Search results for: Deployable Solar Panel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 648

Search results for: Deployable Solar Panel

348 Fuzzy Logic Based Maximum Power Point Tracking Designed for 10kW Solar Photovoltaic System with Different Membership Functions

Authors: S. Karthika, K. Velayutham, P. Rathika, D. Devaraj

Abstract:

The electric power supplied by a photovoltaic power generation systems depends on the solar irradiation and temperature. The PV system can supply the maximum power to the load at a particular operating point which is generally called as maximum power point (MPP), at which the entire PV system operates with maximum efficiency and produces its maximum power. Hence, a Maximum power point tracking (MPPT) methods are used to maximize the PV array output power by tracking continuously the maximum power point. The proposed MPPT controller is designed for 10kW solar PV system installed at Cape Institute of Technology. This paper presents the fuzzy logic based MPPT algorithm. However, instead of one type of membership function, different structures of fuzzy membership functions are used in the FLC design. The proposed controller is combined with the system and the results are obtained for each membership functions in Matlab/Simulink environment. Simulation results are decided that which membership function is more suitable for this system.

Keywords: MPPT, DC-DC Converter, Fuzzy logic controller, Photovoltaic (PV) system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4255
347 Double Pass Solar Air Heater with Transvers Fins and without Absorber Plate

Authors: A. J. Mahmood, L. B. Y. Aldabbagh

Abstract:

The counter flow solar air heaters, with four transverse fins and wire mesh layers are constructed and investigated experimentally for thermal efficiency at a geographic location of Cyprus in the city of Famagusta. The absorber plate is replaced by sixteen steel wire mesh layers, 0.18 x 0.18cm in cross section opening and a 0.02cm in diameter. The wire mesh layers arranged in three groups, first and second include 6 layers, while the third include 4 layers. All layers fixed in the duct parallel to the glazing and each group separated from the others by wood frame thickness of 0.5cm to reduce the pressure drop. The transverse fins arranged in a way to force the air to flow through the bed like eight letter path with flow depth 3cm. The proposed design has increased the heat transfer rate, but on other hand causes a high pressure drop. The obtained results show that, for air mass flow rate range between 0.011-0.036kg/s, the thermal efficiency increases with increasing the air mass flow. The maximum efficiency obtained is 65.6% for the mass flow rate of 0.036kg/s. Moreover, the temperature difference between the outlet flow and the ambient temperature, ΔT, reduces as the air mass flow rate increase. The maximum difference between the outlet and ambient temperature obtained was 43°C for double pass for minimum mass flow rate of 0.011kg/s. Comparison with a conventional solar air heater collector shows a significantly development in the thermal efficiency.

Keywords: Counter flow, solar air heater (SAH), Wire mesh, Fins, Thermal efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3172
346 A Two-Stage Multi-Agent System to Predict the Unsmoothed Monthly Sunspot Numbers

Authors: Mak Kaboudan

Abstract:

A multi-agent system is developed here to predict monthly details of the upcoming peak of the 24th solar magnetic cycle. While studies typically predict the timing and magnitude of cycle peaks using annual data, this one utilizes the unsmoothed monthly sunspot number instead. Monthly numbers display more pronounced fluctuations during periods of strong solar magnetic activity than the annual sunspot numbers. Because strong magnetic activities may cause significant economic damages, predicting monthly variations should provide different and perhaps helpful information for decision-making purposes. The multi-agent system developed here operates in two stages. In the first, it produces twelve predictions of the monthly numbers. In the second, it uses those predictions to deliver a final forecast. Acting as expert agents, genetic programming and neural networks produce the twelve fits and forecasts as well as the final forecast. According to the results obtained, the next peak is predicted to be 156 and is expected to occur in October 2011- with an average of 136 for that year.

Keywords: Computational techniques, discrete wavelet transformations, solar cycle prediction, sunspot numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323
345 Application of Robot Formation Scheme for Screening Solar Energy in a Greenhouse

Authors: George K. Fourlas, Konstantinos Kalovrektis, Evangelos Fountas

Abstract:

Many agricultural and especially greenhouse applications like plant inspection, data gathering, spraying and selective harvesting could be performed by robots. In this paper multiple nonholonomic robots are used in order to create a desired formation scheme for screening solar energy in a greenhouse through data gathering. The formation consists from a leader and a team member equipped with appropriate sensors. Each robot is dedicated to its mission in the greenhouse that is predefined by the requirements of the application. The feasibility of the proposed application includes experimental results with three unmanned ground vehicles (UGV).

