Search results for: Free stream temperature.
611 Modeling And Analysis of Simple Open Cycle Gas Turbine Using Graph Networks
Authors: Naresh Yadav, I.A. Khan, Sandeep Grover
Abstract:
This paper presents a unified approach based graph theory and system theory postulates for the modeling and analysis of Simple open cycle Gas turbine system. In the present paper, the simple open cycle gas turbine system has been modeled up to its subsystem level and system variables have been identified to develop the process subgraphs. The theorems and algorithms of the graph theory have been used to represent behavioural properties of the system like rate of heat and work transfers rates, pressure drops and temperature drops in the involved processes of the system. The processes have been represented as edges of the process subgraphs and their limits as the vertices of the process subgraphs. The system across variables and through variables has been used to develop terminal equations of the process subgraphs of the system. The set of equations developed for vertices and edges of network graph are used to solve the system for its process variables.Keywords: Simple open cycle gas turbine, Graph theoretic approach, process subgraphs, gas turbines system modeling, systemtheory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2642610 Fabrication of High Aluminum Content Mg alloys using a Horizontal Twin Roll Caster
Authors: H. Harada, S. Nishida, T. Nagumo, M. Endo, H. Watari
Abstract:
This study was aimed for investigating of manufacturing high aluminum content Mg alloys using a horizontal twin roll caster. Recently, weight saving has been key issues for lighter transport equipments as well as electronic component parts. As alternative materials to aluminum alloys, developing magnesium alloy with higher strength has been expected. Normally high Aluminum content Mg alloy has poor ductility and is difficult to be rolled because of its high strength. However, twin roll casting process is suitable for manufacturing wrought Mg alloys because materials can be cast directly from molten metal. In this study, manufacturing of high aluminum content magnesium alloy sheet using the roll casting process has been carried out. Effects of manufacturing parameter, such as roll velocity, pouring temperature and roll gap, on casting was investigated. A microscopic observation of the crystals of cross section of as cast strip as well as rolled strip was conducted.Keywords: AZ91, AZ111, AZ121, Magnesium alloys, Twin roll casting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029609 Influence of [Emim][OAc] and Water on Gelatinization Process and Interactions with Starch
Authors: Shajaratuldur Ismail, Nurlidia Mansor, Zakaria Man
Abstract:
Thermoplastic starch (TPS) plasticized by 1-ethyl-3-methylimidazolium acetate [Emim][OAc] were obtained through gelatinization process. The gelatinization process occurred in the presence of water and [Emim][OAc] as plasticizer at high temperature (90˚C). The influence of [Emim][OAc] and water on the gelatinization and interactions with starch have been studied over a range of compositions. The homogenous mass was obtained for the samples containing 35, 40 and 43.5 % of water contents which showed that water plays important role in gelatinization process. Detailed IR spectroscopy analysis showed decrease in hydrogen bonding intensity and strong interaction between acetate anion in [Emim][OAc] and starch hydroxyl groups in the presence of [Emim][OAc]. Starch-[Emim][OAc]-water mixture at 10-3-8.7 presented homogenous mass, less hydrogen bonding intensity and strong interaction between acetate anion in [Emim][OAc] and starch hydroxyl groups.
Keywords: Starch, ionic liquid, 1-ethyl-3-methylimidazolium acetate, plasticizer, gelatinization, IR spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 912608 NaCl Erosion-Corrosion of Mild Steel under Submerged Impingement Jet
Authors: M. Sadique, S. Ainane, Y. F. Yap, P. Rostron, E. Al Hajri
Abstract:
The presence of sand in production lines in the oil and gas industries causes material degradation due to erosion-corrosion. The material degradation caused by erosion-corrosion in pipelines can result in a high cost of monitoring and maintenance and in major accidents. The process of erosion-corrosion consists of erosion, corrosion, and their interactions. Investigating and understanding how the erosion-corrosion process affects the degradation process in certain materials will allow for a reduction in economic loss and help prevent accidents. In this study, material loss due to erosion-corrosion of mild steel under impingement of sand-laden water at 90˚ impingement angle is investigated using a submerged impingement jet (SIJ) test. In particular, effects of jet velocity and sand loading on TWL due to erosion-corrosion, weight loss due to pure erosion and erosion-corrosion interactions, at a temperature of 29-33 °C in sea water environment (3.5% NaCl), are analyzed. The results show that the velocity and sand loading have a great influence on the removal of materials, and erosion is more dominant under all conditions studied. Changes in the surface characteristics of the specimen after impingement test are also discussed.
