Search results for: Image of the country
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2218

Search results for: Image of the country

1918 Image Segmentation by Mathematical Morphology: An Approach through Linear, Bilinear and Conformal Transformation

Authors: Dibyendu Ghoshal, Pinaki Pratim Acharjya

Abstract:

Image segmentation process based on mathematical morphology has been studied in the paper. It has been established from the first principles of the morphological process, the entire segmentation is although a nonlinear signal processing task, the constituent wise, the intermediate steps are linear, bilinear and conformal transformation and they give rise to a non linear affect in a cumulative manner.

Keywords: Image segmentation, linear transform, bilinear transform, conformal transform, mathematical morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193
1917 An Analysis of Compression Methods and Implementation of Medical Images in Wireless Network

Authors: C. Rajan, K. Geetha, S. Geetha

Abstract:

The motivation of image compression technique is to reduce the irrelevance and redundancy of the image data in order to store or pass data in an efficient way from one place to another place. There are several types of compression methods available. Without the help of compression technique, the file size is knowingly larger, usually several megabytes, but by doing the compression technique, it is possible to reduce file size up to 10% as of the original without noticeable loss in quality. Image compression can be lossless or lossy. The compression technique can be applied to images, audio, video and text data. This research work mainly concentrates on methods of encoding, DCT, compression methods, security, etc. Different methodologies and network simulations have been analyzed here. Various methods of compression methodologies and its performance metrics has been investigated and presented in a table manner.

Keywords: Image compression techniques, encoding, DCT, lossy compression, lossless compression, JPEG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1188
1916 Object Identification with Color, Texture, and Object-Correlation in CBIR System

Authors: Awais Adnan, Muhammad Nawaz, Sajid Anwar, Tamleek Ali, Muhammad Ali

Abstract:

Needs of an efficient information retrieval in recent years in increased more then ever because of the frequent use of digital information in our life. We see a lot of work in the area of textual information but in multimedia information, we cannot find much progress. In text based information, new technology of data mining and data marts are now in working that were started from the basic concept of database some where in 1960. In image search and especially in image identification, computerized system at very initial stages. Even in the area of image search we cannot see much progress as in the case of text based search techniques. One main reason for this is the wide spread roots of image search where many area like artificial intelligence, statistics, image processing, pattern recognition play their role. Even human psychology and perception and cultural diversity also have their share for the design of a good and efficient image recognition and retrieval system. A new object based search technique is presented in this paper where object in the image are identified on the basis of their geometrical shapes and other features like color and texture where object-co-relation augments this search process. To be more focused on objects identification, simple images are selected for the work to reduce the role of segmentation in overall process however same technique can also be applied for other images.

Keywords: Object correlation, Geometrical shape, Color, texture, features, contents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
1915 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting

Abstract:

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

Keywords: Deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1095
1914 Content-based Retrieval of Medical Images

Authors: Lilac A. E. Al-Safadi

Abstract:

With the advance of multimedia and diagnostic images technologies, the number of radiographic images is increasing constantly. The medical field demands sophisticated systems for search and retrieval of the produced multimedia document. This paper presents an ongoing research that focuses on the semantic content of radiographic image documents to facilitate semantic-based radiographic image indexing and a retrieval system. The proposed model would divide a radiographic image document, based on its semantic content, and would be converted into a logical structure or a semantic structure. The logical structure represents the overall organization of information. The semantic structure, which is bound to logical structure, is composed of semantic objects with interrelationships in the various spaces in the radiographic image.

Keywords: Semantic Indexing, Content-Based Retrieval, Radiographic Images, Data Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
1913 A Semi-Fragile Watermarking Scheme for Color Image Authentication

Authors: M. Hamad Hassan, S.A.M. Gilani

Abstract:

In this paper, a semi-fragile watermarking scheme is proposed for color image authentication. In this particular scheme, the color image is first transformed from RGB to YST color space, suitable for watermarking the color media. Each channel is divided into 4×4 non-overlapping blocks and its each 2×2 sub-block is selected. The embedding space is created by setting the two LSBs of selected sub-block to zero, which will hold the authentication and recovery information. For verification of work authentication and parity bits denoted by 'a' & 'p' are computed for each 2×2 subblock. For recovery, intensity mean of each 2×2 sub-block is computed and encoded upto six to eight bits depending upon the channel selection. The size of sub-block is important for correct localization and fast computation. For watermark distribution 2DTorus Automorphism is implemented using a private key to have a secure mapping of blocks. The perceptibility of watermarked image is quite reasonable both subjectively and objectively. Our scheme is oblivious, correctly localizes the tampering and able to recovery the original work with probability of near one.

