Search results for: Equivalent Static Force Method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9268

Search results for: Equivalent Static Force Method

8968 Performance of Bridge Girder with Perforations under Tsunami Wave Loading

Authors: Sadia Rahman, Shatirah Akib, M. T. R. Khan, R. Triatmadja

Abstract:

Tsunami disaster poses a great threat to coastal infrastructures. Bridges without adequate provisions for earthquake and tsunami loading is generally vulnerable to tsunami attack. During the last two disastrous tsunami event (i.e. Indian Ocean and Japan Tsunami) a number of bridges were observed subsequent damages by tsunami waves. In this study, laboratory experiments were conducted to study the effects of perforations in bridge girder in force reduction. Results showed that significant amount of forces were reduced using perforations in girder. Approximately 10% to 18% force reductions were achieved by using about 16% perforations in bridge girder. Subsequent amount of force reductions revealed that perforations in girder are effective in reducing tsunami forces as perforations in girder let water to be passed through. Thus, less bridge damages are expected with the presence of perforations in girder during tsunami period.

Keywords: Bridge, force, girder, perforation, tsunami, wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284
8967 Alternative to M-Estimates in Multisensor Data Fusion

Authors: Nga-Viet Nguyen, Georgy Shevlyakov, Vladimir Shin

Abstract:

To solve the problem of multisensor data fusion under non-Gaussian channel noise. The advanced M-estimates are known to be robust solution while trading off some accuracy. In order to improve the estimation accuracy while still maintaining the equivalent robustness, a two-stage robust fusion algorithm is proposed using preliminary rejection of outliers then an optimal linear fusion. The numerical experiments show that the proposed algorithm is equivalent to the M-estimates in the case of uncorrelated local estimates and significantly outperforms the M-estimates when local estimates are correlated.

Keywords: Data fusion, estimation, robustness, M-estimates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
8966 Behavior and Strength of Slab-Edge Beam-Column Connections under Shear Force and Moment

Authors: Omar M. Ben-Sasi

Abstract:

A total of fourteen slab-edge beam-column connection specimens were tested gradually to failure under the effect of simultaneous action of shear force and moment. The objective was to investigate the influence of some parameters thought to be important on the behavior and strength of slab-column connections with edge beams encountered in flat slab flooring and roofing systems. The parameters included the existence and strength of edge beam, depth and width of edge beam, steel reinforcement ratio of slab, ratio of moment to shear force, and the existence of openings in the region next to the column.

Results obtained demonstrated the importance of the studied parameters on the strength and behavior of slab-column connections with edge beams.

Keywords: Strength, flat slab, slab-column connections, shear force, moment, behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4455
8965 A Wind Farm Reduced Order Model Using Integral Manifold Theory

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

Due to the increasing penetration of wind energy, it is necessary to possess design tools that are able to simulate the impact of these installations in utility grids. In order to provide a net contribution to this issue a detailed wind park model has been developed and is briefly presented. However, the computational costs associated with the performance of such a detailed model in describing the behavior of a wind park composed by a considerable number of units may render its practical application very difficult. To overcome this problem integral manifolds theory has been applied to reduce the order of the detailed wind park model, and therefore create the conditions for the development of a dynamic equivalent which is able to retain the relevant dynamics with respect to the existing a.c. system. In this paper integral manifold method has been introduced for order reduction. Simulation results of the proposed method represents that integral manifold method results fit the detailed model results with a higher precision than singular perturbation method.

Keywords: Wind, Reduced Order, Integral Manifold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484
8964 An Implicit Methodology for the Numerical Modeling of Locally Inextensible Membranes

Authors: Aymen Laadhari

Abstract:

We present in this paper a fully implicit finite element method tailored for the numerical modeling of inextensible fluidic membranes in a surrounding Newtonian fluid. We consider a highly simplified version of the Canham-Helfrich model for phospholipid membranes, in which the bending force and spontaneous curvature are disregarded. The coupled problem is formulated in a fully Eulerian framework and the membrane motion is tracked using the level set method. The resulting nonlinear problem is solved by a Newton-Raphson strategy, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the proposed method. We show that stability is maintained for significantly larger time steps with respect to an explicit decoupling method.