Keywords: Erosion-corrosion, flow velocity, jet impingement, sand loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607607 Rheological and Thermomechanical Properties of Graphene/ABS/PP Nanocomposites
Authors: Marianna I. Triantou, Konstantina I. Stathi, Petroula A. Tarantili
Abstract:
In the present study, the incorporation of graphene into blends of acrylonitrile-butadiene-styrene terpolymer with polypropylene (ABS/PP) was investigated focusing on the improvement of their thermomechanical characteristics and the effect on their rheological behavior. The blends were prepared by melt mixing in a twin-screw extruder and were characterized by measuring the MFI as well as by performing DSC, TGA and mechanical tests. The addition of graphene to ABS/PP blends tends to increase their melt viscosity, due to the confinement of polymer chains motion. Also, graphene causes an increment of the crystallization temperature (Tc), especially in blends with higher PP content, because of the reduction of surface energy of PP nucleation, which is a consequence of the attachment of PP chains to the surface of graphene through the intermolecular CH-π interaction. Moreover, the above nanofiller improves the thermal stability of PP and increases the residue of thermal degradation at all the investigated compositions of blends, due to the thermal isolation effect and the mass transport barrier effect. Regarding the mechanical properties, the addition of graphene improves the elastic modulus, because of its intrinsic mechanical characteristics and its rigidity, and this effect is particularly strong in the case of pure PP.
Keywords: Acrylonitrile-butadiene-styrene terpolymer, blends, graphene, polypropylene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3786606 Efficiency Enhancement of Photovoltaic Panels Using an Optimised Air Cooled Heat Sink
Authors: Wisam K. Hussam, Ali Alfeeli, Gergory J. Sheard
Abstract:
Solar panels that use photovoltaic (PV) cells are popular for converting solar radiation into electricity. One of the major problems impacting the performance of PV panels is the overheating caused by excessive solar radiation and high ambient temperatures, which degrades the efficiency of the PV panels remarkably. To overcome this issue, an aluminum heat sink was used to dissipate unwanted heat from PV cells. The dimensions of the heat sink were determined considering the optimal fin spacing that fulfils hot climatic conditions. In this study, the effects of cooling on the efficiency and power output of a PV panel were studied experimentally. Two PV modules were used: one without and one with a heat sink. The experiments ran for 11 hours from 6:00 a.m. to 5:30 p.m. where temperature readings in the rear and front of both PV modules were recorded at an interval of 15 minutes using sensors and an Arduino microprocessor. Results are recorded for both panels simultaneously for analysis, temperate comparison, and for power and efficiency calculations. A maximum increase in the solar to electrical conversion efficiency of 35% and almost 55% in the power output were achieved with the use of a heat sink, while temperatures at the front and back of the panel were reduced by 9% and 11%, respectively.Keywords: Photovoltaic cell, natural convection, heat sink, efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 724605 Negative Impact of Bacteria Legionella Pneumophila in Hot Water Distribution Systems on Human Health
Authors: Daniela Ocipova, Zuzana Vranayova, Ondrej Sikula
Abstract:
Safe drinking water is one of the biggest issues facing the planet this century. The primary aim of this paper is to present our research focused on theoretical and experimental analysis of potable water and in-building water distribution systems from the point of view of microbiological risk on the basis of confrontation between the theoretical analysis and synthesis of gathered information in conditions of the Slovak Republic. The presence of the bacteria Legionella in water systems, especially in hot water distribution system, represents in terms of health protection of inhabitants the crucial problem which cannot be overlooked. Legionella pneumophila discovery, its classification and its influence on installations inside buildings are relatively new. There are a lot of guidelines and regulations developed in many individual countries for the design, operation and maintenance for tap water systems to avoid the growth of bacteria Legionella pneumophila, but in Slovakia we don-t have any. The goal of this paper is to show the necessity of prevention and regulations for installations inside buildings verified by simulation methods.Keywords: Legionella pneumophila, water temperature, distribution system, risk analysis, simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781604 Versatile Dual-Mode Class-AB Four-Quadrant Analog Multiplier
Authors: Montree Kumngern, Kobchai Dejhan
Abstract:
Versatile dual-mode class-AB CMOS four-quadrant analog multiplier circuit is presented. The dual translinear loops and current mirrors are the basic building blocks in realization scheme. This technique provides; wide dynamic range, wide-bandwidth response and low power consumption. The major advantages of this approach are; its has single ended inputs; since its input is dual translinear loop operate in class-AB mode which make this multiplier configuration interesting for low-power applications; current multiplying, voltage multiplying, or current and voltage multiplying can be obtainable with balanced input. The simulation results of versatile analog multiplier demonstrate a linearity error of 1.2 %, a -3dB bandwidth of about 19MHz, a maximum power consumption of 0.46mW, and temperature compensated. Operation of versatile analog multiplier was also confirmed through an experiment using CMOS transistor array.Keywords: Class-AB, dual-mode CMOS analog multiplier, CMOS analog integrated circuit, CMOS translinear integrated circuit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286603 Effects of Catalyst Tubes Characteristics on a Steam Reforming Process in Ammonia
Authors: M.Boumaza
Abstract:
The tubes in an Ammonia primary reformer furnace operate close to the limits of materials technology in terms of the stress induced as a result of very high temperatures, combined with large differential pressures across the tube wall. Operation at tube wall temperatures significantly above design can result in a rapid increase in the number of tube failures, since tube life is very sensitive to the absolute operating temperature of the tube. Clearly it is important to measure tube wall temperatures accurately in order to prevent premature tube failure by overheating.. In the present study, the catalyst tubes in an Ammonia primary reformer has been modeled taking into consideration heat, mass and momentum transfer as well as reformer characteristics.. The investigations concern the effects of tube characteristics and superficial tube wall temperatures on of the percentage of heat flux, unconverted methane and production of Hydrogen for various values of steam to carbon ratios. The results show the impact of catalyst tubes length and diameters on the performance of operating parameters in ammonia primary reformers.Keywords: Catalyst, tubes, reformer, performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3343602 Numerical Investigation of Heat Transfer in a Channel with Delta Winglet Vortex Generators at Different Reynolds Numbers
Authors: N. K. Singh
Abstract:
In this study the augmentation of heat transfer in a rectangular channel with triangular vortex generators is evaluated. The span wise averaged Nusselt number, mean temperature and total heat flux are compared with and without vortex generators in the channel at a blade angle of 30° for Reynolds numbers 800, 1200, 1600, and 2000. The use of vortex generators increases the span wise averaged Nusselt number compared to the case without vortex generators considerably. At a particular blade angle, increasing the Reynolds number results in an enhancement in the overall performance and span wise averaged Nusselt number was found to be greater at particular location for larger Reynolds number. The total heat flux from the bottom wall with vortex generators was found to be greater than that without vortex generators and the difference increases with increase in Reynolds number.
Keywords: Heat transfer, channel with vortex generators, numerical simulation, effect of Reynolds number on heat transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2438601 How Children Synchronize with Their Teacher: Evidence from a Real-World Elementary School Classroom
Authors: Reiko Yamamoto
Abstract:
This paper reports on how synchrony occurs between children and their teacher, and what prevents or facilitates synchrony. The aim of the experiment conducted in this study was to precisely analyze their movements and synchrony and reveal the process of synchrony in a real-world classroom. Specifically, the experiment was conducted for around 20 minutes during an English as a foreign language (EFL) lesson. The participants were 11 fourth-grade school children and their classroom teacher in a public elementary school in Japan. Previous researchers assert that synchrony causes the state of flow in a class. For checking the level of flow, Short Flow State Scale (SFSS) was adopted. The experimental procedure had four steps: 1) The teacher read aloud the first half of an English storybook to the children. Both the teacher and the children were at their own desks. 2) The children were subjected to an SFSS check. 3) The teacher read aloud the remaining half of the storybook to the children. She made the children remove their desks before reading. 4) The children were again subjected to an SFSS check. The movements of all participants were recorded with a video camera. From the movement analysis, it was found that the children synchronized better with the teacher in Step 3 than in Step 1, and that the teacher’s movement became free and outstanding without a desk. This implies that the desk acted as a barrier between the children and the teacher. Removal of this barrier resulted in the children’s reactions becoming synchronized with those of the teacher. The SFSS results proved that the children experienced more flow without a barrier than with a barrier. Apparently, synchrony is what caused flow or social emotions in the classroom. The main conclusion is that synchrony leads to cognitive outcomes such as children’s academic performance in EFL learning.