Keywords: Greenhouses application, robot formation, solarenergy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
344 Performance Enhancement of Dye-Sensitized Solar Cells by MgO Coating on TiO2 Electrodes

Authors: C. Photiphitak, P. Rakkwamsuk, P. Muthitamongkol, C. Thanachayanont

Abstract:

TiO2/MgO composite films were prepared by coating the magnesium acetate solution in the pores of mesoporous TiO2 films using a dip coating method. Concentrations of magnesium acetate solution were varied in a range of 1x10-4 – 1x10-1 M. The TiO2/MgO composite films were characterized by scanning electron microscopy (SEM), transmission electron microscropy (TEM), electrochemical impedance spectroscopy(EIS) , transient voltage decay and I-V test. The TiO2 films and TiO2/MgO composite films were immersed in a 0.3 mM N719 dye solution. The Dye-sensitized solar cells with the TiO2/MgO/N719 structure showed an optimal concentration of magnesium acetate solution of 1x10-3 M resulting in the MgO film estimated thickness of 0.0963 nm and giving the maximum efficiency of 4.85%. The improved efficiency of dyesensitized solar cell was due to the magnesium oxide film as the wide band gap coating decays the electron back transfer to the triiodide electrolyte and reduce charge recombination.

Keywords: Magnesium oxide thin film, TiO2/MgO composite films, Electrochemical Impedance Spectrum, Transient voltage decay

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3200
343 Cost Efficient Receiver Tube Technology for Eco-Friendly Concentrated Solar Thermal Applications

Authors: M. Shiva Prasad, S. R. Atchuta, T. Vijayaraghavan, S. Sakthivel

Abstract:

The world is in need of efficient energy conversion technologies which are affordable, accessible, and sustainable with eco-friendly nature. Solar energy is one of the cornerstones for the world’s economic growth because of its abundancy with zero carbon pollution. Among the various solar energy conversion technologies, solar thermal technology has attracted a substantial renewed interest due to its diversity and compatibility in various applications. Solar thermal systems employ concentrators, tracking systems and heat engines for electricity generation which lead to high cost and complexity in comparison with photovoltaics; however, it is compatible with distinct thermal energy storage capability and dispatchable electricity which creates a tremendous attraction. Apart from that, employing cost-effective solar selective receiver tube in a concentrating solar thermal (CST) system improves the energy conversion efficiency and directly reduces the cost of technology. In addition, the development of solar receiver tubes by low cost methods which can offer high optical properties and corrosion resistance in an open-air atmosphere would be beneficial for low and medium temperature applications. In this regard, our work opens up an approach which has the potential to achieve cost-effective energy conversion. We have developed a highly selective tandem absorber coating through a facile wet chemical route by a combination of chemical oxidation, sol-gel, and nanoparticle coating methods. The developed tandem absorber coating has gradient refractive index nature on stainless steel (SS 304) and exhibited high optical properties (α ≤ 0.95 & ε ≤ 0.14). The first absorber layer (Cr-Mn-Fe oxides) developed by controlled oxidation of SS 304 in a chemical bath reactor. A second composite layer of ZrO2-SiO2 has been applied on the chemically oxidized substrate by So-gel dip coating method to serve as optical enhancing and corrosion resistant layer. Finally, an antireflective layer (MgF2) has been deposited on the second layer, to achieve > 95% of absorption. The developed tandem layer exhibited good thermal stability up to 250 °C in open air atmospheric condition and superior corrosion resistance (withstands for > 200h in salt spray test (ASTM B117)). After the successful development of a coating with targeted properties at a laboratory scale, a prototype of the 1 m tube has been demonstrated with excellent uniformity and reproducibility. Moreover, it has been validated under standard laboratory test condition as well as in field condition with a comparison of the commercial receiver tube. The presented strategy can be widely adapted to develop highly selective coatings for a variety of CST applications ranging from hot water, solar desalination, and industrial process heat and power generation. The high-performance, cost-effective medium temperature receiver tube technology has attracted many industries, and recently the technology has been transferred to Indian industry.

