Search results for: network identification
431 Modeling of Pulping of Sugar Maple Using Advanced Neural Network Learning
Authors: W. D. Wan Rosli, Z. Zainuddin, R. Lanouette, S. Sathasivam
Abstract:
This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of Pulping of Sugar Maple problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified problem where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.
Keywords: Convergence, Modeling, Neural Networks, Preconditioned Conjugate Gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686430 Improved Automated Classification of Alcoholics and Non-alcoholics
Authors: Ramaswamy Palaniappan
Abstract:
In this paper, several improvements are proposed to previous work of automated classification of alcoholics and nonalcoholics. In the previous paper, multiplayer-perceptron neural network classifying energy of gamma band Visual Evoked Potential (VEP) signals gave the best classification performance using 800 VEP signals from 10 alcoholics and 10 non-alcoholics. Here, the dataset is extended to include 3560 VEP signals from 102 subjects: 62 alcoholics and 40 non-alcoholics. Three modifications are introduced to improve the classification performance: i) increasing the gamma band spectral range by increasing the pass-band width of the used filter ii) the use of Multiple Signal Classification algorithm to obtain the power of the dominant frequency in gamma band VEP signals as features and iii) the use of the simple but effective knearest neighbour classifier. To validate that these two modifications do give improved performance, a 10-fold cross validation classification (CVC) scheme is used. Repeat experiments of the previously used methodology for the extended dataset are performed here and improvement from 94.49% to 98.71% in maximum averaged CVC accuracy is obtained using the modifications. This latest results show that VEP based classification of alcoholics is worth exploring further for system development.Keywords: Alcoholic, Multilayer-perceptron, Nearest neighbour, Gamma band, MUSIC, Visual evoked potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378429 Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing
Authors: Yehjune Heo
Abstract:
As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.
Keywords: Anti-spoofing, CNN, fingerprint recognition, loss function, optimizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 420428 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study
Authors: Si Mon Kueh, Tom J. Kazmierski
Abstract:
There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.Keywords: Artificial Neural Networks, bit-serial neural processor, FPGA, Neural Processing Element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573427 Distributed 2-Vertex Connectivity Test of Graphs Using Local Knowledge
Authors: Brahim Hamid, Bertrand Le Saec, Mohamed Mosbah
Abstract:
The vertex connectivity of a graph is the smallest number of vertices whose deletion separates the graph or makes it trivial. This work is devoted to the problem of vertex connectivity test of graphs in a distributed environment based on a general and a constructive approach. The contribution of this paper is threefold. First, using a preconstructed spanning tree of the considered graph, we present a protocol to test whether a given graph is 2-connected using only local knowledge. Second, we present an encoding of this protocol using graph relabeling systems. The last contribution is the implementation of this protocol in the message passing model. For a given graph G, where M is the number of its edges, N the number of its nodes and Δ is its degree, our algorithms need the following requirements: The first one uses O(Δ×N2) steps and O(Δ×logΔ) bits per node. The second one uses O(Δ×N2) messages, O(N2) time and O(Δ × logΔ) bits per node. Furthermore, the studied network is semi-anonymous: Only the root of the pre-constructed spanning tree needs to be identified.