Keywords: Image Authentication, YST Color Space, Intensity Mean, LSBs, PSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
1912 Quad Tree Decomposition Based Analysis of Compressed Image Data Communication for Lossy and Lossless Using WSN

Authors: N. Muthukumaran, R. Ravi

Abstract:

The Quad Tree Decomposition based performance analysis of compressed image data communication for lossy and lossless through wireless sensor network is presented. Images have considerably higher storage requirement than text. While transmitting a multimedia content there is chance of the packets being dropped due to noise and interference. At the receiver end the packets that carry valuable information might be damaged or lost due to noise, interference and congestion. In order to avoid the valuable information from being dropped various retransmission schemes have been proposed. In this proposed scheme QTD is used. QTD is an image segmentation method that divides the image into homogeneous areas. In this proposed scheme involves analysis of parameters such as compression ratio, peak signal to noise ratio, mean square error, bits per pixel in compressed image and analysis of difficulties during data packet communication in Wireless Sensor Networks. By considering the above, this paper is to use the QTD to improve the compression ratio as well as visual quality and the algorithm in MATLAB 7.1 and NS2 Simulator software tool.

Keywords: Image compression, Compression Ratio, Quad tree decomposition, Wireless sensor networks, NS2 simulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2391
1911 Real-Time Image Analysis of Capsule Endoscopy for Bleeding Discrimination in Embedded System Platform

Authors: Yong-Gyu Lee, Gilwon Yoon

Abstract:

Image processing for capsule endoscopy requires large memory and it takes hours for diagnosis since operation time is normally more than 8 hours. A real-time analysis algorithm of capsule images can be clinically very useful. It can differentiate abnormal tissue from health structure and provide with correlation information among the images. Bleeding is our interest in this regard and we propose a method of detecting frames with potential bleeding in real-time. Our detection algorithm is based on statistical analysis and the shapes of bleeding spots. We tested our algorithm with 30 cases of capsule endoscopy in the digestive track. Results were excellent where a sensitivity of 99% and a specificity of 97% were achieved in detecting the image frames with bleeding spots.

Keywords: bleeding, capsule endoscopy, image processing, real time analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
1910 Feature's Extraction of Human Body Composition in Images by Segmentation Method

Authors: Mousa Mojarrad, Mashallah Abbasi Dezfouli, Amir Masoud Rahmani

Abstract:

Detection and recognition of the Human Body Composition and extraction their measures (width and length of human body) in images are a major issue in detecting objects and the important field in Image, Signal and Vision Computing in recent years. Finding people and extraction their features in Images are particularly important problem of object recognition, because people can have high variability in the appearance. This variability may be due to the configuration of a person (e.g., standing vs. sitting vs. jogging), the pose (e.g. frontal vs. lateral view), clothing, and variations in illumination. In this study, first, Human Body is being recognized in image then the measures of Human Body extract from the image.

Keywords: Analysis of image processing, canny edge detection, classification, feature extraction, human body recognition, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2771
1909 Low-MAC FEC Controller for JPEG2000 Image Transmission Over IEEE 802.15.4

Authors: Kyu-Yeul Wang, Sang-Seol Lee, Jea-Yeon Song, Jea-Young Choi, Seong-Seob Shin, Dong-Sun Kim, Duck-Jin Chung

Abstract:

In this paper, we propose the low-MAC FEC controller for practical implementation of JPEG2000 image transmission using IEEE 802.15.4. The proposed low-MAC FEC controller has very small HW size and spends little computation to estimate channel state. Because of this advantage, it is acceptable to apply IEEE 802.15.4 which has to operate more than 1 year with battery. For the image transmission, we integrate the low-MAC FEC controller and RCPC coder in sensor node of LR-WPAN. The modified sensor node has increase of 3% hardware size than conventional zigbee sensor node.