Keywords: Movement synchrony, teacher–child relationships, English as a foreign language, EFL learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 693600 Effect of Magnetic Field on the Biological Clock through the Radical Pair Mechanism
Authors: Chathurika D. Abeyrathne, Malka N. Halgamuge, Peter M. Farrell
Abstract:
There is an ongoing controversy in the literature related to the biological effects of weak, low frequency electromagnetic fields. The physical arguments and interpretation of the experimental evidence are inconsistent, where some physical arguments and experimental demonstrations tend to reject the likelihood of any effect of the fields at extremely low level. The problem arises of explaining, how the low-energy influences of weak magnetic fields can compete with the thermal and electrical noise of cells at normal temperature using the theoretical studies. The magnetoreception in animals involve radical pair mechanism. The same mechanism has been shown to be involved in the circadian rhythm synchronization in mammals. These reactions can be influenced by the weak magnetic fields. Hence, it is postulated the biological clock can be affected by weak magnetic fields and these disruptions to the rhythm can cause adverse biological effects. In this paper, likelihood of altering the biological clock via the radical pair mechanism is analyzed to simplify these studies of controversy.Keywords: Bio-effect, biological clock, magnetoreception, radical pair mechanism, weak magnetic field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2324599 Historical and Future Rainfall Variations in Bangladesh
Authors: M. M. Hossain, M. Z. Hasan, M. Alauddin, S. Akhter
Abstract:
Climate change has become a major concern across the world as the intensity along with quantity of the rainfall, mean surface temperature and other climatic parameters have been changed not only in Bangladesh but also in the entire globe. Bangladesh has already experienced many natural hazards. Among them changing of rainfall pattern, erratic and heavy rainfalls are very common. But changes of rainfall pattern and its amount is still in question to some extent. This study aimed to unfold how the historical rainfalls varied over time and how would be their future trends. In this context, historical rainfall data (1975-2014) were collected from Bangladesh Metrological Department (BMD) and then a time series model was developed using Box-Jenkins algorithm in IBM SPSS to forecast the future rainfall. From the historical data analysis, this study revealed that the amount of rainfall decreased over the time and shifted to the post monsoons. Forecasted rainfall shows that the pre-monsoon and early monsoon will get drier in future whereas late monsoon and post monsoon will show huge fluctuations in rainfall magnitudes with temporal variations which means Bangladesh will get comparatively drier seasons in future which may be a serious problem for the country as it depends on agriculture.
Keywords: Monsoon, Pre-monsoon, rainfall, pattern, variations, IBM-SPSS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1335598 Effect of Passive Modified Atmosphere in Different Packaging Materials on Fresh-Cut Mixed Fruit Salad Quality during Storage
Authors: I. Krasnova, L. Dukalska, D. Seglina, K. Juhnevica, E. Sne, D. Karklina
Abstract:
Experiments were carried out at the Latvia State Institute of Fruit-Growing in 2011. Fresh-cut minimally processed apple and pear mixed salad were packed by passive modified atmosphere (MAP) in PP containers, which were hermetically sealed by breathable conventional BOPP PropafreshTM P2GAF, and Amcor Agrifresh films. Biodegradable NatureFlexTM NVS INNOVIA Films and VC999 BioPack PLA films coated with a barrier of pure silicon oxide (SiOx) were used to compare the fresh-cut produce quality with this packed in conventional packaging films. Samples were cold stored at temperature +4.0±0.5 °C up to 10 days. The quality of salad was evaluated by physicochemical properties – weight losses, moisture, firmness, the effect of packaging modes on the colour, dynamics in headspace atmosphere concentration (CO2 and O2), titratable acidity values, as well as by microbiological contamination (yeasts, moulds and total bacteria count) of salads, analyzing before packaging and after 2, 4, 6, 8, and 10 storage days.Keywords: Biodegradable packaging, conventional, fresh-cut fruit salad
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3947597 Experimental Study of Light Crude Oil-Water Emulsions
Authors: M. Meriem-Benziane, Sabah A. Abdul-Wahab, H. Zahloul, M. Belhadri
Abstract:
This paper made an attempt to investigate the problem associated with enhancement of emulsions of light crude oil-water recovery in an oil field of Algerian Sahara. Measurements were taken through experiments using RheoStress (RS600). Factors such as shear rate, temperature and light oil concentration on the viscosity behavior were considered. Experimental measurements were performed in terms of shear stress–shear rate, yield stress and flow index on mixture of light crude oil–water. The rheological behavior of emulsion showed Non-Newtonian shear thinning behavior (Herschel-Bulkley). The experiments done in the laboratory showed the stability of some water in light crude oil emulsions form during consolidate oil recovery process. To break the emulsion using additives may involve higher cost and could be very expensive. Therefore, further research should be directed to find solution of these problems that have been encountered.