Keywords: Concentrated solar thermal system, solar selective coating, tandem absorber, ultralow refractive index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
342 Verification of Protocol Design using UML - SMV

Authors: Prashanth C.M., K. Chandrashekar Shet

Abstract:

In recent past, the Unified Modeling Language (UML) has become the de facto industry standard for object-oriented modeling of the software systems. The syntax and semantics rich UML has encouraged industry to develop several supporting tools including those capable of generating deployable product (code) from the UML models. As a consequence, ensuring the correctness of the model/design has become challenging and extremely important task. In this paper, we present an approach for automatic verification of protocol model/design. As a case study, Session Initiation Protocol (SIP) design is verified for the property, “the CALLER will not converse with the CALLEE before the connection is established between them ". The SIP is modeled using UML statechart diagrams and the desired properties are expressed in temporal logic. Our prototype verifier “UML-SMV" is used to carry out the verification. We subjected an erroneous SIP model to the UML-SMV, the verifier could successfully detect the error (in 76.26ms) and generate the error trace.

Keywords: Unified Modeling Language, Statechart, Verification, Protocol Design, Model Checking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
341 Impact of Increasing Distributed Solar PV Systems on Distribution Networks in South Africa

Authors: Aradhna Pandarum

Abstract:

South Africa is experiencing an exponential growth of distributed solar PV installations. This is due to various factors with the predominant one being increasing electricity tariffs along with decreasing installation costs, resulting in attractive business cases to some end-users. Despite there being a variety of economic and environmental advantages associated with the installation of PV, their potential impact on distribution grids has yet to be thoroughly investigated. This is especially true since the locations of these units cannot be controlled by Network Service Providers (NSPs) and their output power is stochastic and non-dispatchable. This report details two case studies that were completed to determine the possible voltage and technical losses impact of increasing PV penetration in the Northern Cape of South Africa. Some major impacts considered for the simulations were ramping of PV generation due to intermittency caused by moving clouds, the size and overall hosting capacity and the location of the systems. The main finding is that the technical impact is different on a constrained feeder vs a non-constrained feeder. The acceptable PV penetration level is much lower for a constrained feeder than a non-constrained feeder, depending on where the systems are located.

Keywords: Medium voltage networks, power system losses, power system voltage, solar photovoltaic, PV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 540
340 Research on the Impact on Building Temperature and Ventilation by Outdoor Shading Devices in Hot-Humid Area: Through Measurement and Simulation on an Office Building in Guangzhou

Authors: Hankun Lin, Yiqiang Xiao, Qiaosheng Zhan

Abstract:

Shading devices (SDs) are widely used in buildings in the hot-humid climate areas for reducing cooling energy consumption for interior temperature, as the result of reducing the solar radiation directly. Contrasting the surface temperature of materials of SDs to the glass on the building façade could give more analysis for the shading effect. On the other side, SDs are much more used as the independence system on building façade in hot-humid area. This typical construction could have some impacts on building ventilation as well. This paper discusses the outdoor SDs’ effects on the building thermal environment and ventilation, through a set of measurements on a 2-floors office building in Guangzhou, China, which install a dynamic aluminum SD-system around the façade on 2nd-floor. The measurements recorded the in/outdoor temperature, relative humidity, velocity, and the surface temperature of the aluminum panel and the glaze. After that, a CFD simulation was conducted for deeper discussion of ventilation. In conclusion, this paper reveals the temperature differences on the different material of the façade, and finds that the velocity of indoor environment could be reduced by the outdoor SDs.

Keywords: Outdoor shading devices, hot-humid area, temperature, ventilation, measurement, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1013
339 Selection of Photovoltaic Solar Power Plant Investment Projects - An ANP Approach

Authors: P. Aragonés-Beltrán, F. Chaparro-González, J. P. Pastor Ferrando, M. García-Melón

Abstract:

In this paper the Analytic Network Process (ANP) is applied to the selection of photovoltaic (PV) solar power projects. These projects follow a long management and execution process from plant site selection to plant start-up. As a consequence, there are many risks of time delays and even of project stoppage. In the case study presented in this paper a top manager of an important Spanish company that operates in the power market has to decide on the best PV project (from four alternative projects) to invest based on risk minimization. The manager identified 50 project execution delay and/or stoppage risks. The influences among elements of the network (groups of risks and alternatives) were identified and analyzed using the ANP multicriteria decision analysis method. After analyzing the results the main conclusion is that the network model can manage all the information of the real-world problem and thus it is a decision analysis model recommended by the authors. The strengths and weaknesses ANP as a multicriteria decision analysis tool are also described in the paper.