Keywords: FEC, IEEE 802.15.4, JPEG2000, low-MAC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
1908 An Image Processing Based Approach for Assessing Wheelchair Cushions

Authors: B. Farahani, R. Fadil, A. Aboonabi, B. Hoffmann, J. Loscheider, K. Tavakolian, S. Arzanpour

Abstract:

Wheelchair users spend long hours in a sitting position, and selecting the right cushion is highly critical in preventing pressure ulcers in that demographic. Pressure Mapping Systems (PMS) are typically used in clinical settings by therapists to identify the sitting profile and pressure points in the sitting area to select the cushion that fits the best for the users. A PMS is a flexible mat composed of arrays of distributed networks of pressure sensors. The output of the PMS systems is a color-coded image that shows the intensity of the pressure concentration. Therapists use the PMS images to compare different cushions fit for each user. This process is highly subjective and requires good visual memory for the best outcome. This paper aims to develop an image processing technique to analyze the images of PMS and provide an objective measure to assess the cushions based on their pressure distribution mappings. In this paper, we first reviewed the skeletal anatomy of the human sitting area and its relation to the PMS image. This knowledge is then used to identify the important features that must be considered in image processing. We then developed an algorithm based on those features to analyze the images and rank them according to their fit to the user's needs. 

Keywords: cushion, image processing, pressure mapping system, wheelchair

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 697
1907 Composite Relevance Feedback for Image Retrieval

Authors: Pushpa B. Patil, Manesh B. Kokare

Abstract:

This paper presents content-based image retrieval (CBIR) frameworks with relevance feedback (RF) based on combined learning of support vector machines (SVM) and AdaBoosts. The framework incorporates only most relevant images obtained from both the learning algorithm. To speed up the system, it removes irrelevant images from the database, which are returned from SVM learner. It is the key to achieve the effective retrieval performance in terms of time and accuracy. The experimental results show that this framework had significant improvement in retrieval effectiveness, which can finally improve the retrieval performance.

Keywords: Image retrieval, relevance feedback, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
1906 Optimizing Exposure Parameters in Digital Mammography: A Study in Morocco

Authors: Talbi Mohammed, Oustous Aziz, Ben Messaoud Mounir, Sebihi Rajaa, Khalis Mohammed

Abstract:

Background: Breast cancer is the leading cause of death for women around the world. Screening mammography is the reference examination, due to its sensitivity for detecting small lesions and micro-calcifications. Therefore, it is essential to ensure quality mammographic examinations with the most optimal dose. These conditions depend on the choice of exposure parameters. Clinically, practices must be evaluated in order to determine the most appropriate exposure parameters. Material and Methods: We performed our measurements on a mobile mammography unit (PLANMED Sofie-classic.) in Morocco. A solid dosimeter (AGMS Radcal) and a MTM 100 phantom allow to quantify the delivered dose and the image quality. For image quality assessment, scores are defined by the rate of visible inserts (MTM 100 phantom), obtained and compared for each acquisition. Results: The results show that the parameters of the mammography unit on which we have made our measurements can be improved in order to offer a better compromise between image quality and breast dose. The last one can be reduced up from 13.27% to 22.16%, while preserving comparable image quality.

Keywords: Mammography, image quality, breast dose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 786
1905 A Way of Converting Color Images to Gray Scale Ones for the Color Blinds -Reducing the Colors for Tokyo Subway Map-

Authors: Katsuhiro Narikiyo, Naoto Kobayakawa

Abstract:

We proposes a way of removing noises and reducing the number of colors contained in a JPEG image. Main purpose of this project is to convert color images to monochrome images for the color blinds. We treat the crispy color images like the Tokyo subway map. Each color in the image has an important information. But for the color blinds, similar colors cannot be distinguished. If we can convert those colors to different gray values, they can distinguish them.

