was improved with increasing MP proportion up to 10% without substantial decrease in compressive strength. Obtained results revealed that MP as an alternative to cement in concrete production is a viable option considering its economic and environment friendly implications.Keywords: Waste marble dust, concrete strength, environment, concrete, permeability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25051724 Analytical Evaluation on Hysteresis Performance of Circular Shear Panel Damper
Authors: Daniel Y. Abebe, Jaehyouk Choi
Abstract:
The idea of adding metallic energy dissipaters to a structure to absorb a large part of the seismic energy began four decades ago. There are several types of metal-based devices conceived as dampers for the seismic energy absorber whereby damages to the major structural components could be minimized for both new and existing structures. This paper aimed to develop and evaluate structural performance of both stiffened and non stiffened circular shear panel damper for passive seismic energy protection by inelastic deformation. Structural evaluation was done using commercially available nonlinear FE simulation program. Diameter-to-thickness ratio is employed as main parameter to investigate the hysteresis performance of stiffened and unstiffened circular shear panel. Depending on these parameters three different buckling mode and hysteretic behavior was found: yielding prior to buckling without strength degradation, yielding prior to buckling with strength degradation and yielding with buckling and strength degradation which forms pinching at initial displacement. Hence, the hysteresis behavior is identified, specimens which deform without strength degradation so it will be used as passive energy dissipating device in civil engineering structures.
Keywords: Circular shear panel damper, FE analysis, Hysteretic behavior, Large deformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25501723 Investigating what Effects Aviation Fluids Have on the Flatwise Compressive Strength of Nomex® Honeycomb Core Material
Authors: G. Kim, R. Sterkenburg
Abstract:
One of the disadvantages of honeycomb sandwich structure is that they are prone to fluid intrusion. The purpose of this study is to determine if the structural properties of honeycomb core are affected by contact with a fluid. The test specimens were manufactured of fiberglass prepreg for the facesheets and Nomex® honeycomb core for the core material in accordance with ASTM C-365/365M. Test specimens were soaked in several different kinds of fluids, such as aircraft fuel, turbine engine oil, hydraulic fluid, and water for a period of 60 days. A flatwise compressive test was performed, and the test results were analyzed to determine how the contact with aircraft fluids affected the compressive strength of the Nomex® honeycomb core and how the strength was recovered when the specimens were dry. In addition, the investigation of de-bonding between facesheet and core material after soaking were performed to support the study.
Keywords: Debonding, environmental degradation, honeycomb sandwich structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 654