Keywords: Distributed computing, fault-tolerance, graph relabeling systems, local computations, local knowledge, message passing system, networks, vertex connectivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839426 Definition and Core Components of the Role-Partner Allocation Problem in Collaborative Networks
Authors: J. Andrade-Garda, A. Anguera, J. Ares-Casal, M. Hidalgo-Lorenzo, J.-A. Lara, D. Lizcano, S. Suárez-Garaboa
Abstract:
In the current constantly changing economic context, collaborative networks allow partners to undertake projects that would not be possible if attempted by them individually. These projects usually involve the performance of a group of tasks (named roles) that have to be distributed among the partners. Thus, an allocation/matching problem arises that will be referred to as Role-Partner Allocation problem. In real life this situation is addressed by negotiation between partners in order to reach ad hoc agreements. Besides taking a long time and being hard work, both historical evidence and economic analysis show that such approach is not recommended. Instead, the allocation process should be automated by means of a centralized matching scheme. However, as a preliminary step to start the search for such a matching mechanism (or even the development of a new one), the problem and its core components must be specified. To this end, this paper establishes (i) the definition of the problem and its constraints, (ii) the key features of the involved elements (i.e., roles and partners); and (iii) how to create preference lists both for roles and partners. Only this way it will be possible to conduct subsequent methodological research on the solution method.Keywords: Collaborative network, matching, partner, preference list, role.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 820425 Classification Algorithms in Human Activity Recognition using Smartphones
Authors: Mohd Fikri Azli bin Abdullah, Ali Fahmi Perwira Negara, Md. Shohel Sayeed, Deok-Jai Choi, Kalaiarasi Sonai Muthu
Abstract:
Rapid advancement in computing technology brings computers and humans to be seamlessly integrated in future. The emergence of smartphone has driven computing era towards ubiquitous and pervasive computing. Recognizing human activity has garnered a lot of interest and has raised significant researches- concerns in identifying contextual information useful to human activity recognition. Not only unobtrusive to users in daily life, smartphone has embedded built-in sensors that capable to sense contextual information of its users supported with wide range capability of network connections. In this paper, we will discuss the classification algorithms used in smartphone-based human activity. Existing technologies pertaining to smartphone-based researches in human activity recognition will be highlighted and discussed. Our paper will also present our findings and opinions to formulate improvement ideas in current researches- trends. Understanding research trends will enable researchers to have clearer research direction and common vision on latest smartphone-based human activity recognition area.Keywords: Classification algorithms, Human Activity Recognition (HAR), Smartphones
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6300424 Effects of Distributed Generation on Voltage Profile for Reconfiguration of Distribution Networks
Authors: Mahdi Hayatdavudi, Ali Reza Rajabi, Mohammad Hassan Raouf, Mojtaba Saeedimoghadam, Amir Habibi
Abstract:
Generally, distributed generation units refer to small-scale electric power generators that produce electricity at a site close to the customer or an electric distribution system (in parallel mode). From the customers’ point of view, a potentially lower cost, higher service reliability, high power quality, increased energy efficiency, and energy independence can be the key points of a proper DG unit. Moreover, the use of renewable types of distributed generations such as wind, photovoltaic, geothermal or hydroelectric power can also provide significant environmental benefits. Therefore, it is of crucial importance to study their impacts on the distribution networks. A marked increase in Distributed Generation (DG), associated with medium voltage distribution networks, may be expected. Nowadays, distribution networks are planned for unidirectional power flows that are peculiar to passive systems, and voltage control is carried out exclusively by varying the tap position of the HV/MV transformer. This paper will compare different DG control methods and possible network reconfiguration aimed at assessing their effect on voltage profiles.