Keywords: Image processing, Color blind, JPEG

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400
1904 Particle Image Velocimetry for Measuring Water Flow Velocity

Authors: King Kuok Kuok, Po Chan Chiu

Abstract:

Floods are natural phenomena, which may turn into disasters causing widespread damage, health problems and even deaths. Nowadays, floods had become more serious and more frequent due to climatic changes. During flooding, discharge measurement still can be taken by standing on the bridge across the river using portable measurement instrument. However, it is too dangerous to get near to the river especially during high flood. Therefore, this study employs Particle Image Velocimetry (PIV) as a tool to measure the surface flow velocity. PIV is a image processing technique to track the movement of water from one point to another. The PIV codes are developed using Matlab. In this study, 18 ping pong balls were scattered over the surface of the drain and images were taken with a digital SLR camera. The images obtained were analyzed using the PIV code. Results show that PIV is able to produce the flow velocity through analyzing the series of images captured.

Keywords: Particle Image Velocimetry, flow velocity, surface flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2845
1903 Adaptive Skin Segmentation Using Color Distance Map

Authors: Mohammad Shoyaib, M. Abdullah-Al-Wadud, Oksam Chae

Abstract:

In this paper an effective approach for segmenting human skin regions in images taken at different environment is proposed. The proposed method uses a color distance map that is flexible enough to reliably detect the skin regions even if the illumination conditions of the image vary. Local image conditions is also focused, which help the technique to adaptively detect differently illuminated skin regions of an image. Moreover, usage of local information also helps the skin detection process to get rid of picking up much noisy pixels.

Keywords: Color Distance map, Reference skin color, Regiongrowing, Skin segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006
1902 Comparative Study of Different Enhancement Techniques for Computed Tomography Images

Authors: C. G. Jinimole, A. Harsha

Abstract:

One of the key problems facing in the analysis of Computed Tomography (CT) images is the poor contrast of the images. Image enhancement can be used to improve the visual clarity and quality of the images or to provide a better transformation representation for further processing. Contrast enhancement of images is one of the acceptable methods used for image enhancement in various applications in the medical field. This will be helpful to visualize and extract details of brain infarctions, tumors, and cancers from the CT image. This paper presents a comparison study of five contrast enhancement techniques suitable for the contrast enhancement of CT images. The types of techniques include Power Law Transformation, Logarithmic Transformation, Histogram Equalization, Contrast Stretching, and Laplacian Transformation. All these techniques are compared with each other to find out which enhancement provides better contrast of CT image. For the comparison of the techniques, the parameters Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) are used. Logarithmic Transformation provided the clearer and best quality image compared to all other techniques studied and has got the highest value of PSNR. Comparison concludes with better approach for its future research especially for mapping abnormalities from CT images resulting from Brain Injuries.

Keywords: Computed tomography, enhancement techniques, increasing contrast, PSNR and MSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
1901 Edge Detection with the Parametric Filtering Method (Comparison with Canny Method)

Authors: Yacine Ait Ali Yahia, Abderazak Guessoum

Abstract:

In this paper, a new method of image edge-detection and characterization is presented. “Parametric Filtering method" uses a judicious defined filter, which preserves the signal correlation structure as input in the autocorrelation of the output. This leads, showing the evolution of the image correlation structure as well as various distortion measures which quantify the deviation between two zones of the signal (the two Hamming signals) for the protection of an image edge.

Keywords: Edge detection, parametrable recursive filter, autocorrelation structure, distortion measurements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1287
1900 A Hyper-Domain Image Watermarking Method based on Macro Edge Block and Wavelet Transform for Digital Signal Processor

Authors: Yi-Pin Hsu, Shin-Yu Lin

Abstract:

In order to protect original data, watermarking is first consideration direction for digital information copyright. In addition, to achieve high quality image, the algorithm maybe can not run on embedded system because the computation is very complexity. However, almost nowadays algorithms need to build on consumer production because integrator circuit has a huge progress and cheap price. In this paper, we propose a novel algorithm which efficient inserts watermarking on digital image and very easy to implement on digital signal processor. In further, we select a general and cheap digital signal processor which is made by analog device company to fit consumer application. The experimental results show that the image quality by watermarking insertion can achieve 46 dB can be accepted in human vision and can real-time execute on digital signal processor.