Keywords: Finite element method, Newton method, level set, Navier-Stokes, inextensible membrane, liquid drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271
8963 Design and Development of Optical Sensor Based Ground Reaction Force Measurement Platform for GAIT and Geriatric Studies

Authors: K. Chethana, A. S. Guru Prasad, S. N. Omkar, B. Vadiraj, S. Asokan

Abstract:

This paper describes an ab-initio design, development and calibration results of an Optical Sensor Ground Reaction Force Measurement Platform (OSGRFP) for gait and geriatric studies. The developed system employs an array of FBG sensors to measure the respective ground reaction forces from all three axes (X, Y and Z), which are perpendicular to each other. The novelty of this work is two folded. One is in its uniqueness to resolve the tri axial resultant forces during the stance in to the respective pure axis loads and the other is the applicability of inherently advantageous FBG sensors which are most suitable for biomechanical instrumentation. To validate the response of the FBG sensors installed in OSGRFP and to measure the cross sensitivity of the force applied in other directions, load sensors with indicators are used. Further in this work, relevant mathematical formulations are presented for extracting respective ground reaction forces from wavelength shifts/strain of FBG sensors on the OSGRFP. The result of this device has implications in understanding the foot function, identifying issues in gait cycle and measuring discrepancies between left and right foot. The device also provides a method to quantify and compare relative postural stability of different subjects under test, which has implications in post-surgical rehabilitation, geriatrics and optimizing training protocols for sports personnel.

Keywords: Balance, stability, Gait analysis, FBG applications, optical sensor ground reaction force platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
8962 Integrable Heisenberg Ferromagnet Equations with Self-Consistent Potentials

Authors: Gulgassyl Nugmanova, Zhanat Zhunussova, Kuralay Yesmakhanova, Galya Mamyrbekova, Ratbay Myrzakulov

Abstract:

In this paper, we consider some integrable Heisenberg Ferromagnet Equations with self-consistent potentials. We study their Lax representations. In particular we derive their equivalent counterparts in the form of nonlinear Schr¨odinger type equations. We present the integrable reductions of the Heisenberg Ferromagnet Equations with self-consistent potentials. These integrable Heisenberg Ferromagnet Equations with self-consistent potentials describe nonlinear waves in ferromagnets with some additional physical fields.

Keywords: Spin systems, equivalent counterparts, integrable reductions, self-consistent potentials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
8961 Evaluation of the Displacement-Based and the Force-Based Adaptive Pushover Methods in Seismic Response Estimation of Irregular Buildings Considering Torsional Effects

Authors: R. Abbasnia, F. Mohajeri Nav, S. Zahedifar, A. Tajik

Abstract:

Recent years, adaptive pushover methods have been developed for seismic analysis of structures. Herein, the accuracy of the displacement-based adaptive pushover (DAP) method, which is introduced by Antoniou and Pinho [2004], is evaluated for Irregular buildings. The results are compared to the force-based procedure. Both concrete and steel frame structures, asymmetric in plan and elevation are analyzed and also torsional effects are taking into the account. These analyses are performed using both near fault and far fault records. In order to verify the results, the Incremental Dynamic Analysis (IDA) is performed.

Keywords: Pushover Analysis, DAP, IDA, Torsion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3072
8960 Automatic Segmentation of Lung Areas in Magnetic Resonance Images

Authors: Alireza Osareh, Bita Shadgar

Abstract:

Segmenting the lungs in medical images is a challenging and important task for many applications. In particular, automatic segmentation of lung cavities from multiple magnetic resonance (MR) images is very useful for oncological applications such as radiotherapy treatment planning. However, distinguishing of the lung areas is not trivial due to largely changing lung shapes, low contrast and poorly defined boundaries. In this paper, we address lung segmentation problem from pulmonary magnetic resonance images and propose an automated method based on a robust regionaided geometric snake with a modified diffused region force into the standard geometric model definition. The extra region force gives the snake a global complementary view of the lung boundary information within the image which along with the local gradient flow, helps detect fuzzy boundaries. The proposed method has been successful in segmenting the lungs in every slice of 30 magnetic resonance images with 80 consecutive slices in each image. We present results by comparing our automatic method to manually segmented lung cavities provided by an expert radiologist and with those of previous works, showing encouraging results and high robustness of our approach.

