Search results for: Early stage prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2464

Search results for: Early stage prediction

2164 Bayesian Networks for Earthquake Magnitude Classification in a Early Warning System

Authors: G. Zazzaro, F.M. Pisano, G. Romano

Abstract:

During last decades, worldwide researchers dedicated efforts to develop machine-based seismic Early Warning systems, aiming at reducing the huge human losses and economic damages. The elaboration time of seismic waveforms is to be reduced in order to increase the time interval available for the activation of safety measures. This paper suggests a Data Mining model able to correctly and quickly estimate dangerousness of the running seismic event. Several thousand seismic recordings of Japanese and Italian earthquakes were analyzed and a model was obtained by means of a Bayesian Network (BN), which was tested just over the first recordings of seismic events in order to reduce the decision time and the test results were very satisfactory. The model was integrated within an Early Warning System prototype able to collect and elaborate data from a seismic sensor network, estimate the dangerousness of the running earthquake and take the decision of activating the warning promptly.

Keywords: Bayesian Networks, Decision Support System, Magnitude Classification, Seismic Early Warning System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3597
2163 3D Face Recognition Using Modified PCA Methods

Authors: Omid Gervei, Ahmad Ayatollahi, Navid Gervei

Abstract:

In this paper we present an approach for 3D face recognition based on extracting principal components of range images by utilizing modified PCA methods namely 2DPCA and bidirectional 2DPCA also known as (2D) 2 PCA.A preprocessing stage was implemented on the images to smooth them using median and Gaussian filtering. In the normalization stage we locate the nose tip to lay it at the center of images then crop each image to a standard size of 100*100. In the face recognition stage we extract the principal component of each image using both 2DPCA and (2D) 2 PCA. Finally, we use Euclidean distance to measure the minimum distance between a given test image to the training images in the database. We also compare the result of using both methods. The best result achieved by experiments on a public face database shows that 83.3 percent is the rate of face recognition for a random facial expression.

Keywords: 3D face recognition, 2DPCA, (2D) 2 PCA, Rangeimage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3066
2162 The Effect of Main Factors on Forces during FSJ Processing of AA2024 Aluminum

Authors: Dunwen Zuo, Yongfang Deng, Bo Song

Abstract:

An attempt is made here to measure the forces of three directions, under conditions of different feed speeds, different tilt angles of tool and without or with the pin on the tool, by using octagonal ring dynamometer in the AA2024 aluminum FSJ (Friction Stir Joining) process, and investigate how four main factors influence forces in the FSJ process. It is found that, high feed speed lead to small feed force and small lateral force, but high feed speed leads to large feed force in the stable joining stage of process. As the rotational speed increasing, the time of axial force drop from the maximum to the minimum required increased in the push-up process. In the stable joining stage, the rotational speed has little effect on the feed force; large rotational speed leads to small lateral force and axial force. The maximum axial force increases as the tilt angle of tool increases at the downward movement stage. At the moment of start feeding, as tilt angle of tool increases, the amplitudes of the axial force increasing become large. In the stable joining stage, with the increase of tilt angle of tool, the axial force is increased, the lateral force is decreased, and the feed force almost unchanged. The tool with pin will decrease axial force in the downward movement stage. The feed force and lateral force will increase, but the axial force will reduced in the stable joining stage by using the tool with pin compare to by using the tool without pin.

Keywords: FSJ, force factor, AA2024, friction stir joining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137
2161 Multi-Label Hierarchical Classification for Protein Function Prediction

Authors: Helyane B. Borges, Julio Cesar Nievola

Abstract:

Hierarchical classification is a problem with applications in many areas as protein function prediction where the dates are hierarchically structured. Therefore, it is necessary the development of algorithms able to induce hierarchical classification models. This paper presents experimenters using the algorithm for hierarchical classification called Multi-label Hierarchical Classification using a Competitive Neural Network (MHC-CNN). It was tested in ten datasets the Gene Ontology (GO) Cellular Component Domain. The results are compared with the Clus-HMC and Clus-HSC using the hF-Measure.