Keywords: Multicriteria decision analysis, Analytic Network Process, Photovoltaic solar power projects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
338 Antenna for Energy Harvesting in Wireless Connected Objects

Authors: Nizar Sakli, Chayma Bahar, Chokri Baccouch, Hedi Sakli

Abstract:

If connected objects multiply, they are becoming a challenge in more than one way. In particular by their consumption and their supply of electricity. A large part of the new generations of connected objects will only be able to develop if it is possible to make them entirely autonomous in terms of energy. Some manufacturers are therefore developing products capable of recovering energy from their environment. Vital solutions in certain contexts, such as the medical industry. Energy recovery from the environment is a reliable solution to solve the problem of powering wireless connected objects. This paper presents and study a optically transparent solar patch antenna in frequency band of 2.4 GHz for connected objects in the future standard 5G for energy harvesting and RF transmission.

Keywords: 5G, IoT, wireless communications, antenna, solar cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 802
337 A Simulated Design and Analysis of a Solar Thermal Parabolic Trough Concentrator

Authors: Fauziah Sulaiman, Nurhayati Abdullah, Balbir Singh Mahinder Singh

Abstract:

In recent years Malaysia has included renewable energy as an alternative fuel to help in diversifying the country-s energy reliance on oil, natural gas, coal and hydropower with biomass and solar energy gaining priority. The scope of this paper is to look at the designing procedures and analysis of a solar thermal parabolic trough concentrator by simulation utilizing meteorological data in several parts of Malaysia. Parameters which include the aperture area, the diameter of the receiver and the working fluid may be varied to optimize the design. Aperture area is determined by considering the width and the length of the concentrator whereas the geometric concentration ratio (CR) is obtained by considering the width and diameter of the receiver. Three types of working fluid are investigated. Theoretically, concentration ratios can be very high in the range of 10 to 40 000 depending on the optical elements used and continuous tracking of the sun. However, a thorough analysis is essential as discussed in this paper where optical precision and thermal analysis must be carried out to evaluate the performance of the parabolic trough concentrator as the theoretical CR is not the only factor that should be considered.

Keywords: Parabolic trough concentrator, Concentration ratio, Intercept factor, Efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3975
336 Preservation of Coconut Toddy Sediments as a Leavening Agent for Bakery Products

Authors: B. R. Madushan, S. B. Navaratne, I. Wickramasinghe

Abstract:

Toddy sediment (TS) was cultured in a PDA medium to determine initial yeast load, and also it was undergone sun, shade, solar, dehumidified cold air (DCA) and hot air oven (at 400, 500 and 60oC) drying with a view to preserve viability of yeast. Thereafter, this study was conducted according to two factor factorial design in order to determine best preservation method. Therein the dried TS from the best drying method was taken and divided into two portions. One portion was mixed with 3: 7 ratio of TS: rice flour and the mixture was divided in to two again. While one portion was kept under in house condition the other was in a refrigerator. Same procedure was followed to the rest portion of TS too but it was at the same ratio of corn flour. All treatments were vacuum packed in triple laminate pouches and the best preservation method was determined in terms of leavening index (LI). The TS obtained from the best preservation method was used to make foods (bread and hopper) and organoleptic properties of it were evaluated against same of ordinary foods using sensory panel with a five point hedonic scale. Results revealed that yeast load or fresh TS was 58×106 CFU/g. The best drying method in preserving viability of yeast was DCA because LI of this treatment (96%) is higher than that of other three treatments. Organoleptic properties of foods prepared from best preservation method are as same as ordinary foods according to Duo trio test.

Keywords: Biological leavening agent, coconut toddy, fermentation, yeast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
335 Meshed Antenna for Ku-band Wireless Communication

Authors: Chokri Baccouch, Chayma Bahhar, Hedi Sakli, Nizar Sakli

Abstract:

In this article, we present the combination of an antenna patch structure with a photovoltaic cell in one device for telecommunication applications in isolated environments. The radiating patch element of a patch antenna was replaced by a solar cell. DC current generation is the original feature of the solar cell, but now it was additionally able to receive and transmit electromagnetic waves. A mathematical model which serves in the minimization of power losses of the cell and therefore the improvement in conversion performance was studied. Simulation results of this antenna show a resonance at a frequency of 16.55 GHz in Ku-band with a gain of 4.24 dBi.