Keywords: Active contours, breast cancer, fuzzy c-means segmentation, treatment planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
8959 Structural Analysis of Aircraft Wing Using Finite Element Analysis

Authors: Manish Kumar, Pradeep Rout Aditya Kumar Jha, Pankaj Gupta

Abstract:

Wings are structural components of an aeroplane that are used to produce lift while the aircraft is in flight. The initial assault angle of the wing is definite. Due to the pressure difference at the top and bottom surfaces of the wing, lift force is produced when the flow passes over it. This paper explains the fundamental concept of the structural behaviour of a wing threatened by flowing loads during the voyage. The study comprises the use of concepts and analysis with the help of finite element analysis. Wing assembly is the first stage of wing model and design, which are determined by fascinating factual features. The basic gathering wing consists of a thin membrane, two poles, and several ribs. It has two spars, the major spar and the secondary spar. Here, NACA 23015 is selected as the standard model for all types of aerofoil structures since it is more akin to the custom aerofoil utilized in large aircraft, specifically the Airbus A320. Two rods mostly endure the twisting moment and trim strength, which is finished with titanium contamination to ensure enough inflexibility. The covering and wing spars are made of aluminium amalgam to lessen the structural heaviness. Following that, a static underlying examination is performed, and the general contortion, equivalent flexible strain, and comparing Von-Mises pressure are obtained to aid in investigations of the mechanical behaviour of the wing. Moreover, the modular examination is being upheld to decide the normal pace of repetition as well as the modular state of the three orders, which are obtained through the pre-stress modular investigation. The findings of the modular investigation assist engineers in reducing their excitement about regular events and turning away the wing from the whirlwind. Based on the findings of the study, planners can prioritise union and examination of the pressure mindfulness range and tremendous twisting region. All in all, the entertainment outcomes demonstrate that the game plan is feasible and further develop the data grade of the lifting surface.

Keywords: FEM, Airbus, NACA, modulus of elasticity, aircraft wing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 485
8958 Real-Time Measurement Approach for Tracking the ΔV10 Estimate Value of DC EAF

Authors: Jin-Lung Guan, Jyh-Cherng Gu, Chun-Wei Huang, Hsin-Hung Chang

Abstract:

This investigation develops a revisable method for estimating the estimate value of equivalent 10 Hz voltage flicker (DV10) of a DC Electric Arc Furnace (EAF). This study also discusses three 161kV DC EAFs by field measurement, with those results indicating that the estimated DV10 value is significantly smaller than the survey value. The key point is that the conventional means of estimating DV10 is inappropriate. There is a main cause as the assumed Qmax is too small.

Although DC EAF is regularly operated in a constant MVA mode, the reactive power variation in the Main Transformer (MT) is more significant than that in the Furnace Transformer (FT). A substantial difference exists between estimated maximum reactive power fluctuation (DQmax) and the survey value from actual DC EAF operations. However, this study proposes a revisable method that can obtain a more accurate DV10 estimate than the conventional method.

Keywords: Voltage Flicker, dc EAF, Estimate Value, DV10.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3323
8957 Shaking Force Balancing of Mechanisms: An Overview

Authors: Vigen Arakelian

Abstract:

The balancing of mechanisms is a well-known problem in the field of mechanical engineering because the variable dynamic loads cause vibrations, as well as noise, wear and fatigue of the machines. A mechanical system with unbalance shaking force and shaking moment transmits substantial vibration to the frame. Therefore, the objective of the balancing is to cancel or reduce the variable dynamic reactions transmitted to the frame. The resolution of this problem consists in the balancing of the shaking force and shaking moment. It can be fully or partially, by internal mass redistribution via adding counterweights or by modification of the mechanism's architecture via adding auxiliary structures. The balancing problems are of continue interest to researchers. Several laboratories around the world are very active in this area and new results are published regularly. However, despite its ancient history, mechanism balancing theory continues to be developed and new approaches and solutions are constantly being reported. Various surveys have been published that disclose particularities of balancing methods. The author believes that this is an appropriate moment to present a state of the art of the shaking force balancing studies completed by new research results. This paper presents an overview of methods devoted to the shaking force balancing of mechanisms, as well as the historical aspects of the origins and the evolution of the balancing theory of mechanisms.