Keywords: Hierarchical Classification, Competitive Neural Network, Global Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379
2160 Assessment of Modern RANS Models for the C3X Vane Film Cooling Prediction

Authors: Mikhail Gritskevich, Sebastian Hohenstein

Abstract:

The paper presents the results of a detailed assessment of several modern Reynolds Averaged Navier-Stokes (RANS) turbulence models for prediction of C3X vane film cooling at various injection regimes. Three models are considered, namely the Shear Stress Transport (SST) model, the modification of the SST model accounting for the streamlines curvature (SST-CC), and the Explicit Algebraic Reynolds Stress Model (EARSM). It is shown that all the considered models face with a problem in prediction of the adiabatic effectiveness in the vicinity of the cooling holes; however, accounting for the Reynolds stress anisotropy within the EARSM model noticeably increases the solution accuracy. On the other hand, further downstream all the models provide a reasonable agreement with the experimental data for the adiabatic effectiveness and among the considered models the most accurate results are obtained with the use EARMS.

Keywords: Discrete holes film cooling, Reynolds Averaged Navier-Stokes, Reynolds stress tensor anisotropy, turbulent heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120
2159 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements

Authors: Henok Hailemariam, Frank Wuttke

Abstract:

Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.

Keywords: Collapsible soil, relative subsidence, dielectric permittivity, moisture content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1115
2158 Prediction of Coast Down Time for Mechanical Faults in Rotating Machinery Using Artificial Neural Networks

Authors: G. R. Rameshkumar, B. V. A Rao, K. P. Ramachandran

Abstract:

Misalignment and unbalance are the major concerns in rotating machinery. When the power supply to any rotating system is cutoff, the system begins to lose the momentum gained during sustained operation and finally comes to rest. The exact time period from when the power is cutoff until the rotor comes to rest is called Coast Down Time. The CDTs for different shaft cutoff speeds were recorded at various misalignment and unbalance conditions. The CDT reduction percentages were calculated for each fault and there is a specific correlation between the CDT reduction percentage and the severity of the fault. In this paper, radial basis network, a new generation of artificial neural networks, has been successfully incorporated for the prediction of CDT for misalignment and unbalance conditions. Radial basis network has been found to be successful in the prediction of CDT for mechanical faults in rotating machinery.

Keywords: Coast Down Time, Misalignment, Unbalance, Artificial Neural Networks, Radial Basis Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2986
2157 A Comparison of the Nonparametric Regression Models using Smoothing Spline and Kernel Regression

Authors: Dursun Aydin

Abstract:

This paper study about using of nonparametric models for Gross National Product data in Turkey and Stanford heart transplant data. It is discussed two nonparametric techniques called smoothing spline and kernel regression. The main goal is to compare the techniques used for prediction of the nonparametric regression models. According to the results of numerical studies, it is concluded that smoothing spline regression estimators are better than those of the kernel regression.

Keywords: Kernel regression, Nonparametric models, Prediction, Smoothing spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3100
2156 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements

Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva

Abstract:

The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% @ 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes that have been designed, three were conventional concretes for three grades under discussion and fifteen were HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days, and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave-One-Out Validation (LOOV) methods.

Keywords: ANN, concrete mixes, compressive strength, fly ash, high performance concrete, linear regression, strength prediction models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
2155 Predicting the Minimum Free Energy RNA Secondary Structures using Harmony Search Algorithm

Authors: Abdulqader M. Mohsen, Ahamad Tajudin Khader, Dhanesh Ramachandram, Abdullatif Ghallab

Abstract:

The physical methods for RNA secondary structure prediction are time consuming and expensive, thus methods for computational prediction will be a proper alternative. Various algorithms have been used for RNA structure prediction including dynamic programming and metaheuristic algorithms. Musician's behaviorinspired harmony search is a recently developed metaheuristic algorithm which has been successful in a wide variety of complex optimization problems. This paper proposes a harmony search algorithm (HSRNAFold) to find RNA secondary structure with minimum free energy and similar to the native structure. HSRNAFold is compared with dynamic programming benchmark mfold and metaheuristic algorithms (RnaPredict, SetPSO and HelixPSO). The results showed that HSRNAFold is comparable to mfold and better than metaheuristics in finding the minimum free energies and the number of correct base pairs.