Keywords: Electric power collected, optical and electrical losses, optimization of the grid of collection, patch antenna, photovoltaic cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 749
334 Fuzzy Logic Based Determination of Battery Charging Efficiency Applied to Hybrid Power System

Authors: Priyanka Paliwal, N. P. Patidar, R. K. Nema

Abstract:

Battery storage system is emerging as an essential component of hybrid power system based on renewable energy resources such as solar and wind in order to make these sources dispatchable. Accurate modeling of battery storage system is ssential in order to ensure optimal planning of hybrid power systems incorporating battery storage. Majority of the system planning studies involving battery storage assume battery charging efficiency to be constant. However a strong correlation exists between battery charging efficiency and battery state of charge. In this work a Fuzzy logic based model has been presented for determining battery charging efficiency relative to a particular SOC. In order to demonstrate the efficacy of proposed approach, reliability evaluation studies are carried out for a hypothetical autonomous hybrid power system located in Jaisalmer, Rajasthan, India. The impact of considering battery charging efficiency as a function of state of charge is compared against the assumption of fixed battery charging efficiency for three different configurations comprising of wind-storage, solar-storage and wind-solar-storage.

Keywords: Battery Storage, Charging efficiency, Fuzzy Logic, Hybrid Power System, Reliability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083
333 Performance Analysis of a Single-Phase Thermosyphon Solar Water Heating System

Authors: S. Sadhishkumar, T. Balusamy

Abstract:

A single-phase closed thermosyphon has been fabricated and experimented to utilize solar energy for water heating. The working fluid of the closed thermosyphon is heated at the flatplate collector and the hot water goes to the water tank due to density gradient caused by temperature differences. This experimental work was done using insulated water tank and insulated connecting pipe between the tank and the flat-plate collector. From the collected data, performance parameters such as instantaneous collector efficiency and heat removal factor are calculated. In this study, the effects of glazing were also observed. The water temperature rise and the maximum instantaneous efficiency obtained from this experiment with glazing using insulated water tank and insulated connecting pipe are 17°C in a period of 5 hours and 60% respectively. Whereas the water temperature rise and the maximum instantaneous efficiency obtained from this experiment with glazing using non-insulated water tank and non-insulated connecting pipe are 14°C in a period of 5 hours and 39% respectively.

Keywords: Solar water heating systems, Single-phase thermosyphon, Flat-plate collector, Insulated tank and pipe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3126
332 Effects of Human Capital and Openness on Economic Growth of Developed and Developing Countries: A Panel Data Analysis

Authors: Fatma Didin Sonmez, Pinar Sener

Abstract:

Technology transfer by international trade and foreign direct investment is the most important positive outcome of open economy. It is widely accepted that new technology and knowledge have an important role in enhancing economic growth. Human capital is the other important factor assisting economic growth. In this study, the role of human capital in the growth process is examined in a view of new endogenous growth theory emphasizing on the technology transfer resulting from international trade. Using the panel data of 10 developed and 10 developing countries, impact of human capital and openness on the rate of economic growth of different countries is analysed. Evidence suggests the view that human capital and openness contribute to the economic growth in both developing and developed countries, but with different rates.

Keywords: economic growth, human capital, openness, technology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
331 Factors Affecting Current Ratings for Underground and Air Cables

Authors: S. H. Alwan, J. Jasni, M. Z. A. Ab Kadir, N. Aziz

Abstract:

The aim of this paper is to present a parametric study to determine the major factors that influence the calculations of current rating for both air and underground cables. The current carrying capability of the power cables rely largely on the installation conditions and material properties. In this work, the influences on ampacity of conductor size, soil thermal resistivity and ambient soil temperature for underground installations are shown. The influences on the current-carrying capacity of solar heating (time of day effects and intensity of solar radiation), ambient air temperature and cable size for cables air are also presented. IEC and IEEE standards are taken as reference.