Keywords: watermarking, digital signal processor, embedded system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1248
1899 A New Approach to Image Segmentation via Fuzzification of Rènyi Entropy of Generalized Distributions

Authors: Samy Sadek, Ayoub Al-Hamadi, Axel Panning, Bernd Michaelis, Usama Sayed

Abstract:

In this paper, we propose a novel approach for image segmentation via fuzzification of Rènyi Entropy of Generalized Distributions (REGD). The fuzzy REGD is used to precisely measure the structural information of image and to locate the optimal threshold desired by segmentation. The proposed approach draws upon the postulation that the optimal threshold concurs with maximum information content of the distribution. The contributions in the paper are as follow: Initially, the fuzzy REGD as a measure of the spatial structure of image is introduced. Then, we propose an efficient entropic segmentation approach using fuzzy REGD. However the proposed approach belongs to entropic segmentation approaches (i.e. these approaches are commonly applied to grayscale images), it is adapted to be viable for segmenting color images. Lastly, diverse experiments on real images that show the superior performance of the proposed method are carried out.

Keywords: Entropy of generalized distributions, entropy fuzzification, entropic image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3232
1898 An Optimal Unsupervised Satellite image Segmentation Approach Based on Pearson System and k-Means Clustering Algorithm Initialization

Authors: Ahmed Rekik, Mourad Zribi, Ahmed Ben Hamida, Mohamed Benjelloun

Abstract:

This paper presents an optimal and unsupervised satellite image segmentation approach based on Pearson system and k-Means Clustering Algorithm Initialization. Such method could be considered as original by the fact that it utilised K-Means clustering algorithm for an optimal initialisation of image class number on one hand and it exploited Pearson system for an optimal statistical distributions- affectation of each considered class on the other hand. Satellite image exploitation requires the use of different approaches, especially those founded on the unsupervised statistical segmentation principle. Such approaches necessitate definition of several parameters like image class number, class variables- estimation and generalised mixture distributions. Use of statistical images- attributes assured convincing and promoting results under the condition of having an optimal initialisation step with appropriated statistical distributions- affectation. Pearson system associated with a k-means clustering algorithm and Stochastic Expectation-Maximization 'SEM' algorithm could be adapted to such problem. For each image-s class, Pearson system attributes one distribution type according to different parameters and especially the Skewness 'β1' and the kurtosis 'β2'. The different adapted algorithms, K-Means clustering algorithm, SEM algorithm and Pearson system algorithm, are then applied to satellite image segmentation problem. Efficiency of those combined algorithms was firstly validated with the Mean Quadratic Error 'MQE' evaluation, and secondly with visual inspection along several comparisons of these unsupervised images- segmentation.

Keywords: Unsupervised classification, Pearson system, Satellite image, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
1897 Outdoor Anomaly Detection with a Spectroscopic Line Detector

Authors: O. J. G. Somsen

Abstract:

One of the tasks of optical surveillance is to detect anomalies in large amounts of image data. However, if the size of the anomaly is very small, limited information is available to distinguish it from the surrounding environment. Spectral detection provides a useful source of additional information and may help to detect anomalies with a size of a few pixels or less. Unfortunately, spectral cameras are expensive because of the difficulty of separating two spatial in addition to one spectral dimension. We investigate the possibility of modifying a simple spectral line detector for outdoor detection. This may be especially useful if the area of interest forms a line, such as the horizon. We use a monochrome CCD that also enables detection into the near infrared. A simple camera is attached to the setup to determine which part of the environment is spectrally imaged. Our preliminary results indicate that sensitive detection of very small targets is indeed possible. Spectra could be taken from the various targets by averaging columns in the line image. By imaging a set of lines of various widths we found narrow lines that could not be seen in the color image but remained visible in the spectral line image. A simultaneous analysis of the entire spectra can produce better results than visual inspection of the line spectral image. We are presently developing calibration targets for spatial and spectral focusing and alignment with the spatial camera. This will present improved results and more use in outdoor application.