Keywords: Metaheuristic algorithms, dynamic programming algorithms, harmony search optimization, RNA folding, Minimum free energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
2154 Long-Term Deformations of Concrete Structures

Authors: A. Brahma

Abstract:

Drying is a phenomenon that accompanies the hardening of hydraulic materials. This study is concerned the modelling of drying shrinkage of the hydraulic materials and the prediction of the rate of spontaneous deformations of hydraulic materials during hardening. The model developed takes consideration of the main factors affecting drying shrinkage. There was agreement between drying shrinkage predicted by the developed model and experimental results. In last we show that developed model describe the evolution of the drying shrinkage of high performances concretes correctly.

Keywords: Drying, hydraulic concretes, shrinkage, modeling, prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
2153 Modified Naïve Bayes Based Prediction Modeling for Crop Yield Prediction

Authors: Kefaya Qaddoum

Abstract:

Most of greenhouse growers desire a determined amount of yields in order to accurately meet market requirements. The purpose of this paper is to model a simple but often satisfactory supervised classification method. The original naive Bayes have a serious weakness, which is producing redundant predictors. In this paper, utilized regularization technique was used to obtain a computationally efficient classifier based on naive Bayes. The suggested construction, utilized L1-penalty, is capable of clearing redundant predictors, where a modification of the LARS algorithm is devised to solve this problem, making this method applicable to a wide range of data. In the experimental section, a study conducted to examine the effect of redundant and irrelevant predictors, and test the method on WSG data set for tomato yields, where there are many more predictors than data, and the urge need to predict weekly yield is the goal of this approach. Finally, the modified approach is compared with several naive Bayes variants and other classification algorithms (SVM and kNN), and is shown to be fairly good.

Keywords: Tomato yields prediction, naive Bayes, redundancy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5108
2152 The Traffic Prediction Multi-path Energy-aware Source Routing (TP-MESR)in Ad hoc Networks

Authors: Su Jin Kim, Ji Yeon Cho, Bong Gyou Lee

Abstract:

The purpose of this study is to suggest energy efficient routing for ad hoc networks which are composed of nodes with limited energy. There are diverse problems including limitation of energy supply of node, and the node energy management problem has been presented. And a number of protocols have been proposed for energy conservation and energy efficiency. In this study, the critical point of the EA-MPDSR, that is the type of energy efficient routing using only two paths, is improved and developed. The proposed TP-MESR uses multi-path routing technique and traffic prediction function to increase number of path more than 2. It also verifies its efficiency compared to EA-MPDSR using network simulator (NS-2). Also, To give a academic value and explain protocol systematically, research guidelines which the Hevner(2004) suggests are applied. This proposed TP-MESR solved the existing multi-path routing problem related to overhead, radio interference, packet reassembly and it confirmed its contribution to effective use of energy in ad hoc networks.