Keywords: Cable ampacity, underground cable, IEC standard, air cables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6644
330 Bandwidth Estimation Algorithms for the Dynamic Adaptation of Voice Codec

Authors: Davide Pierattoni, Ivan Macor, Pier Luca Montessoro

Abstract:

In the recent years multimedia traffic and in particular VoIP services are growing dramatically. We present a new algorithm to control the resource utilization and to optimize the voice codec selection during SIP call setup on behalf of the traffic condition estimated on the network path. The most suitable methodologies and the tools that perform realtime evaluation of the available bandwidth on a network path have been integrated with our proposed algorithm: this selects the best codec for a VoIP call in function of the instantaneous available bandwidth on the path. The algorithm does not require any explicit feedback from the network, and this makes it easily deployable over the Internet. We have also performed intensive tests on real network scenarios with a software prototype, verifying the algorithm efficiency with different network topologies and traffic patterns between two SIP PBXs. The promising results obtained during the experimental validation of the algorithm are now the basis for the extension towards a larger set of multimedia services and the integration of our methodology with existing PBX appliances.

Keywords: Integrated voice-data communication, computernetwork performance, resource optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
329 The Techno-Economic and Environmental Assessments of Grid-Connected Photovoltaic Systems in Bhubaneswar, India

Authors: A. K. Pradhan, M. K. Mohanty, S. K. Kar

Abstract:

The power system utility has started to think about the green power technology in order to have an eco-friendly environment. The green power technology utilizes renewable energy sources for reduction of GHG emissions. Odisha state (India) is very rich in potential of renewable energy sources especially in solar energy (about 300 solar days), for installation of grid connected photovoltaic system. This paper focuses on the utilization of photovoltaic systems in an Institute building of Bhubaneswar city, Odisha. Different data like solar insolation (kW/m2/day), sunshine duration has been collected from metrological stations for Bhubaneswar city. The required electrical power and cost are calculated for daily load of 1.0 kW. The HOMER (Hybrid Optimization Model of Electric Renewable) software is used to estimate system size and its performance analysis. The simulation result shows that the cost of energy (COE) is $ 0.194/kWh, the Operating cost is $63/yr and the net present cost (NPC) is $3,917. The energy produced from PV array is 1,756kWh/yr and energy purchased from grid is 410kWh/yr. The AC primary load consumption is 1314 kWh/yr and the Grid sales are 746 kWh/yr. One battery is connected in parallel with 12V DC Bus and the usable nominal capacity 2.4 kWh with 9.6 h autonomy capacity.

Keywords: Economic assessment, HOMER, Optimization, Photovoltaic (PV), Renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253
328 Modeling of Single Bay Precast Residential House Using Ruaumoko 2D Program

Authors: N. H. Hamid, N. M. Mohamed, S. A. Anuar

Abstract:

Precast residential houses are normally constructed in Malaysia using precast shear-key wall panel and this panel is designed using BS8110 where there is no provision for earthquake. However, the safety of this house under moderate and strong earthquake is still questionable. Consequently, the full-scale of residential house are designed, constructed, tested and analyzed under in-plane lateral quasi-static cyclic loading. Hysteresis loops are plotted based on the experimental work and compared with modeling of hysteresis loops using HYSTERES in RUAUMOKO 2D program. Modified Takeda hysteresis model is chosen to behave a similar pattern with experimental work. This program will display the earthquake excitations, spectral displacements, pseudo spectral acceleration, mode shape and deformation of the structure. It can be concluded that this building is suffering severe cracks and damage under moderate and severe earthquake.

Keywords: Deformation shape, hysteresis loops, precast shear-key, spectral displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
327 An Integrated CFD and Experimental Analysis on Double-Skin Window

Authors: Sheam-Chyun Lin, Wei-Kai Chen, Hung-Cheng Yen, Yung-Jen Cheng, Yu-Cheng Chen

Abstract:

Result from the constant dwindle in natural resources, the alternative way to reduce the costs in our daily life would be urgent to be found in the near future. As the ancient technique based on the theory of solar chimney since roman times, the double-skin façade are simply composed of two large glass panels in purpose of daylighting and also natural ventilation in the daytime. Double-skin façade is generally installed on the exterior side of buildings as function as the window, so there is always a huge amount of passive solar energy the façade would receive to induce the airflow every sunny day. Therefore, this article imposes a domestic double-skin window for residential usage and attempts to improve the volume flow rate inside the cavity between the panels by the frame geometry design, the installation of outlet guide plate and the solar energy collection system. Note that the numerical analyses are applied to investigate the characteristics of flow field, and the boundary conditions in the simulation are totally based on the practical experiment of the original prototype. Then we redesign the prototype from the knowledge of the numerical results and fluid dynamic theory, and later the experiments of modified prototype will be conducted to verify the simulation results. The velocities at the inlet of each case are increase by 5%, 45% and 15% from the experimental data, and also the numerical simulation results reported 20% improvement in volume flow rate both for the frame geometry design and installation of outlet guide plate.