Keywords: Inertia forces, shaking forces, balancing, dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 504
8956 Seismic Behavior and Capacity/Demand Analyses of a Simply-Supported Multi-Span Precast Bridge

Authors: Nasim Shatarat, Adel Assaf

Abstract:

This paper presents the results of an analytical study on the seismic response of a Multi-Span-Simply-Supported precast bridge in Washington State. The bridge was built in the early 1960's along Interstate 5 and was widened the first time in 1979 and the second time in 2001. The primary objective of this research project is to determine the seismic vulnerability of the bridge in order to develop the required retrofit measure. The seismic vulnerability of the bridge is evaluated using two seismic evaluation methods presented in the FHWA Seismic Retrofitting Manual for Highway Bridges, Method C and Method D2. The results of the seismic analyses demonstrate that Method C and Method D2 vary markedly in terms of the information they provide to the bridge designer regarding the vulnerability of the bridge columns.

Keywords: Bridges, Capacity, Demand, Seismic, Static pushover, Retrofit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2926
8955 Real Power Generation Scheduling to Improve Steady State Stability Limit in the Java-Bali 500kV Interconnection Power System

Authors: Indar Chaerah Gunadin, Adi Soeprijanto, Ontoseno Penangsang

Abstract:

This paper will discuss about an active power generator scheduling method in order to increase the limit level of steady state systems. Some power generator optimization methods such as Langrange, PLN (Indonesian electricity company) Operation, and the proposed Z-Thevenin-based method will be studied and compared in respect of their steady state aspects. A method proposed in this paper is built upon the thevenin equivalent impedance values between each load respected to each generator. The steady state stability index obtained with the REI DIMO method. This research will review the 500kV-Jawa-Bali interconnection system. The simulation results show that the proposed method has the highest limit level of steady state stability compared to other optimization techniques such as Lagrange, and PLN operation. Thus, the proposed method can be used to create the steady state stability limit of the system especially in the peak load condition.

Keywords: generation scheduling, steady-state stability limit, REI Dimo, margin stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249
8954 Probabilistic Center Voting Method for Subsequent Object Tracking and Segmentation

Authors: Suryanto, Hyo-Kak Kim, Sang-Hee Park, Dae-Hwan Kim, Sung-Jea Ko

Abstract:

In this paper, we introduce a novel algorithm for object tracking in video sequence. In order to represent the object to be tracked, we propose a spatial color histogram model which encodes both the color distribution and spatial information. The object tracking from frame to frame is accomplished via center voting and back projection method. The center voting method has every pixel in the new frame to cast a vote on whereabouts the object center is. The back projection method segments the object from the background. The segmented foreground provides information on object size and orientation, omitting the need to estimate them separately. We do not put any assumption on camera motion; the proposed algorithm works equally well for object tracking in both static and moving camera videos.

Keywords: center voting, back projection, object tracking, size adaptation, non-stationary camera tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
8953 Nonlinear and Chaotic Motions for a Shock Absorbing Structure Supported by Nonlinear Springs with Hysteresis Using Fast FEA

Authors: T. Yamaguchi, Y. Kurosawa, S. Maruyama, K. Tobita, Y. Hirano, K. Yokouchi, K. Kihara, T. Sunaga

Abstract:

This paper describes dynamic analysis using proposed fast finite element method for a shock absorbing structure including a sponge. The structure is supported by nonlinear concentrated springs. The restoring force of the spring has cubic nonlinearity and linear hysteresis damping. To calculate damping properties for the structures including elastic body and porous body, displacement vectors as common unknown variable are solved under coupled condition. Under small amplitude, we apply asymptotic method to complex eigenvalue problem of this system to obtain modal parameters. And then expressions of modal loss factor are derived approximately. This approach was proposed by one of the authors previously. We call this method as Modal Strain and Kinetic Energy Method (MSKE method). Further, using the modal loss factors, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled equations using normal coordinate corresponding to linear natural modes. This transformation yields computation efficiency. As a numerical example of a shock absorbing structures, we adopt double skins with a sponge. The double skins are supported by nonlinear concentrated springs. We clarify influences of amplitude of the input force on nonlinear and chaotic responses.

Keywords: Dynamic response, Nonlinear and chaotic motions, Finite Element analysis, Numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
8952 Research on Maintenance Design Method based Virtual Maintenance

Authors: Yunbin Yang, Liangli He, Fengjun Wang

Abstract:

The essentiality of maintenance assessment and maintenance optimization in design stage is analyzed, and the existent problems of conventional maintenance design method are illuminated. MDMVM (Maintenance Design Method based Virtual Maintenance) is illuminated, and the process of MDMVM established, and the MDMVM architecture is given out. The key techniques of MDMVM are analyzed, and include maintenance design based KBE (Knowledge Based Engineering) and virtual maintenance based physically attribute. According to physical property, physically based modeling, visual object movement control, the simulation of operation force and maintenance sequence planning method are emphatically illuminated. Maintenance design system based virtual maintenance is established in foundation of maintenance design method.

Keywords: Digital mock-up, virtual maintenance, knowledge engineering, maintenance sequence planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1334
8951 Experimental Study on Quasi-Static Response of Multi-layer Sandwich Composite Structures

Authors: S. Jedari Salami

Abstract:

In this paper the effects of adding an extra layer within a sandwich panel and core- types in top and bottom cores on quasi- static loading are studied experimentally. The panel includes polymer composite laminated sheets for faces and the internal laminated sheet called extra layer sheet, and two types of crushable foams are selected as the core material. Quasi- static tests were done by ZWICK testing machine on fully backed specimens with two foam cores, Poly Urethane Rigid (PUR) and Poly Vinyl Chloride (PVC). It was found that the core material type has made significant role on improving the sandwich panel’s behavior compared with the effect of extra layer location.

Keywords: Multi-layer sandwich structures, Internal sheet, Crushable foam, Top core, Bottom core.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153
8950 Effect of Endplate Shape on Performance and Stability of Wings-in Ground (WIG) Craft

Authors: Kyoungwoo Park, Chol Ho Hong, Kwang Soo Kim, Juhee Lee

Abstract:

Numerical analysis for the aerodynamic characteristics of the WIG (wing-in ground effect) craft with highly cambered and aspect ratio of one is performed to predict the ground effect for the case of with- and without- lower-extension endplate. The analysis is included varying angles of attack from 0 to10 deg. and ground clearances from 5% of chord to 50%. Due to the ground effect, the lift by rising in pressure on the lower surface is increased and the influence of wing-tip vortices is decreased. These two significant effects improve the lift-drag ratio. On the other hand, the endplate prevents the high-pressure air escaping from the air cushion at the wing tip and causes to increase the lift and lift-drag ratio further. It is found from the visualization of computation results that two wing-tip vortices are generated from each surface of the wing tip and their strength are weak and diminished rapidly. Irodov-s criteria are also evaluated to investigate the static height stability. The comparison of Irodov-s criteria shows that the endplate improves the deviation of the static height stability with respect to pitch angles and heights. As the results, the endplate can improve the aerodynamic characteristics and static height stability of wings in ground effect, simultaneously.