Keywords: Ad hoc, energy-aware, multi-path, routing protocol, traffic prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
2151 Probabilistic Approach of Dealing with Uncertainties in Distributed Constraint Optimization Problems and Situation Awareness for Multi-agent Systems

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how Bayesian inferential reasoning will contributes in obtaining a well-satisfied prediction for Distributed Constraint Optimization Problems (DCOPs) with uncertainties. We also demonstrate how DCOPs could be merged to multi-agent knowledge understand and prediction (i.e. Situation Awareness). The DCOPs functions were merged with Bayesian Belief Network (BBN) in the form of situation, awareness, and utility nodes. We describe how the uncertainties can be represented to the BBN and make an effective prediction using the expectation-maximization algorithm or conjugate gradient descent algorithm. The idea of variable prediction using Bayesian inference may reduce the number of variables in agents’ sampling domain and also allow missing variables estimations. Experiment results proved that the BBN perform compelling predictions with samples containing uncertainties than the perfect samples. That is, Bayesian inference can help in handling uncertainties and dynamism of DCOPs, which is the current issue in the DCOPs community. We show how Bayesian inference could be formalized with Distributed Situation Awareness (DSA) using uncertain and missing agents’ data. The whole framework was tested on multi-UAV mission for forest fire searching. Future work focuses on augmenting existing architecture to deal with dynamic DCOPs algorithms and multi-agent information merging.

Keywords: DCOP, multi-agent reasoning, Bayesian reasoning, swarm intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009
2150 Prediction of Compressive Strength of Self- Compacting Concrete with Fuzzy Logic

Authors: Paratibha Aggarwal, Yogesh Aggarwal

Abstract:

The paper presents the potential of fuzzy logic (FL-I) and neural network techniques (ANN-I) for predicting the compressive strength, for SCC mixtures. Six input parameters that is contents of cement, sand, coarse aggregate, fly ash, superplasticizer percentage and water-to-binder ratio and an output parameter i.e. 28- day compressive strength for ANN-I and FL-I are used for modeling. The fuzzy logic model showed better performance than neural network model.

Keywords: Self compacting concrete, compressive strength, prediction, neural network, Fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2457
2149 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: Big data, bus headway prediction, machine learning, public transportation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
2148 Application of Company Financial Crisis Early Warning Model- Use of “Financial Reference Database“

Authors: Chiung-ying Lee, Chia-hua Chang

Abstract:

In July 1, 2007, Taiwan Stock Exchange (TWSE) on market observation post system (MOPS) adds a new "Financial reference database" for investors to do investment reference. This database as a warning to public offering companies listed on the public financial information and it original within eight targets. In this paper, this database provided by the indicators for the application of company financial crisis early warning model verify that the database provided by the indicator forecast for the financial crisis, whether or not companies have a high accuracy rate as opposed to domestic and foreign scholars have positive results. There is use of Logistic Regression Model application of the financial early warning model, in which no joined back-conditions is the first model, joined it in is the second model, has been taken occurred in the financial crisis of companies to research samples and then business took place before the financial crisis point with T-1 and T-2 sample data to do positive analysis. The results show that this database provided the debt ratio and net per share for the best forecast variables.

Keywords: Financial reference database, Financial early warning model, Logistic Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
2147 Stability and HOPF Bifurcation Analysis in a Stage-structured Predator-prey system with Two Time Delays

Authors: Yongkun Li, Meng Hu

Abstract:

A stage-structured predator-prey system with two time delays is considered. By analyzing the corresponding characteristic equation, the local stability of a positive equilibrium is investigated and the existence of Hopf bifurcations is established. Formulae are derived to determine the direction of bifurcations and the stability of bifurcating periodic solutions by using the normal form theory and center manifold theorem. Numerical simulations are carried out to illustrate the theoretical results. Based on the global Hopf bifurcation theorem for general functional differential equations, the global existence of periodic solutions is established.