Keywords: Distribution Feeder Reconfiguration (DFR), Distributed Generator (DG), Voltage Profile, Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957423 Energy Efficient Reliable Cooperative Multipath Routing in Wireless Sensor Networks
Authors: Gergely Treplan, Long Tran-Thanh, Janos Levendovszky
Abstract:
In this paper, a reliable cooperative multipath routing algorithm is proposed for data forwarding in wireless sensor networks (WSNs). In this algorithm, data packets are forwarded towards the base station (BS) through a number of paths, using a set of relay nodes. In addition, the Rayleigh fading model is used to calculate the evaluation metric of links. Here, the quality of reliability is guaranteed by selecting optimal relay set with which the probability of correct packet reception at the BS will exceed a predefined threshold. Therefore, the proposed scheme ensures reliable packet transmission to the BS. Furthermore, in the proposed algorithm, energy efficiency is achieved by energy balancing (i.e. minimizing the energy consumption of the bottleneck node of the routing path) at the same time. This work also demonstrates that the proposed algorithm outperforms existing algorithms in extending longevity of the network, with respect to the quality of reliability. Given this, the obtained results make possible reliable path selection with minimum energy consumption in real time.Keywords: wireless sensor networks, reliability, cooperativerouting, Rayleigh fading model, energy balancing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610422 MiSense Hierarchical Cluster-Based Routing Algorithm (MiCRA) for Wireless Sensor Networks
Authors: Kavi K. Khedo, R. K. Subramanian
Abstract:
Wireless sensor networks (WSN) are currently receiving significant attention due to their unlimited potential. These networks are used for various applications, such as habitat monitoring, automation, agriculture, and security. The efficient nodeenergy utilization is one of important performance factors in wireless sensor networks because sensor nodes operate with limited battery power. In this paper, we proposed the MiSense hierarchical cluster based routing algorithm (MiCRA) to extend the lifetime of sensor networks and to maintain a balanced energy consumption of nodes. MiCRA is an extension of the HEED algorithm with two levels of cluster heads. The performance of the proposed protocol has been examined and evaluated through a simulation study. The simulation results clearly show that MiCRA has a better performance in terms of lifetime than HEED. Indeed, MiCRA our proposed protocol can effectively extend the network lifetime without other critical overheads and performance degradation. It has been noted that there is about 35% of energy saving for MiCRA during the clustering process and 65% energy savings during the routing process compared to the HEED algorithm.Keywords: Clustering algorithm, energy consumption, hierarchical model, sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781421 Influence Analysis of Macroeconomic Parameters on Real Estate Price Variation in Taipei, Taiwan
Authors: Li Li, Kai-Hsuan Chu
Abstract:
It is well known that the real estate price depends on a lot of factors. Each house current value is dependent on the location, room number, transportation, living convenience, year and surrounding environments. Although, there are different experienced models for housing agent to estimate the price, it is a case by case study without overall dynamic variation investigation. However, many economic parameters may more or less influence the real estate price variation. Here, the influences of most macroeconomic parameters on real estate price are investigated individually based on least-square scheme and grey correlation strategy. Then those parameters are classified into leading indices, simultaneous indices and laggard indices. In addition, the leading time period is evaluated based on least square method. The important leading and simultaneous indices can be used to establish an artificial intelligent neural network model for real estate price variation prediction. The real estate price variation of Taipei, Taiwan during 2005 ~ 2017 are chosen for this research data analysis and validation. The results show that the proposed method has reasonable prediction function for real estate business reference.Keywords: Real estate price, least-square, grey correlation, macroeconomics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990420 Statistics over Lyapunov Exponents for Feature Extraction: Electroencephalographic Changes Detection Case
Authors: Elif Derya UBEYLI, Inan GULER
Abstract:
A new approach based on the consideration that electroencephalogram (EEG) signals are chaotic signals was presented for automated diagnosis of electroencephalographic changes. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. This paper presented the usage of statistics over the set of the Lyapunov exponents in order to reduce the dimensionality of the extracted feature vectors. Since classification is more accurate when the pattern is simplified through representation by important features, feature extraction and selection play an important role in classifying systems such as neural networks. Multilayer perceptron neural network (MLPNN) architectures were formulated and used as basis for detection of electroencephalographic changes. Three types of EEG signals (EEG signals recorded from healthy volunteers with eyes open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified. The selected Lyapunov exponents of the EEG signals were used as inputs of the MLPNN trained with Levenberg- Marquardt algorithm. The classification results confirmed that the proposed MLPNN has potential in detecting the electroencephalographic changes.