Keywords: WIG craft, Endplate, Ground Effect, Aerodynamics, CFD, Lift-drag ratio, Static height stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2969
8949 The Calculation of Electromagnetic Fields (EMF) in Substations of Shopping Centers

Authors: Adnan Muharemovic, Hidajet Salkic, Mario Klaric, Irfan Turkovic, Aida Muharemovic

Abstract:

In nature, electromagnetic fields always appear like atmosphere static electric field, the earth's static magnetic field and the wide-rang frequency electromagnetic field caused by lightening. However, besides natural electromagnetic fields (EMF), today human beings are mostly exposed to artificial electromagnetic fields due to technology progress and outspread use of electrical devices. To evaluate nuisance of EMF, it is necessary to know field intensity for every frequency which appears and compare it with allowed values. Low frequency EMF-s around transmission and distribution lines are time-varying quasi-static electromagnetic fields which have conservative component of low frequency electrical field caused by charges and eddy component of low frequency magnetic field caused by currents. Displacement current or field delay are negligible, so energy flow in quasi-static EMF involves diffusion, analog like heat transfer. Electrical and magnetic field can be analyzed separately. This paper analysis the numerical calculations in ELF-400 software of EMF in distribution substation in shopping center. Analyzing the results it is possible to specify locations exposed to the fields and give useful suggestion to eliminate electromagnetic effect or reduce it on acceptable level within the non-ionizing radiation norms and norms of protection from EMF.

Keywords: Electromagnetic Field, Density of Electromagnetic Flow, Place of Proffesional Exposure, Place of Increased Sensitivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3819
8948 Flexural Strength Design of RC Beams with Consideration of Strain Gradient Effect

Authors: Mantai Chen, Johnny Ching Ming Ho

Abstract:

The stress-strain relationship of concrete under flexure is one of the essential parameters in assessing ultimate flexural strength capacity of RC beams. Currently, the concrete stress-strain curve in flexure is obtained by incorporating a constant scale-down factor of 0.85 in the uniaxial stress-strain curve. However, it was revealed that strain gradient would improve the maximum concrete stress under flexure and concrete stress-strain curve is strain gradient dependent. Based on the strain-gradient-dependent concrete stress-strain curve, the investigation of the combined effects of strain gradient and concrete strength on flexural strength of RC beams was extended to high strength concrete up to 100 MPa by theoretical analysis. As an extension and application of the authors’ previous study, a new flexural strength design method incorporating the combined effects of strain gradient and concrete strength is developed. A set of equivalent rectangular concrete stress block parameters is proposed and applied to produce a series of design charts showing that the flexural strength of RC beams are improved with strain gradient effect considered.

Keywords: Beams, Equivalent concrete stress block, Flexural strength, Strain gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4072
8947 Finite Element Simulation of Multi-Stage Deep Drawing Processes and Comparison with Experimental Results

Authors: A. Pourkamali Anaraki, M. Shahabizadeh, B. Babaee

Abstract:

The plastic forming process of sheet plate takes an important place in forming metals. The traditional techniques of tool design for sheet forming operations used in industry are experimental and expensive methods. Prediction of the forming results, determination of the punching force, blank holder forces and the thickness distribution of the sheet metal will decrease the production cost and time of the material to be formed. In this paper, multi-stage deep drawing simulation of an Industrial Part has been presented with finite element method. The entire production steps with additional operations such as intermediate annealing and springback has been simulated by ABAQUS software under axisymmetric conditions. The simulation results such as sheet thickness distribution, Punch force and residual stresses have been extracted in any stages and sheet thickness distribution was compared with experimental results. It was found through comparison of results, the FE model have proven to be in close agreement with those of experiment.

Keywords: Deep drawing, Finite element method, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5039
8946 Performance Evaluation of XMAC and BMAC Routing Protocol under Static and Mobility Scenarios in Wireless Sensor Network

Authors: M. V. Ramana Rao, T. Adilakshmi

Abstract:

Based on application requirements, nodes are static or mobile in Wireless Sensor Networks (WSNs). Mobility poses challenges in protocol design, especially at the link layer requiring mobility adaptation algorithms to localize mobile nodes and predict link quality to be established with them. This study implements XMAC and Berkeley Media Access Control (BMAC) routing protocols to evaluate performance under WSN’s static and mobility conditions. This paper gives a comparative study of mobility-aware MAC protocols. Routing protocol performance, based on Average End to End Delay, Average Packet Delivery Ratio, Average Number of hops, and Jitter is evaluated.