Keywords: Predator-prey system, stage structure, time delay, HOPF bifurcation, periodic solution, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
2146 Modern Vibration Signal Processing Techniques for Vehicle Gearbox Fault Diagnosis

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

This paper presents modern vibration signalprocessing techniques for vehicle gearbox fault diagnosis, via the wavelet analysis and the Squared Envelope (SE) technique. The wavelet analysis is regarded as a powerful tool for the detection of sudden changes in non-stationary signals. The Squared Envelope (SE) technique has been extensively used for rolling bearing diagnostics. In the present work a scheme of using the Squared Envelope technique for early detection of gear tooth pit. The pitting defect is manufactured on the tooth side of a fifth speed gear on the intermediate shaft of a vehicle gearbox. The objective is to supplement the current techniques of gearbox fault diagnosis based on using the raw vibration and ordered signals. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers introduce the load on the flanges of output joint shafts. The gearbox used for experimental measurements is the type most commonly used in modern small to mid-sized passenger cars with transversely mounted powertrain and front wheel drive; a five-speed gearbox with final drive gear and front wheel differential. The results show that the approaches methods are effective for detecting and diagnosing localized gear faults in early stage under different operation conditions, and are more sensitive and robust than current gear diagnostic techniques.

Keywords: Wavelet analysis, Squared Envelope, gear faults.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
2145 Learning Objects: A New Paradigm for ELearning Resource Development for Secondary Schools in Tanzania

Authors: S. K. Lujara, M. M. Kissaka, E. P. Bhalalusesa, L. Trojer

Abstract:

The Information and Communication Technologies (ICTs), and the Wide World Web (WWW) have fundamentally altered the practice of teaching and learning world wide. Many universities, organizations, colleges and schools are trying to apply the benefits of the emerging ICT. In the early nineties the term learning object was introduced into the instructional technology vernacular; the idea being that educational resources could be broken into modular components for later combination by instructors, learners, and eventually computes into larger structures that would support learning [1]. However in many developing countries, the use of ICT is still in its infancy stage and the concept of learning object is quite new. This paper outlines the learning object design considerations for developing countries depending on learning environment.

Keywords: e-Learning resources, granularity, learning objects, secondary schools.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
2144 A Novel Impulse Detector for Filtering of Highly Corrupted Images

Authors: Umesh Ghanekar

Abstract:

As the performance of the filtering system depends upon the accuracy of the noise detection scheme, in this paper, we present a new scheme for impulse noise detection based on two levels of decision. In this scheme in the first stage we coarsely identify the corrupted pixels and in the second stage we finally decide whether the pixel under consideration is really corrupt or not. The efficacy of the proposed filter has been confirmed by extensive simulations.

Keywords: Impulse detection, noise removal, image filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
2143 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings

Authors: Hyunchul Ahn, William X. S. Wong

Abstract:

Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.

Keywords: Corporate credit rating prediction, feature selection, genetic algorithms, instance selection, multiclass support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
2142 From Ritual City to Modern City: The City Space Transformation of Xi’an in the Early 20th Century

Authors: Zhang Bian, Zhao Jijun

Abstract:

The urban layout of Xi’an city (the capital Chang’an in the Tang dynasty) was shaped by feudal etiquette, but this dominant factor was replaced by modern city planning during the period of the Republic of China. This makes Xi’an a representative case to explore the transformation process of Chinese cities in the early 20th century. By analyzing the contrast and connection between the historical texts of city planning and the realistic construction activities recorded by the maps and images, this paper reviews the transformation process of the urban space of Xi’an in the early 20th century and divides it into four phases according to important events that significantly impacted planning and construction activities. Based on this, the entire transformation of Xi’an’s city planning and practices can be characterized by three aspects: 1) the dominant force of the city plan and construction changed with the establishment of modern city administrations; 2) the layout of the city was continuously broadened to meet the demand of modern economy and city life; and, 3) the ritual space was transformed into practical space for commercial and recreational activities.