Keywords: Emulsion, Flow index, Herschel-Bulkley model, Newton model, Oil field, Rheology, Yield stress
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523596 Quality Evaluation of Ready to Eat Potatoes’ Produce in Flexible Packaging
Authors: Sandra Muizniece-Brasava, Aija Ruzaike, Lija Dukalska, Ilze Stokmane, Liene Strauta
Abstract:
Experiments have been carried out at the Latvia University of Agriculture Department of Food Technology. The aim of this work was to assess the effect of thermal treatment in flexible retort pouch packaging on the quality of potatoes’ produce during the storage time. Samples were evaluated immediately after retort thermal treatment; and following 1; 2; 3 and 4 storage months at the ambient temperature of +18±2ºC in vacuum packaging from polyamide/polyethylene (PA/PE) and aluminum/polyethylene (Al/PE) film pouches with barrier properties. Experimentally the quality of the potatoes’ produce in dry butter and mushroom dressings was characterized by measuring pH, hardness, color, microbiological properties and sensory evaluation. The sterilization was effective in protecting the produce from physical, chemical, and microbial quality degradation. According to the study of obtained data, it can be argued that the selected product processing technology and packaging materials could be applied to provide the safety and security during four-month storage period.
Keywords: Potatoes’ produce, shelf life, retort thermal treatment and packaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3111595 Clustering Based Formulation for Short Term Load Forecasting
Authors: Ajay Shekhar Pandey, D. Singh, S. K. Sinha
Abstract:
A clustering based technique has been developed and implemented for Short Term Load Forecasting, in this article. Formulation has been done using Mean Absolute Percentage Error (MAPE) as an objective function. Data Matrix and cluster size are optimization variables. Model designed, uses two temperature variables. This is compared with six input Radial Basis Function Neural Network (RBFNN) and Fuzzy Inference Neural Network (FINN) for the data of the same system, for same time period. The fuzzy inference system has the network structure and the training procedure of a neural network which initially creates a rule base from existing historical load data. It is observed that the proposed clustering based model is giving better forecasting accuracy as compared to the other two methods. Test results also indicate that the RBFNN can forecast future loads with accuracy comparable to that of proposed method, where as the training time required in the case of FINN is much less.
Keywords: Load forecasting, clustering, fuzzy inference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626594 Investigation of Water Vapour Transport Properties of Gypsum Using Genetic Algorithm
Authors: Z. Pavlík, J. Žumár, M. Pavlíková, J. Kočí, R. Černý
Abstract:
Water vapour transport properties of gypsum block are studied in dependence on relative humidity using inverse analysis based on genetic algorithm. The computational inverse analysis is performed for the relative humidity profiles measured along the longitudinal axis of a rod sample. Within the performed transient experiment, the studied sample is exposed to two environments with different relative humidity, whereas the temperature is kept constant. For the basic gypsum characterisation and for the assessment of input material parameters necessary for computational application of genetic algorithm, the basic material properties of gypsum are measured as well as its thermal and water vapour storage parameters. On the basis of application of genetic algorithm, the relative humidity dependent water vapour diffusion coefficient and water vapour diffusion resistance factor are calculated.Keywords: Water vapour transport, gypsum block, transient experiment, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659593 A Hybrid Mesh Free Local RBF- Cartesian FD Scheme for Incompressible Flow around Solid Bodies
Authors: A. Javed, K. Djidjeli, J. T. Xing, S. J. Cox
Abstract:
A method for simulating flow around the solid bodies has been presented using hybrid meshfree and mesh-based schemes. The presented scheme optimizes the computational efficiency by combining the advantages of both meshfree and mesh-based methods. In this approach, a cloud of meshfree nodes has been used in the domain around the solid body. These meshfree nodes have the ability to efficiently adapt to complex geometrical shapes. In the rest of the domain, conventional Cartesian grid has been used beyond the meshfree cloud. Complex geometrical shapes can therefore be dealt efficiently by using meshfree nodal cloud and computational efficiency is maintained through the use of conventional mesh-based scheme on Cartesian grid in the larger part of the domain. Spatial discretization of meshfree nodes has been achieved through local radial basis functions in finite difference mode (RBF-FD). Conventional finite difference scheme has been used in the Cartesian ‘meshed’ domain. Accuracy tests of the hybrid scheme have been conducted to establish the order of accuracy. Numerical tests have been performed by simulating two dimensional steady and unsteady incompressible flows around cylindrical object. Steady flow cases have been run at Reynolds numbers of 10, 20 and 40 and unsteady flow problems have been studied at Reynolds numbers of 100 and 200. Flow Parameters including lift, drag, vortex shedding, and vorticity contours are calculated. Numerical results have been found to be in good agreement with computational and experimental results available in the literature.