Keywords: Chaotic signal, Electroencephalogram (EEG) signals, Feature extraction/selection, Lyapunov exponents
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2510419 The Use of Facebook as a Social Media by Political Parties in the June 7 Election in Konya
Authors: Yasemin Gülşen Yılmaz, Süleyman Hakan Yılmaz, Muhammet Erbay
Abstract:
Social media is among the most important means of communication. Social media offers individuals and groups with an opportunity for participatory socialization over the internet, which is free of any time and place restrictions. Social media is a kind of interactive communication and bilateral social network. Various communication contents can be shared and put into mass circulation easily and quickly through social media. These sharings are not only limited to individuals but also happen to groups, institutions, and different constitutions. Their contents consist of any type of written message, audio and video files. We are living in the social media era now. It is not surprising that social media which has extensive communication facilities and massive prevalence is used in politics. Therefore, the use of social media (Facebook) by political parties during the Turkish general elections held on June 7, 2015, has been chosen as our research subject. Four parties namely, AKP, CHP, MHP and HDP who have the majority of votes in Turkey and participate in elections in Konya have been selected for our study. Their provincial centers’ and parliamentary candidates` use of social media (Facebook) on the last three days prior to the election have been examined and subjected to a qualitative analysis by means of content analysis.
Keywords: Social media, June 7 general elections, politics, Facebook.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937418 Fast 3D Collision Detection Algorithm using 2D Intersection Area
Authors: Taehyun Yoon, Keechul Jung
Abstract:
There are many researches to detect collision between real object and virtual object in 3D space. In general, these techniques are need to huge computing power. So, many research and study are constructed by using cloud computing, network computing, and distribute computing. As a reason of these, this paper proposed a novel fast 3D collision detection algorithm between real and virtual object using 2D intersection area. Proposed algorithm uses 4 multiple cameras and coarse-and-fine method to improve accuracy and speed performance of collision detection. In the coarse step, this system examines the intersection area between real and virtual object silhouettes from all camera views. The result of this step is the index of virtual sensors which has a possibility of collision in 3D space. To decide collision accurately, at the fine step, this system examines the collision detection in 3D space by using the visual hull algorithm. Performance of the algorithm is verified by comparing with existing algorithm. We believe proposed algorithm help many other research, study and application fields such as HCI, augmented reality, intelligent space, and so on.
Keywords: Collision Detection, Computer Vision, Human Computer Interaction, Visual Hull
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406417 Characterization of a Hypoeutectic Al Alloy Obtained by Selective Laser Melting
Authors: Jairo A. Muñoz, Alexander Komissarov, Alexander Gromov
Abstract:
In this investigation, a hypoeutectic AlSi11Cu alloy was printed. This alloy was obtained in powder form with an average particle size of 40 µm. Bars 20 mm in diameter and 100 mm in length were printed with the building direction parallel to the bars' longitudinal direction. The microstructural characterization demonstrated an Al matrix surrounded by a Si network forming a coral-like pattern. The microstructure of the alloy showed a heterogeneous behavior with a mixture of columnar and equiaxed grains. Likewise, the texture indicated that the columnar grains were preferentially oriented towards the building direction, while the equiaxed followed a texture dominated by the cube component. On the other hand, the as-printed material strength showed higher values than those obtained in the same alloy using conventional processes such as casting. In addition, strength and ductility differences were found in the printed material, depending on the measurement direction. The highest values were obtained in the radial direction (565 MPa maximum strength and 4.8% elongation to failure). The lowest values corresponded to the transverse direction (508 MPa maximum strength and 3.2 elongation to failure), which corroborate the material anisotropy.