Keywords: Wireless Sensor Network (WSN), Medium Access Control (MAC), Berkeley Media Access Control (BMAC), mobility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2359
8945 Reduction of Overheads with Dynamic Caching in Fixed AODV based MANETs

Authors: Babar S. Kawish, Baber Aslam, Shoab A Khan

Abstract:

In this paper we show that adjusting ART in accordance with static network scenario can substantially improve the performance of AODV by reducing control overheads. We explain the relationship of control overheads with network size and request patterns of the users. Through simulation we show that making ART proportionate to network static time reduces the amount of control overheads independent of network size and user request patterns.

Keywords: AODV, ART, MANET, Route Cache, TTL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
8944 Heat Transfer from Two Cam Shaped Cylinders in Tandem Arrangement

Authors: Arash Mir Abdolah Lavasani, Hamidreza Bayat

Abstract:

Heat transfer from two cam shape cylinder in tandem arrangement had been studied numerically. The distance between the centers of cylinders (L) is allowed to vary to change the longitudinal pitch ratio (L/Deq). The equivalent diameter of the cylinder (Deq) is 27.6 mm and longitudinal pitch ratio varies in range 2<L/Deq<6. The Reynolds number based on equivalent circular cylinder are within 50< Reeq <300. Results show that Nusselt number of second cylinder increases about 5 to 33 times when longitudinal pitch ratio increases from 2 to 6.

Keywords: Cam Shaped, tandem Cylinders, Numerical, Heat Transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
8943 An Identification Method of Geological Boundary Using Elastic Waves

Authors: Masamitsu Chikaraishi, Mutsuto Kawahara

Abstract:

This paper focuses on a technique for identifying the geological boundary of the ground strata in front of a tunnel excavation site using the first order adjoint method based on the optimal control theory. The geological boundary is defined as the boundary which is different layers of elastic modulus. At tunnel excavations, it is important to presume the ground situation ahead of the cutting face beforehand. Excavating into weak strata or fault fracture zones may cause extension of the construction work and human suffering. A theory for determining the geological boundary of the ground in a numerical manner is investigated, employing excavating blasts and its vibration waves as the observation references. According to the optimal control theory, the performance function described by the square sum of the residuals between computed and observed velocities is minimized. The boundary layer is determined by minimizing the performance function. The elastic analysis governed by the Navier equation is carried out, assuming the ground as an elastic body with linear viscous damping. To identify the boundary, the gradient of the performance function with respect to the geological boundary can be calculated using the adjoint equation. The weighed gradient method is effectively applied to the minimization algorithm. To solve the governing and adjoint equations, the Galerkin finite element method and the average acceleration method are employed for the spatial and temporal discretizations, respectively. Based on the method presented in this paper, the different boundary of three strata can be identified. For the numerical studies, the Suemune tunnel excavation site is employed. At first, the blasting force is identified in order to perform the accuracy improvement of analysis. We identify the geological boundary after the estimation of blasting force. With this identification procedure, the numerical analysis results which almost correspond with the observation data were provided.

Keywords: Parameter identification, finite element method, average acceleration method, first order adjoint equation method, weighted gradient method, geological boundary, navier equation, optimal control theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
8942 Terrain Evaluation Method for Hexapod Robot

Authors: Tomas Luneckas, Dainius Udris

Abstract:

In this paper a simple terrain evaluation method for hexapod robot is introduced. This method is based on feet coordinate evaluation when all are on the ground. Depending on the feet coordinate differences the local terrain evaluation is possible. Terrain evaluation is necessary for right gait selection and/or body position correction. For terrain roughness evaluation three planes are plotted: two of them as definition points use opposite feet coordinates, third coincides with the robot body plane. The leaning angle of body plane is evaluated measuring gravity force using three-axis accelerometer. Terrain roughness evaluation method is based on angle estimation between normal vectors of these planes. Aim of this work is to present a simple method for embedded robot controller, allowing to find the best further movement settings.