Keywords: Anomaly detection, spectroscopic line imaging, image analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
1896 Selection of Appropriate Classification Technique for Lithological Mapping of Gali Jagir Area, Pakistan

Authors: Khunsa Fatima, Umar K. Khattak, Allah Bakhsh Kausar

Abstract:

Satellite images interpretation and analysis assist geologists by providing valuable information about geology and minerals of an area to be surveyed. A test site in Fatejang of district Attock has been studied using Landsat ETM+ and ASTER satellite images for lithological mapping. Five different supervised image classification techniques namely maximum likelihood, parallelepiped, minimum distance to mean, mahalanobis distance and spectral angle mapper have been performed upon both satellite data images to find out the suitable classification technique for lithological mapping in the study area. Results of these five image classification techniques were compared with the geological map produced by Geological Survey of Pakistan. Result of maximum likelihood classification technique applied on ASTER satellite image has highest correlation of 0.66 with the geological map. Field observations and XRD spectra of field samples also verified the results. A lithological map was then prepared based on the maximum likelihood classification of ASTER satellite image.

Keywords: ASTER, Landsat-ETM+, Satellite, Image classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2920
1895 Image Indexing Using a Color Similarity Metric based on the Human Visual System

Authors: Angelo Nodari, Ignazio Gallo

Abstract:

The novelty proposed in this study is twofold and consists in the developing of a new color similarity metric based on the human visual system and a new color indexing based on a textual approach. The new color similarity metric proposed is based on the color perception of the human visual system. Consequently the results returned by the indexing system can fulfill as much as possibile the user expectations. We developed a web application to collect the users judgments about the similarities between colors, whose results are used to estimate the metric proposed in this study. In order to index the image's colors, we used a text indexing engine to facilitate the integration of visual features in a database of text documents. The textual signature is build by weighting the image's colors in according to their occurrence in the image. The use of a textual indexing engine, provide us a simple, fast and robust solution to index images. A typical usage of the system proposed in this study, is the development of applications whose data type is both visual and textual. In order to evaluate the proposed method we chose a price comparison engine as a case of study, collecting a series of commercial offers containing the textual description and the image representing a specific commercial offer.

Keywords: Color Extraction, Content-Based Image Retrieval, Indexing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3027
1894 VDGMSISS: A Verifiable and Detectable Multi-Secret Images Sharing Scheme with General Access Structure

Authors: Justie Su-Tzu Juan, Ming-Jheng Li, Ching-Fen Lee, Ruei-Yu Wu

Abstract:

A secret image sharing scheme is a way to protect images. The main idea is dispersing the secret image into numerous shadow images. A secret image sharing scheme can withstand the impersonal attack and achieve the highly practical property of multiuse  is more practical. Therefore, this paper proposes a verifiable and detectable secret image-sharing scheme called VDGMSISS to solve the impersonal attack and to achieve some properties such as encrypting multi-secret images at one time and multi-use. Moreover, our scheme can also be used for any genera access structure.

Keywords: Multi-secret images sharing scheme, verifiable, detectable, general access structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 452
1893 Color Image Segmentation Using Competitive and Cooperative Learning Approach

Authors: Yinggan Tang, Xinping Guan

Abstract:

Color image segmentation can be considered as a cluster procedure in feature space. k-means and its adaptive version, i.e. competitive learning approach are powerful tools for data clustering. But k-means and competitive learning suffer from several drawbacks such as dead-unit problem and need to pre-specify number of cluster. In this paper, we will explore to use competitive and cooperative learning approach to perform color image segmentation. In competitive and cooperative learning approach, seed points not only compete each other, but also the winner will dynamically select several nearest competitors to form a cooperative team to adapt to the input together, finally it can automatically select the correct number of cluster and avoid the dead-units problem. Experimental results show that CCL can obtain better segmentation result.