Keywords: Additive manufacturing, aluminium alloy, melting pools, tensile test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698416 Multiobjective Optimization Solution for Shortest Path Routing Problem
Authors: C. Chitra, P. Subbaraj
Abstract:
The shortest path routing problem is a multiobjective nonlinear optimization problem with constraints. This problem has been addressed by considering Quality of service parameters, delay and cost objectives separately or as a weighted sum of both objectives. Multiobjective evolutionary algorithms can find multiple pareto-optimal solutions in one single run and this ability makes them attractive for solving problems with multiple and conflicting objectives. This paper uses an elitist multiobjective evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm (NSGA), for solving the dynamic shortest path routing problem in computer networks. A priority-based encoding scheme is proposed for population initialization. Elitism ensures that the best solution does not deteriorate in the next generations. Results for a sample test network have been presented to demonstrate the capabilities of the proposed approach to generate well-distributed pareto-optimal solutions of dynamic routing problem in one single run. The results obtained by NSGA are compared with single objective weighting factor method for which Genetic Algorithm (GA) was applied.Keywords: Multiobjective optimization, Non-dominated SortingGenetic Algorithm, Routing, Weighted sum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3267415 Identification of Complex Sense-antisense Gene's Module on 17q11.2 Associated with Breast Cancer Aggressiveness and Patient's Survival
Authors: O. Grinchuk, E. Motakis, V. Kuznetsov
Abstract:
Sense-antisense gene pair (SAGP) is a pair of two oppositely transcribed genes sharing a common region on a chromosome. In the mammalian genomes, SAGPs can be organized in more complex sense-antisense gene architectures (CSAGA) in which at least one gene could share loci with two or more antisense partners. Many dozens of CSAGAs can be found in the human genome. However, CSAGAs have not been systematically identified and characterized in context of their role in human diseases including cancers. In this work we characterize the structural-functional properties of a cluster of 5 genes –TMEM97, IFT20, TNFAIP1, POLDIP2 and TMEM199, termed TNFAIP1 / POLDIP2 module. This cluster is organized as CSAGA in cytoband 17q11.2. Affymetrix U133A&B expression data of two large cohorts (410 atients, in total) of breast cancer patients and patient survival data were used. For the both studied cohorts, we demonstrate (i) strong and reproducible transcriptional co-regulatory patterns of genes of TNFAIP1/POLDIP2 module in breast cancer cell subtypes and (ii) significant associations of TNFAIP1/POLDIP2 CSAGA with amplification of the CSAGA region in breast cancer, (ii) cancer aggressiveness (e.g. genetic grades) and (iv) disease free patient-s survival. Moreover, gene pairs of this module demonstrate strong synergetic effect in the prognosis of time of breast cancer relapse. We suggest that TNFAIP1/ POLDIP2 cluster can be considered as a novel type of structural-functional gene modules in the human genome.
Keywords: Sense-antisense gene pair, complex genome architecture, TMEM97, IFT20, TNFAIP1, POLDIP2, TMEM199, 17q11.2, breast cancer, transcription regulation, survival analysis, prognosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671414 Wireless Sensor Network to Help Low Incomes Farmers to Face Drought Impacts
Authors: Fantazi Walid, Ezzedine Tahar, Bargaoui Zoubeida
Abstract:
This research presents the main ideas to implement an intelligent system composed by communicating wireless sensors measuring environmental data linked to drought indicators (such as air temperature, soil moisture , etc...). On the other hand, the setting up of a spatio temporal database communicating with a Web mapping application for a monitoring in real time in activity 24:00 /day, 7 days/week is proposed to allow the screening of the drought parameters time evolution and their extraction. Thus this system helps detecting surfaces touched by the phenomenon of drought. Spatio-temporal conceptual models seek to answer the users who need to manage soil water content for irrigating or fertilizing or other activities pursuing crop yield augmentation. Effectively, spatiotemporal conceptual models enable users to obtain a diagram of readable and easy data to apprehend. Based on socio-economic information, it helps identifying people impacted by the phenomena with the corresponding severity especially that this information is accessible by farmers and stakeholders themselves. The study will be applied in Siliana watershed Northern Tunisia.Keywords: WSN, database spatio-temporal, GIS, web-mapping, indicator of drought.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2445413 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems
Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan
Abstract:
Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.Keywords: Data mining, hybrid storage system, recurrent neural network, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736412 Energy Efficient Resource Allocation and Scheduling in Cloud Computing Platform
Authors: Shuen-Tai Wang, Ying-Chuan Chen, Yu-Ching Lin
Abstract:
There has been renewal of interest in the relation between Green IT and cloud computing in recent years. Cloud computing has to be a highly elastic environment which provides stable services to users. The growing use of cloud computing facilities has caused marked energy consumption, putting negative pressure on electricity cost of computing center or data center. Each year more and more network devices, storages and computers are purchased and put to use, but it is not just the number of computers that is driving energy consumption upward. We could foresee that the power consumption of cloud computing facilities will double, triple, or even more in the next decade. This paper aims at resource allocation and scheduling technologies that are short of or have not well developed yet to reduce energy utilization in cloud computing platform. In particular, our approach relies on recalling services dynamically onto appropriate amount of the machines according to user’s requirement and temporarily shutting down the machines after finish in order to conserve energy. We present initial work on integration of resource and power management system that focuses on reducing power consumption such that they suffice for meeting the minimizing quality of service required by the cloud computing platform.Keywords: Cloud computing, energy utilization, power consumption, resource allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442411 Application of Data Mining Techniques for Tourism Knowledge Discovery
Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee
Abstract:
Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.