Keywords: Solar energy, Double-skin façades, Thermal buoyancy, Fluid machinery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516
326 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm

Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon

Abstract:

Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.

Keywords: Exergy analysis, Genetic algorithm, Rankine cycle, Single and Multi-objective function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 620
325 Design, Manufacture and Test of a Solar Powered Audible Bird Scarer

Authors: Turhan Koyuncu, Fuat Lule

Abstract:

The most common domestic birds live in Turkey are: crows (Corvus corone), pigeons (Columba livia), sparrows (Passer domesticus), starlings (Sturnus vulgaris) and blackbirds (Turdus merula). These birds give damage to the agricultural areas and make dirty the human life areas. In order to send away these birds, some different materials and methods such as chemicals, treatments, colored lights, flash and audible scarers are used. It is possible to see many studies about chemical methods in the literatures. However there is not enough works regarding audible bird scarers are reported in the literature. Therefore, a solar powered bird scarer was designed, manufactured and tested in this experimental investigation. Firstly, to understand the sensitive level of these domestic birds against to the audible scarer, many series preliminary studies were conducted. These studies showed that crows are the most resistant against to the audible bird scarer when compared with pigeons, sparrows, starlings and blackbirds. Therefore the solar powered audible bird scarer was tested on crows. The scarer was tested about one month during April- May, 2007. 18 different common known predators- sounds (voices or calls) of domestic birds from Falcon (Falco eleonorae), Falcon (Buteo lagopus), Eagle (Aquila chrysaetos), Montagu-s harrier (Circus pygargus) and Owl (Glaucidium passerinum) were selected for test of the scarer. It was seen from the results that the reaction of the birds was changed depending on the predators- sound type, camouflage of the scarer, sound quality and volume, loudspeaker play and pause periods in one application. In addition, it was also seen that the sound from Falcon (Buteo lagopus) was most effective on crows and the scarer was enough efficient.

Keywords: Bird damage, Audible scarer, Solar powered scarer, Predator sound

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3660
324 Study of a Developed Model Describing a Vacuum Membrane Distillation Unit Coupled to Solar Energy

Authors: Fatma Khaled, Khaoula Hidouri, Bechir Chaouachi

Abstract:

Desalination using solar energy coupled with membrane techniques such as vacuum membrane distillation (VMD) is considered as an interesting alternative for the production of pure water. During this work, a developed model of a polytetrafluoroethylene (PTFE) hollow fiber membrane module of a VMD unit of seawater was carried out. This simulation leads to establishing a comparison between the effects of two different equations of the vaporization latent heat on the membrane surface temperature and on the unit productivity. Besides, in order to study the effect of putting membrane modules in series on the outlet fluid temperature and on the productivity of the process, a simulation was executed.

Keywords: Vacuum membrane distillation, membrane module, membrane temperature, productivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 602
323 Director Compensation, CEO Duality, State Ownership, and Firm Performance in China: Proof from Panel Data of Publicly Listed Enterprises from 1999 to 2020

Authors: Wanda Luen-Wun Siu, Xiaowen Zhang

Abstract:

This paper offered the primary methodical proof on how director remuneration related to enterprise earnings in listed firms in China in light of most evidence focusing on cross-sectional data or data in a short span of time. Using full economic and business panel data on China’s publicly listed enterprise from 1999 to 2020 over two decades in the China Stock Market & Accounting Research database, we found statistically significant positive associations between director pay and firm performance in privately owned firms over this period, supporting the agency theory. In contrast, among the state-owned enterprises, there was a reverse relation between director compensation and firm financial performance, contributing to the existing literature. But the results also revealed that state-owned enterprises financially performed as well as private enterprises. Such findings suggested that state ownership might line up officials’ career incentives with party prime concern rather than pecuniary incentives. Also, CEO duality enhanced firm performance. As such, allegiance to the party and possible advancement to an upper-level political position would motivate company directors in state-owned enterprises. On the other hand, directors in privately owned enterprises might be motivated by monetary incentives. In addition, a statistical regression model was proposed and tested to get the results of the performance of state-owned enterprises. Finally, some suggestions were made about how to improve the institutional management of government-owned corporations in China.