Keywords: CFD, Meshfree particle methods, Hybrid grid, Incompressible Navier Strokes equations, RBF-FD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2905592 Development and Characterization of a Polymer Composite Electrolyte to Be Used in Proton Exchange Membranes Fuel Cells
Authors: B. A. Berns, V. Romanovicz, M. M. de Camargo Forte, D. E. O. S. Carpenter
Abstract:
The Proton Exchange Membranes (PEM) are largely studied because they operate at low temperatures and they are suitable for mobile applications. However, there are some deficiencies in their operation, mainly those that use ethanol as a hydrogen source, that require a certain attention. Therefore, this research aimed to develop Nafion® composite membranes, mixing clay minerals, kaolin and halloysite to the polymer matrix in order to improve the ethanol molecule retentions and, at the same time, to keep the system’s protonic conductivity. The modified Nafion/Kaolin, Nafion/Halloysite composite membranes were prepared in weight proportion of 0.5, 1.0 and 1.5. The membranes obtained were characterized as to their ethanol permeability, protonic conductivity and water absorption. The composite morphology and structure are characterized by SEM and EDX and the thermal behavior is determined by TGA and DSC. The analysis of the results shows ethanol permeability reduction from 48% to 63%. However, the protonic conductivity results are lower in relation to pure Nafion®. As to the thermal behavior, the Nafion® composite membranes were stable up to a temperature of 325ºC.
Keywords: Polymer-matrix composites (PMCs), Thermal properties, Nanoclay, Differential scanning calorimetry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552591 Waste to Biofuel by Torrefaction Technology
Authors: Jyh-Cherng Chen, Yu-Zen Lin, Wei-Zhi Chen
Abstract:
Torrefaction is one of waste to energy (WTE) technologies developing in Taiwan recently, which can reduce the moisture and impuritiesand increase the energy density of biowaste effectively.To understand the torrefaction characteristics of different biowaste and the influences of different torrefaction conditions, four typical biowaste were selected to carry out the torrefaction experiments. The physical and chemical properties of different biowaste prior to and after torrefaction were analyzed and compared. Experimental results show that the contents of elemental carbon and caloric value of the four biowaste were significantly increased after torrefaction. The increase of combustible and caloric value in bamboo was the greatest among the four biowaste. The caloric value of bamboo can be increased from 1526 kcal/kg to 6104 kcal/kg after 300oC and 1 hour torrefaction. The caloric valueof torrefied bamboo was almost four times as the original. The increase of elemental carbon content in wood was the greatest (from 41.03% to 75.24%), and the next was bamboo (from 47.07% to 74.63%). The major parameters which affected the caloric value of torrefied biowaste followed the sequence of biowaste kinds, torrefaction time, and torrefaction temperature. The optimal torrefaction conditions of the experiments were bamboo torrefied at 300oC for 3 hours, and the corresponding caloric value of torrefied bamboo was 5953 kcal/kg. This caloric value is similar to that of brown coal or bituminous coal.
Keywords: Torrefaction, waste to energy, calorie, biofuel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038590 Mixed Convection Heat Transfer of Copper Oxide-Heat Transfer Oil Nanofluid in Vertical Tube
Authors: Farhad Hekmatipour, M. A. Akhavan-Behabadi, Farzad Hekmatipour
Abstract:
In this paper, experiments were conducted to investigate the heat transfer of Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid laminar flow in vertical smooth and microfin tubes as the surface temperature is constant. The effect of adding the nanoparticle to base fluid and Richardson number on the heat transfer enhancement is investigated as Richardson number increases from 0.1 to 0.7. The experimental results demonstrate that the combined forced-natural convection heat transfer rate may be improved significantly with an increment of mass nanoparticle concentration from 0% to 1.5%. In this experiment, a correlation is also proposed to predict the mixed convection heat transfer rate of CuO-HTO nanofluid flow. The maximum deviation of both correlations is less than 14%. Moreover, a correlation is presented to estimate the Nusselt number inside vertical smooth and microfin tubes as Rayleigh number is between 2´105 and 6.8´106 with the maximum deviation of 12%.