Keywords: Classification algorithms; data mining; tourism; knowledge discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2547410 Design and Operation of a Multicarrier Energy System Based On Multi Objective Optimization Approach
Authors: Azadeh Maroufmashat, Sourena Sattari Khavas, Halle Bakhteeyar
Abstract:
Multi-energy systems will enhance the system reliability and power quality. This paper presents an integrated approach for the design and operation of distributed energy resources (DER) systems, based on energy hub modeling. A multi-objective optimization model is developed by considering an integrated view of electricity and natural gas network to analyze the optimal design and operating condition of DER systems, by considering two conflicting objectives, namely, minimization of total cost and the minimization of environmental impact which is assessed in terms of CO2 emissions. The mathematical model considers energy demands of the site, local climate data, and utility tariff structure, as well as technical and financial characteristics of the candidate DER technologies. To provide energy demands, energy systems including photovoltaic, and co-generation systems, boiler, central power grid are considered. As an illustrative example, a hotel in Iran demonstrates potential applications of the proposed method. The results prove that increasing the satisfaction degree of environmental objective leads to increased total cost.
Keywords: Multi objective optimization, DER systems, Energy hub, Cost, CO2 emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2467409 Comparing Academically Gifted and Non-Gifted Students- Supportive Environments in Jordan
Authors: Mustafa Qaseem Hielat, Ahmad Mohammad Al-Shabatat
Abstract:
Jordan exerts many efforts to nurture their academically gifted students in special schools since 2001. During the past nine years of launching these schools, their learning and excellence environments were believed to be distinguished compared to public schools. This study investigated the environments of gifted students compared with other non-gifted, using a survey instrument that measures the dimensions of family, peers, teachers, school- support, society, and resources –dimensions rooted deeply in supporting gifted education, learning, and achievement. A total number of 109 were selected from excellence schools for academically gifted students, and 119 non-gifted students were selected from public schools. Around 8.3% of the non-gifted students reported that they “Never" received any support from their surrounding environments, 14.9% reported “Seldom" support, 23.7% reported “ Often" support, 26.0% reported “Frequent" support, and 32.8% reported “Very frequent" support. Where the gifted students reported more “Never" support than the non-gifted did with 11.3%, “Seldom" support with 15.4%, “Often" support with 26.6%, “Frequent" support with 29.0%, and reported “Very frequent" support less than the non-gifted students with 23.6%. Unexpectedly, statistical differences were found between the two groups favoring non-gifted students in perception of their surrounding environments in specific dimensions, namely, school- support, teachers, and society. No statistical differences were found in the other dimensions of the survey, namely, family, peers, and resources. As the differences were found in teachers, school- support, and society, the nurturing environments for the excellence schools need to be revised to adopt more creative teaching styles, rich school atmosphere and infrastructures, interactive guiding for the students and their parents, promoting for the excellence environments, and re-build successful identification models. Thus, families, schools, and society should increase their cooperation, communication, and awareness of the gifted supportive environments. However, more studies to investigate other aspects of promoting academic giftedness and excellence are recommended.Keywords: Academic giftedness, Supportive environment, Excellence schools, Gifted grouping, Gifted nurturing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881408 A Grey-Fuzzy Controller for Optimization Technique in Wireless Networks
Authors: Yao-Tien Wang, Hsiang-Fu Yu, Dung Chen Chiou
Abstract:
In wireless and mobile communications, this progress provides opportunities for introducing new standards and improving existing services. Supporting multimedia traffic with wireless networks quality of service (QoS). In this paper, a grey-fuzzy controller for radio resource management (GF-RRM) is presented to maximize the number of the served calls and QoS provision in wireless networks. In a wireless network, the call arrival rate, the call duration and the communication overhead between the base stations and the control center are vague and uncertain. In this paper, we develop a method to predict the cell load and to solve the RRM problem based on the GF-RRM, and support the present facility has been built on the application-level of the wireless networks. The GF-RRM exhibits the better adaptability, fault-tolerant capability and performance than other algorithms. Through simulations, we evaluate the blocking rate, update overhead, and channel acquisition delay time of the proposed method. The results demonstrate our algorithm has the lower blocking rate, less updated overhead, and shorter channel acquisition delay.Keywords: radio resource management, grey prediction, fuzzylogic control, wireless networks, quality of service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717407 Vitamin Content of Swordfish (Xhiphias gladius) Affected by Salting and Frying
Authors: L. Piñeiro, N. Cobas, L. Gómez-Limia, S. Martínez, I. Franco
Abstract:
The swordfish (Xiphias gladius) is a large oceanic fish of high commercial value, which is widely distributed in waters of the world’s oceans. They are considered to be an important source of high quality proteins, vitamins and essential fatty acids, although only half of the population follows the recommendation of nutritionists to consume fish at least twice a week. Swordfish is consumed worldwide because of its low fat content and high protein content. It is generally sold as fresh, frozen, and as pieces or slices. The aim of this study was to evaluate the effect of salting and frying on the composition of the water-soluble vitamins (B2, B3, B9 and B12) and fat-soluble vitamins (A, D, and E) of swordfish. Three loins of swordfish from Pacific Ocean were analyzed. All the fishes had a weight between 50 and 70 kg and were transported to the laboratory frozen (-18 ºC). Before the processing, they were defrosted at 4 ºC. Each loin was sliced and salted in brine. After cleaning the slices, they were divided into portions (10×2 cm) and fried in olive oil. The identification and quantification of vitamins were carried out by high-performance liquid chromatography (HPLC), using methanol and 0.010% trifluoroacetic acid as mobile phases at a flow-rate of 0.7 mL min-1. The UV-Vis detector was used for the detection of the water- and fat-soluble vitamins (A and D), as well as the fluorescence detector for the detection of the vitamin E. During salting, water and fat-soluble vitamin contents remained constant, observing an evident decrease in the values of vitamin B2. The diffusion of salt into the interior of the pieces and the loss of constitution water that occur during this stage would be related to this significant decrease. In general, after frying water-soluble and fat-soluble vitamins showed a great thermolability with high percentages of retention with values among 50–100%. Vitamin B3 is the one that exhibited higher percentages of retention with values close to 100%. However, vitamin B9 presented the highest losses with a percentage of retention of less than 20%.
Keywords: Frying, HPLC, salting, swordfish, vitamins.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 928406 A Unified Approach for Naval Telecommunication Architectures
Authors: Y. Lacroix, J.-F. Malbranque
Abstract:
We present a chronological evolution for naval telecommunication networks. We distinguish periods: with or without multiplexers, with switch systems, with federative systems, with medium switching, and with medium switching with wireless networks. This highlights the introduction of new layers and technology in the architecture. These architectures are presented using layer models of transmission, in a unified way, which enables us to integrate pre-existing models. A ship of a naval fleet has internal communications (i.e. applications' networks of the edge) and external communications (i.e. the use of the means of transmission between edges). We propose architectures, deduced from the layer model, which are the point of convergence between the networks on board and the HF, UHF radio, and satellite resources. This modelling allows to consider end-to-end naval communications, and in a more global way, that is from the user on board towards the user on shore, including transmission and networks on the shore side. The new architectures need take care of quality of services for end-to-end communications, the more remote control develops a lot and will do so in the future. Naval telecommunications will be more and more complex and will use more and more advanced technologies, it will thus be necessary to establish clear global communication schemes to grant consistency of the architectures. Our latest model has been implemented in a military naval situation, and serves as the basic architecture for the RIFAN2 network.