Keywords: City space, early 20th century, transformation, Xi’an city.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 574
2141 The Analysis of Radial/Axial Error Motion on a Precision Rotation Stage

Authors: Jinho Kim, Dongik Shin, Deokwon Yun, Changsoo Han

Abstract:

Rotating stages in semiconductor, display industry and many other fields require challenging accuracy to perform their functions properly. Especially, Axis of rotation error on rotary system is significant; such as the spindle error motion of the aligner, wire bonder and inspector machine which result in the poor state of manufactured goods. To evaluate and improve the performance of such precision rotary stage, unessential movements on the other 5 degrees of freedom of the rotary stage must be measured and analyzed. In this paper, we have measured the three translations and two tilt motions of a rotating stage with high precision capacitive sensors. To obtain the radial error motion from T.I.R (Total Indicated Reading) of radial direction, we have used Donaldson's reversal technique. And the axial components of the spindle tilt error motion can be obtained accurately from the axial direction outputs of sensors by Estler face motion reversal technique. Further more we have defined and measured the sensitivity of positioning error to the five error motions.

Keywords: Donaldson's reversal methods, Estler face motionreversal method, Error motion, sensitivity, T.I.R (Total IndicatedReading).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3541
2140 Sex Differentiation of Elm Nymphalid (Nymphalis polychloros Linnaeus, 1758) on Pupal Stage

Authors: Hanife Genc

Abstract:

This study was conducted to determine sex differentiation of laboratory reared Elm nymphalid (Nymphalis polychloros Linnaeus, 1758) by examining the morphological structure of pupal stage. Laboratory colony of elm nymphalid, reared on pear leaves, was used to set up experiments. It was performed with 5 replications having 8 pupae for each replication. Dorsal, ventral and lateral parts of external morphological structures of pupae were examined by Olympus SZX9 stereozoom microscope and photographed. When fully grown, mature larvae wander the highest part of the rearing cage and pupae were formed hanging by cremaster. After completing prepupa stage about 1.5±0.3 days, they all pupated. Pupal stage was completed at 24±1°C about 4.38±1.20 days. Pupal weights were 0.483±0.05 g in females and 0.392±0.08 g (n=40) in males respectively. Pupal emergence rate was 95%, with 22 females and 16 males. Examinations of ventral parts of 8th, 9th, and 10th abdominal segments revealed that anal opening were found at 10th abdominal segment in both sexes, 3 lumps were determined at 9th abdominal segments then the specific opening structure at 8th segment was only found on female pupae.

Keywords: Butterfly, Nymphalis polychloros, pupae, sex differentiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2054
2139 A Network Traffic Prediction Algorithm Based On Data Mining Technique

Authors: D. Prangchumpol

Abstract:

This paper is a description approach to predict incoming and outgoing data rate in network system by using association rule discover, which is one of the data mining techniques. Information of incoming and outgoing data in each times and network bandwidth are network performance parameters, which needed to solve in the traffic problem. Since congestion and data loss are important network problems. The result of this technique can predicted future network traffic. In addition, this research is useful for network routing selection and network performance improvement.

Keywords: Traffic prediction, association rule, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3668
2138 The Investment of Islamic Education Values toward Children in the Early Age through Story-Telling Method

Authors: Abdul Rofiq Badril Rizal Muzammil

Abstract:

Education is an absolute necessity for human’s life that one must fulfill for the entire life. Without education it is impossible for human to develop her/himself well. The education process is an effort to maintain a good behavior within one’s life. Good behavior will be absolutely achieved if it is taught to early-aged children. This paper focuses on how the story telling method enables teachers to make the students have the construction of good behavior and obtain the goal of national education in Indonesia. The targeted students would involve students in As-Solihin kindergarten, Salafiyah-Syafi’iyah Mumbulsari, Jember, Indonesia. Story is what early-aged children like most. Thus, it is a gorgeous chance to make story telling activity as a method to invest Islamic education values to children. This paper, however, also focuses on some deliberately important aspects which of course teachers need to consider including objectives and strategies of the method’s implementation. The teachers will be in need of knowing each student’s characteristic in the classroom so that it would enable them to select appropriate stories that fit best to early aged students. The selected stories are taken from Islamic stories that tell the life of Prophet and heroes of Islam as well as well-known persons in Islam. In addition, there will be a number of activities done in the classroom after the delivery of the story is over on purpose of leading students to have the fundamental foundation of how to build self-awareness in order they could understand better about the importance of being a well-behaved person. After reviewing relevant theories, secondary research and scholars’ opinion involved in all aspects of early-aged children behavior, the author concludes that by leveraging trusted sources, a proactive, co-operative and creative strategy, the teacher can successfully build up children’s good behavior by instilling the Islamic value toward early-aged children through story telling method.