Keywords: Color image segmentation, competitive learning, cluster, k-means algorithm, competitive and cooperative learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
1892 Complex Wavelet Transform Based Image Denoising and Zooming Under the LMMSE Framework

Authors: T. P. Athira, Gibin Chacko George

Abstract:

This paper proposes a dual tree complex wavelet transform (DT-CWT) based directional interpolation scheme for noisy images. The problems of denoising and interpolation are modelled as to estimate the noiseless and missing samples under the same framework of optimal estimation. Initially, DT-CWT is used to decompose an input low-resolution noisy image into low and high frequency subbands. The high-frequency subband images are interpolated by linear minimum mean square estimation (LMMSE) based interpolation, which preserves the edges of the interpolated images. For each noisy LR image sample, we compute multiple estimates of it along different directions and then fuse those directional estimates for a more accurate denoised LR image. The estimation parameters calculated in the denoising processing can be readily used to interpolate the missing samples. The inverse DT-CWT is applied on the denoised input and interpolated high frequency subband images to obtain the high resolution image. Compared with the conventional schemes that perform denoising and interpolation in tandem, the proposed DT-CWT based noisy image interpolation method can reduce many noise-caused interpolation artifacts and preserve well the image edge structures. The visual and quantitative results show that the proposed technique outperforms many of the existing denoising and interpolation methods.

Keywords: Dual-tree complex wavelet transform (DT-CWT), denoising, interpolation, optimal estimation, super resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
1891 A Data Hiding Model with High Security Features Combining Finite State Machines and PMM method

Authors: Souvik Bhattacharyya, Gautam Sanyal

Abstract:

Recent years have witnessed the rapid development of the Internet and telecommunication techniques. Information security is becoming more and more important. Applications such as covert communication, copyright protection, etc, stimulate the research of information hiding techniques. Traditionally, encryption is used to realize the communication security. However, important information is not protected once decoded. Steganography is the art and science of communicating in a way which hides the existence of the communication. Important information is firstly hidden in a host data, such as digital image, video or audio, etc, and then transmitted secretly to the receiver.In this paper a data hiding model with high security features combining both cryptography using finite state sequential machine and image based steganography technique for communicating information more securely between two locations is proposed. The authors incorporated the idea of secret key for authentication at both ends in order to achieve high level of security. Before the embedding operation the secret information has been encrypted with the help of finite-state sequential machine and segmented in different parts. The cover image is also segmented in different objects through normalized cut.Each part of the encoded secret information has been embedded with the help of a novel image steganographic method (PMM) on different cuts of the cover image to form different stego objects. Finally stego image is formed by combining different stego objects and transmit to the receiver side. At the receiving end different opposite processes should run to get the back the original secret message.

Keywords: Cover Image, Finite state sequential machine, Melaymachine, Pixel Mapping Method (PMM), Stego Image, NCUT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
1890 An Adaptive Mammographic Image Enhancement in Orthogonal Polynomials Domain

Authors: R. Krishnamoorthy, N. Amudhavalli, M.K. Sivakkolunthu

Abstract:

X-ray mammography is the most effective method for the early detection of breast diseases. However, the typical diagnostic signs such as microcalcifications and masses are difficult to detect because mammograms are of low-contrast and noisy. In this paper, a new algorithm for image denoising and enhancement in Orthogonal Polynomials Transformation (OPT) is proposed for radiologists to screen mammograms. In this method, a set of OPT edge coefficients are scaled to a new set by a scale factor called OPT scale factor. The new set of coefficients is then inverse transformed resulting in contrast improved image. Applications of the proposed method to mammograms with subtle lesions are shown. To validate the effectiveness of the proposed method, we compare the results to those obtained by the Histogram Equalization (HE) and the Unsharp Masking (UM) methods. Our preliminary results strongly suggest that the proposed method offers considerably improved enhancement capability over the HE and UM methods.

Keywords: mammograms, image enhancement, orthogonalpolynomials, contrast improvement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
1889 Using Self Organizing Feature Maps for Classification in RGB Images

Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami

Abstract:

Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feedforward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on selforganizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.

Keywords: Classification, SOFM, neural network, RGB images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319