Keywords: Equilibrium beach profile, eastern tombolo of Giens, potential function, erosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 867405 Perception-Oriented Model Driven Development for Designing Data Acquisition Process in Wireless Sensor Networks
Authors: K. Indra Gandhi
Abstract:
Wireless Sensor Networks (WSNs) have always been characterized for application-specific sensing, relaying and collection of information for further analysis. However, software development was not considered as a separate entity in this process of data collection which has posed severe limitations on the software development for WSN. Software development for WSN is a complex process since the components involved are data-driven, network-driven and application-driven in nature. This implies that there is a tremendous need for the separation of concern from the software development perspective. A layered approach for developing data acquisition design based on Model Driven Development (MDD) has been proposed as the sensed data collection process itself varies depending upon the application taken into consideration. This work focuses on the layered view of the data acquisition process so as to ease the software point of development. A metamodel has been proposed that enables reusability and realization of the software development as an adaptable component for WSN systems. Further, observing users perception indicates that proposed model helps in improving the programmer's productivity by realizing the collaborative system involved.
Keywords: Model-driven development, wireless sensor networks, data acquisition, separation of concern, layered design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958404 Types of Epilepsies and Findings EEG- LORETA about Epilepsy
Authors: Leila Maleki, Ahmad Esmali Kooraneh, Hossein Taghi Derakhshi
Abstract:
Neural activity in the human brain starts from the early stages of prenatal development. This activity or signals generated by the brain are electrical in nature and represent not only the brain function but also the status of the whole body. At the present moment, three methods can record functional and physiological changes within the brain with high temporal resolution of neuronal interactions at the network level: the electroencephalogram (EEG), the magnet oencephalogram (MEG), and functional magnetic resonance imaging (fMRI); each of these has advantages and shortcomings. EEG recording with a large number of electrodes is now feasible in clinical practice. Multichannel EEG recorded from the scalp surface provides very valuable but indirect information about the source distribution. However, deep electrode measurements yield more reliable information about the source locations intracranial recordings and scalp EEG are used with the source imaging techniques to determine the locations and strengths of the epileptic activity. As a source localization method, Low Resolution Electro-Magnetic Tomography (LORETA) is solved for the realistic geometry based on both forward methods, the Boundary Element Method (BEM) and the Finite Difference Method (FDM). In this paper, we review the findings EEG- LORETA about epilepsy.Keywords: Epilepsy, EEG, EEG- Loreta, loreta analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3094403 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux
Authors: Hao Mi, Ming Yang, Tian-yue Yang
Abstract:
Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.Keywords: Remote monitoring, non-destructive testing, embedded linux system, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 967402 Optimizing Spatial Trend Detection By Artificial Immune Systems
Authors: M. Derakhshanfar, B. Minaei-Bidgoli
Abstract:
Spatial trends are one of the valuable patterns in geo databases. They play an important role in data analysis and knowledge discovery from spatial data. A spatial trend is a regular change of one or more non spatial attributes when spatially moving away from a start object. Spatial trend detection is a graph search problem therefore heuristic methods can be good solution. Artificial immune system (AIS) is a special method for searching and optimizing. AIS is a novel evolutionary paradigm inspired by the biological immune system. The models based on immune system principles, such as the clonal selection theory, the immune network model or the negative selection algorithm, have been finding increasing applications in fields of science and engineering. In this paper, we develop a novel immunological algorithm based on clonal selection algorithm (CSA) for spatial trend detection. We are created neighborhood graph and neighborhood path, then select spatial trends that their affinity is high for antibody. In an evolutionary process with artificial immune algorithm, affinity of low trends is increased with mutation until stop condition is satisfied.Keywords: Spatial Data Mining, Spatial Trend Detection, Heuristic Methods, Artificial Immune System, Clonal Selection Algorithm (CSA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047