Keywords: Hexapod robot, pose estimation, terrain evaluation, terrain roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
8941 Simulating Dynamics of Thoracolumbar Spine Derived from Life MOD under Haptic Forces

Authors: K. T. Huynh, I. Gibson, W. F. Lu, B. N. Jagdish

Abstract:

In this paper, the construction of a detailed spine model is presented using the LifeMOD Biomechanics Modeler. The detailed spine model is obtained by refining spine segments in cervical, thoracic and lumbar regions into individual vertebra segments, using bushing elements representing the intervertebral discs, and building various ligamentous soft tissues between vertebrae. In the sagittal plane of the spine, constant force will be applied from the posterior to anterior during simulation to determine dynamic characteristics of the spine. The force magnitude is gradually increased in subsequent simulations. Based on these recorded dynamic properties, graphs of displacement-force relationships will be established in terms of polynomial functions by using the least-squares method and imported into a haptic integrated graphic environment. A thoracolumbar spine model with complex geometry of vertebrae, which is digitized from a resin spine prototype, will be utilized in this environment. By using the haptic technique, surgeons can touch as well as apply forces to the spine model through haptic devices to observe the locomotion of the spine which is computed from the displacement-force relationship graphs. This current study provides a preliminary picture of our ongoing work towards building and simulating bio-fidelity scoliotic spine models in a haptic integrated graphic environment whose dynamic properties are obtained from LifeMOD. These models can be helpful for surgeons to examine kinematic behaviors of scoliotic spines and to propose possible surgical plans before spine correction operations.

Keywords: Haptic interface, LifeMOD, spine modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
8940 Estimation of the Bit Side Force by Using Artificial Neural Network

Authors: Mohammad Heidari

Abstract:

Horizontal wells are proven to be better producers because they can be extended for a long distance in the pay zone. Engineers have the technical means to forecast the well productivity for a given horizontal length. However, experiences have shown that the actual production rate is often significantly less than that of forecasted. It is a difficult task, if not impossible to identify the real reason why a horizontal well is not producing what was forecasted. Often the source of problem lies in the drilling of horizontal section such as permeability reduction in the pay zone due to mud invasion or snaky well patterns created during drilling. Although drillers aim to drill a constant inclination hole in the pay zone, the more frequent outcome is a sinusoidal wellbore trajectory. The two factors, which play an important role in wellbore tortuosity, are the inclination and side force at bit. A constant inclination horizontal well can only be drilled if the bit face is maintained perpendicular to longitudinal axis of bottom hole assembly (BHA) while keeping the side force nil at the bit. This approach assumes that there exists no formation force at bit. Hence, an appropriate BHA can be designed if bit side force and bit tilt are determined accurately. The Artificial Neural Network (ANN) is superior to existing analytical techniques. In this study, the neural networks have been employed as a general approximation tool for estimation of the bit side forces. A number of samples are analyzed with ANN for parameters of bit side force and the results are compared with exact analysis. Back Propagation Neural network (BPN) is used to approximation of bit side forces. Resultant low relative error value of the test indicates the usability of the BPN in this area.

Keywords: Artificial Neural Network, BHA, Horizontal Well, Stabilizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
8939 Belief Theory-Based Classifiers Comparison for Static Human Body Postures Recognition in Video

Authors: V. Girondel, L. Bonnaud, A. Caplier, M. Rombaut

Abstract:

This paper presents various classifiers results from a system that can automatically recognize four different static human body postures in video sequences. The considered postures are standing, sitting, squatting, and lying. The three classifiers considered are a naïve one and two based on the belief theory. The belief theory-based classifiers use either a classic or restricted plausibility criterion to make a decision after data fusion. The data come from the people 2D segmentation and from their face localization. Measurements consist in distances relative to a reference posture. The efficiency and the limits of the different classifiers on the recognition system are highlighted thanks to the analysis of a great number of results. This system allows real-time processing.

Keywords: Belief theory, classifiers comparison, data fusion, human motion analysis, real-time processing, static posture recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480