Keywords: Story, Islam, children, early age.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1183
2137 Effect of Sintering Temperature Curve in Wick Manufactured for Loop Heat Pipe

Authors: Shen-Chun Wu, Chuo-Jeng Huang, Wun-Hong Yang, Jy-Cheng Chang, Chien-Chun Kung

Abstract:

This investigation examines the effect of the sintering temperature curve in manufactured nickel powder capillary structure (wick) for a loop heat pipe (LHP). The sintering temperature curve is composed of a region of increasing temperature; a region of constant temperature and a region of declining temperature. The most important region is that in which the temperature increases, as an index in the stage in which the temperature increases. The wick of nickel powder is manufactured in the stage of fixed sintering temperature and the time between the stage of constant temperature and the stage of falling temperature. When the slope of the curve in the region of increasing temperature is unity (equivalent to 10 °C/min), the structure of the wick is complete and the heat transfer performance is optimal. The result of experiment test demonstrates that the heat transfer performance is optimal at 320W; the minimal total thermal resistance is approximately 0.18°C/W, and the heat flux is 17W/cm2; the internal parameters of the wick are an effective pore radius of 3.1 μm, a permeability of 3.25×10-13m2 and a porosity of 71%.

Keywords: Loop heat pipe (LHP), capillary structure (wick), sintered temperature curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
2136 Effect of Recombinant Human Follicle Stimulating Hormone on Meiotic Competence of In Vitro Grown Nili Ravi Buffalo Oocytes

Authors: Muhammad Ijaz Khan, Samina Jalali, Beenish Shahid, S. A. Shami, Muhammad Ikramullah

Abstract:

In the present study, the response of Nili Ravi buffalo oocytes to recombinant human follicle stimulating hormone (rhFSH) (Organon) on meiotic maturation in vitro was examined. Oocytes were matured in vitro in medium containing either 0 or 0.05 IU/ ml rhFSH and the stage of nuclear maturation recorded after 24 hours. The percentage of oocytes in the control group undergoing germinal vesicle breakdown (GVBD) observed after 24 hours of culture was 29 % whereas as in rhFSH group the percentage was 10 % were at this stage (P< 0.001).Thus in the presence of rhFSH, a significantly greater number of oocytes had progressed to the more advanced stages of nuclear maturation. Indeed, the maturation of GV (Germinal Vesicle) stage oocytes to the metaphase II (M II) stage after 24 hours was significantly (P< 0.0001) increased by the addition of rhFSH (82 % VS 47 %). The percentage of degenerated oocytes after 24 hours of culture was 24 % in control group, whereas in rhFSH group the percentage was 8 % after 24 hours. Degeneration of the oocytes after 24 hours was not significantly (P = 0. 9361) decreased.

Keywords: Buffalo, in vitro, oocytes, recombinant FSH.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
2135 Study of Real Gas Behavior in a Single-Stage Gas Gun

Authors: A. Moradi, S. Khodadadiyan

Abstract:

In this paper, one-dimensional analysis of flow in a single-stage gas gun is conducted. The compressible inviscid flow equations are numerically solved by the second-order Roe TVD method, by using moving boundaries. For investigation of real gas effect the Noble-Able equation is applied. The numerical results are compared with the experimental data to validate the numerical scheme. The results show that with using the Noble-Able equation, the muzzle velocity decreases.

Keywords: Gas gun, Roe, projectile, muzzle velocity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309