Keywords: China’s listed Firm, director compensation, CEO duality, firm performance, panel analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 479
322 Electron Filling Factor and Sunlight Concentration Effects on the Efficiency of Intermediate Band Solar Cell

Authors: Nima Es'haghi Gorji, Hossein Movla, Foozieh Sohrabi, Alireza Mottaghizadeh, Mohammad Houshmand, Hassan Babaei, Arash Nikniazi

Abstract:

For a determined intermediate band position, the effects of electron filling factor and sunlight concentration on the active region thickness and efficiency of the quantum-dot intermediate band solar cell are calculated. For each value of electron filling factor, the maximum point of efficiency obtained and resulted in the optimum thickness of the cell under three different sunlight concentrations. We show the importance of filling factor as a parameter to be more considered. The photon recycling effect eliminated in all calculations.

Keywords: Intermediate band, Sunlight concentration, Efficiency limits, Electron filling factor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
321 A Retrospective of Wind Turbine Architectural Integration in the Built Environment

Authors: Stefano Degrassi, Marco Raciti Castelli, Ernesto Benini

Abstract:

Since the European renewable energy directives set the target for 22.1% of electricity generation to be supplied by 2010 [1], there has been increased interest in using green technologies also within the urban enviroment. The most commonly considered installations are solar thermal and solar photovoltaics. Nevertheless, as observed by Bahaj et al. [2], small scale turbines can reduce the built enviroment related CO2 emissions. Thus, in the last few years, an increasing number of manufacturers have developed small wind turbines specifically designed for the built enviroment. The present work focuses on the integration into architectural systems of such installations and presents a survey of successful case studies.

Keywords: Wind turbines, architectural integration, wind resources, urban areas, built enviroment, renewable technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2772
320 Advantages of Combining Solar Greenhouse System and Trombe Wall in Hot and Dry Climate and Housing Design: The Case of Isfahan

Authors: Yalda Safaralipour, Seyed Ahmad Shahgoli

Abstract:

Nowadays over-consumption of fossil energy in buildings especially in residential buildings and also considering the increase in populations, the crisis of energy shortage in a near future is predictable. The recent performance of developed countries in construction with the aim of decreasing fossil energies shows that these countries have understood the incoming crisis and has taken reasonable and basic actions in this regard. However, Iranian architecture, with several thousands years of history, has acquired and executed invaluable experiences in designing, adapting and coordinating with the nature. Architectural studies during the recent decades show that imitating modern western architecture results in high energy wastage beside the fact that it not reasonably adaptable and corresponded with the habits and customs of people unlike the architecture in the past which was compatible and adaptable with the climatic conditions and this necessitates optimal using of renewable energies more than ever. This paper studies problems of design, execution and living in today's houses and reviews the characteristics of climatic elements paying special attention to the performance of trombe wall and solar greenhouse in traditional houses and offers some suggestions for combining these two elements and a climatic strategy.

Keywords: Climatic Designing, Housing in Hot & Dry Area, Solar Greenhouse, Trombe Wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
319 Experimental Investigation on Activated Carbon Based Cryosorption Pump

Authors: K. B. Vinay, K. G. Vismay, S. Kasturirengan, G. A. Vivek

Abstract:

Cryosorption pumps are considered safe, quiet, and ultra-high vacuum production pumps which have their application from Semiconductor industries to ITER [International Thermonuclear Experimental Reactor] units. The principle of physisorption of gases over highly porous materials like activated charcoal at cryogenic temperatures (below -1500°C) is involved in determining the pumping speed of gases like Helium, Hydrogen, Argon, and Nitrogen. This paper aims at providing detailed overview of development of Cryosorption pump and characterization of different activated charcoal materials that optimizes the performance of the pump. Different grades of charcoal were tested in order to determine the pumping speed of the pump and were compared with commercially available Varian cryopanel. The results for bare panel, bare panel with adhesive, cryopanel with pellets, and cryopanel with granules were obtained and compared. The comparison showed that cryopanel adhered with small granules gave better pumping speeds than large sized pellets.

Keywords: Adhesive, cryopanel, granules, pellets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015