Keywords: Nanofluid, heat transfer oil, mixed convection, vertical tube, laminar flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961589 Rotor Dynamic Analysis for a Shaft Train by Using Finite Element Method
Authors: M. Najafi
Abstract:
In the present paper, a large turbo-generator shaft train including a heavy-duty gas turbine engine, a coupling, and a generator is established. The method of analysis is based on finite element simplified model for lateral and torsional vibration calculation. The basic elements of rotor are the shafts and the disks which are represented as circular cross section flexible beams and rigid body elements, respectively. For more accurate results, the gyroscopic effect and bearing dynamics coefficients and function of rotation are taken into account, and for the influence of shear effect, rotor has been modeled in the form of Timoshenko beam. Lateral critical speeds, critical speed map, damped mode shapes, Campbell diagram, zones of instability, amplitudes, phase angles response due to synchronous forces of excitation and amplification factor are calculated. Also, in the present paper, the effect of imbalanced rotor and effects of changing in internal force and temperature are studied.
Keywords: Rotor dynamic analysis, Finite element method, shaft train, Campbell diagram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1201588 Could Thermal Oceanic Hotspot Increase Climate Changes Activities in North Tropical Atlantic: Example of the 2005 Caribbean Coral Bleaching Hotspot and Hurricane Katrina Interaction
Authors: J- L. Siméon
Abstract:
This paper reviews recent studies and particularly the effects of Climate Change in the North Tropical Atlantic by studying atmospheric conditions that prevailed in 2005 ; Coral Bleaching HotSpot and Hurricane Katrina. In the aim to better understand and estimate the impact of the physical phenomenon, i.e. Thermal Oceanic HotSpot (TOHS), isotopic studies of δ18O and δ13C on marine animals from Guadeloupe (French Caribbean Island) were carried out. Recorded measures show Sea Surface Temperature (SST) up to 35°C in August which is much higher than data recorded by NOAA satellites 32°C. After having reviewed the process that led to the creation of Hurricane Katrina which hit New Orleans in August 29, 2005, it will be shown that the climatic conditions in the Caribbean from August to October 2005 have influenced Katrina evolution. This TOHS is a combined effect of various phenomenon which represent an additional factor to estimate future climate changes.Keywords: Climate Change, Thermal Ocean HotSpot, Isotope, Hurricane, Connection, Uncertainty, Sea, Science.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684587 Plastic Flow through Taper Dies: A Threedimensional Analysis
Authors: Laxmi Narayan Patra, Susanta Kumar Sahoo, Mithun KumarMurmu
Abstract:
The plastic flow of metal in the extrusion process is an important factor in controlling the mechanical properties of the extruded products. It is, however, difficult to predict the metal flow in three dimensional extrusions of sections due to the involvement of re-entrant corners. The present study is to find an upper bound solution for the extrusion of triangular sectioned through taper dies from round sectioned billet. A discontinuous kinematically admissible velocity field (KAVF) is proposed. From the proposed KAVF, the upper bound solution on non-dimensional extrusion pressure is determined with respect to the chosen process parameters. The theoretical results are compared with experimental results to check the validity of the proposed velocity field. An extrusion setup is designed and fabricated for the said purpose, and all extrusions are carried out using circular billets. Experiments are carried out with commercially available lead at room temperature.Keywords: Extrusion, Kinematically admissibly velocity fieldSpatial Elementary Rigid Region (SERR), Upper Bound Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744586 Absence of Leave and Job Morality in the ICU
Authors: Li-Ping Hsiao, Feng-Chuan Pan
Abstract:
Leave of absence is important in maintaining a good status of human resource quality. Allowing the employees temporarily free from the routine assignments can vitalize the workers- morality and productivity. This is particularly critical to secure a satisfactory service quality for healthcare professionals of which were typically featured with labor intensive and complicated works to perform. As one of the veteran hospitals that were found and operated by the Veteran Department of Taiwan, the nursing staff of the case hospital was squeezed to an extreme minimum level under the pressure of a tight budgeting. Leave of absence on schedule became extremely difficult, especially for the intensive care units (ICU), in which required close monitoring over the cared patients, and that had more easily driven the ICU nurses nervous. Even worse, the deferred leaves were more than 10 days at any time in the ICU because of a fluctuating occupancy. As a result, these had brought a bad setback to this particular nursing team, and consequently defeated the job performance and service quality. To solve this problem and accordingly to strengthen their morality, a project team was organized across different departments specific for this. Sufficient information regarding jobs and positions requirements, labor resources, and actual working hours in detail were collected and analyzed in the team meetings. Several alternatives were finalized. These included job rotating, job combination, leave on impromptu and cross-departmental redeployment. Consequently, the deferred leave days sharply reduced 70% to a level of 3 or less days. This improvement had not only provided good shelter for the ICU nurses that improved their job performance and patient safety but also encouraged the nurses active participating of a project and learned the skills of solving problems with colleagues.Keywords: Information, job rotating, human resource, intensive care unit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522585 Studying the Spatial Variations of Stable Isotopes (18O and 2H) in Precipitation and Groundwater Resources in Zagros Region
Authors: Mojtaba Heydarizad
Abstract:
Zagros mountain range is a very important precipitation zone in Iran as it receives high average annual precipitation compared to other parts of this country. Although this region is important precipitation zone in semi-arid an arid country like Iran, accurate method to study water resources in this region has not been applied yet. In this study, stable isotope δ18O content of precipitation and groundwater resources showed spatial variations across Zagros region as southern parts of Zagros region showed more enriched isotope values compared to the northern parts. This is normal as southern Zagros region is much drier with higher air temperature and evaporation compared to northern parts. In addition, the spatial variations of stable isotope δ18O in precipitation in Zagros region have been simulated by the models which consider the altitude and latitude variations as input to simulate δ18O in precipitation.Keywords: Groundwater, precipitation, simulation, stable isotopes, Zagros region.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 669584 Comparation Treatment Method for Industrial Tempeh Waste by Constructed Wetland and Activated Sludge
Authors: Imanda H. Pradana, Tillana Adilaviana, Christine Pretty Ballerena
Abstract:
Ever since industrial revolution began, our ecosystem has changed. And indeed, the negatives outweigh the positives. Industrial waste usually released into all kinds of body of water, such as river or sea. Tempeh waste is one example of waste that carries many hazardous and unwanted substances that will affect the surrounding environment. Tempeh is a popular fermented food in Asia which is rich in nutrients and active substances. Tempeh liquid waste- in particular- can cause an air pollution, and if penetrates through the soil, it will contaminates ground-water, making it unavailable for the water to be consumed. Moreover, bacteria will thrive within the polluted water, which often responsible for causing many kinds of diseases. The treatment used for this chemical waste is biological treatment such as constructed wetland and activated sludge. These kinds of treatment are able to reduce both physical and chemical parameters altogether such as temperature, TSS, pH, BOD, COD, NH3-N, NO3-N, and PO4-P. These treatments are implemented before the waste is released into the water. The result is a comparation between constructed wetland and activated sludge, along with determining which method is better suited to reduce the physical and chemical subtances of the waste.Keywords: activated sludge, constructed wetland, waste, watertreatment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828583 Theoretical Study of Flexible Edge Seals for Vacuum Glazing
Authors: Farid Arya, Trevor Hyde
Abstract:
The development of vacuum glazing represents a significant advancement in the area of low heat loss glazing systems with the potential to substantially reduce building heating and cooling loads. Vacuum glazing consists of two or more glass panes hermetically sealed together around the edge with a vacuum gap between the panes. To avoid the glass panes from collapsing and touching each other under the influence of atmospheric pressure an array of support pillars is provided between the glass panes. A high level of thermal insulation is achieved by evacuating the spaces between the glass panes to a very low pressure which greatly reduces conduction and convection within the space; therefore heat transfer through this kind of glazing is significantly lower when compared with conventional insulating glazing. However, vacuum glazing is subject to inherent stresses due to atmospheric pressure and temperature differentials which can lead to fracture of the glass panes and failure of the edge seal. A flexible edge seal has been proposed to minimise the impact of these issues. In this paper, vacuum glazing system with rigid and flexible edge seals is theoretically studied and their advantages and disadvantages are discussed.Keywords: Flexible edge seal, stress, support pillar, vacuum glazing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1267582 Modeling the Effect of Scale Deposition on Heat Transfer in Desalination Multi-Effect Distillation Evaporators
Authors: K. Bourouni, M. Chacha, T. Jaber, A. Tchantchane
Abstract:
In Multi-Effect Distillation (MED) desalination evaporators, the scale deposit outside the tubes presents a barrier to heat transfers reducing the global heat transfer coefficient and causing a decrease in water production; hence a loss of efficiency and an increase in operating and maintenance costs. Scale removal (by acid cleaning) is the main maintenance operation and constitutes the major reason for periodic plant shutdowns. A better understanding of scale deposition mechanisms will lead to an accurate determination of the variation of scale thickness around the tubes and an improved accuracy of the overall heat transfer coefficient calculation. In this paper, a coupled heat transfer-calcium carbonate scale deposition model on a horizontal tube bundle is presented. The developed tool is used to determine precisely the heat transfer area leading to a significant cost reduction for a given water production capacity. Simulations are carried to investigate the influence of different parameters such as water salinity, temperature, etc. on the heat transfer.
Keywords: Multi-effect-evaporator, water desalination, scale deposition, heat transfer coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594