Search results for: energy dissipation coefficient.
785 Numerical Investigation on Latent Heat Storage Unit of Different Configurations
Authors: Manish K Rathod, Jyotirmay Banerjee
Abstract:
The storage of thermal energy as a latent heat of phase change material (PCM) has created considerable interest among researchers in recent times. Here, an attempt is made to carry out numerical investigations to analyze the performance of latent heat storage units (LHSU) employing phase change material. The mathematical model developed is based on an enthalpy formulation. Freezing time of PCM packed in three different shaped containers viz. rectangular, cylindrical and cylindrical shell is compared. The model is validated with the results available in the literature. Results show that for the same mass of PCM and surface area of heat transfer, cylindrical shell container takes the least time for freezing the PCM and this geometric effect is more pronounced with an increase in the thickness of the shell than that of length of the shell.Keywords: Enthalpy Formulation, Latent heat storage unit(LHSU), Numerical Model, Phase change material (PCM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2516784 Optimization of Tilt Angle for Solar Collectors: A Case Study for Bursa, Turkey
Authors: N. Arslanoglu
Abstract:
This paper deals with the optimum tilt angle for the solar collector in order to collect the maximum solar radiation. The optimum angle for tilted surfaces varying from 0◦ to 90◦ in steps of 1◦ was computed. In present study, a theoretical model is used to predict the global solar radiation on a tilted surface and to obtain the optimum tilt angle for a solar collector in Bursa, Turkey. Global solar energy radiation on the solar collector surface with an optimum tilt angle is calculated for specific periods. It is determined that the optimum slope angle varies between 0◦ (June) and 59◦ (December) throughout the year. In winter (December, January, and February) the tilt should be 55◦, in spring (March, April, and May) 19.6◦, in summer (June, July, and August) 5.6◦, and in autumn (September, October, and November) 44.3◦. The yearly average of this value was obtained to be 31.1◦ and this would be the optimum fixed slope throughout the year.
Keywords: Optimum tilt angle, global solar radiation, tilted surface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623783 Effect of Flaying Capacitors on Improving the 4 Level Three-Cell Inverter
Authors: Kelaiaia Mounia Samira, Labar Hocine, Bounaya Kamel, Kelaiaia Samia
Abstract:
With the rapid advanced of technology, the industrial processes become increasingly demanding, from the point of view, power quality and controllability. The advent of multi levels inverters responds partially to these requirements. But actually, the new generation of multi-cells inverters permits to reach more performances, since, it offers more voltage levels. The disadvantage in the increase of voltage levels by the number of cells in cascades is on account of series igbts synchronisation loss, from where, a limitation of cells in cascade to 4. Regarding to these constraints, a new topology is proposed in this paper, which increases the voltage levels of the three-cell inverter from 4 to 8; with the same number of igbts, and using less stored energy in the flaying capacitors. The details of operation and modelling of this new inverter structure are also presented, then tested thanks to a three phase induction motor. KeywordsFlaying capacitors, Multi-cells inverter, pwm, switchers, modelling.Keywords: Flaying capacitors, Multi-cells inverter, pwm, switchers, modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688782 Cr Induced Magnetization in Zinc-Blende ZnO Based Diluted Magnetic Semiconductors
Authors: Bakhtiar Ul Haq, R. Ahmed, A. Shaari, Mazmira Binti Mohamed, Nisar Ali
Abstract:
The capability of exploiting the electronic charge and spin properties simultaneously in a single material has made diluted magnetic semiconductors (DMS) remarkable in the field of spintronics. We report the designing of DMS based on zinc-blend ZnO doped with Cr impurity. The full potential linearized augmented plane wave plus local orbital FP-L(APW+lo) method in density functional theory (DFT) has been adapted to carry out these investigations. For treatment of exchange and correlation energy, generalized gradient approximations have been used. Introducing Cr atoms in the matrix of ZnO has induced strong magnetic moment with ferromagnetic ordering at stable ground state. Cr:ZnO was found to favor the short range magnetic interaction that reflect tendency of Cr clustering. The electronic structure of ZnO is strongly influenced in the presence of Cr impurity atoms where impurity bands appear in the band gap.
Keywords: ZnO, Density functional theory, Diluted magnetic semiconductors, Ferromagnetic materials, FP-L(APW+lo).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888781 Effect of UV Radiation to Change the Properties of the Composite PA+GF
Authors: Lenka Markovičová, Viera Zatkalíková, Tomasz Garbacz
Abstract:
The development of composite materials and the related design and manufacturing technologies is one of the most important advances in the history of materials. Composites are multifunctional materials having unprecedented mechanical and physical properties that can be tailored to meet the requirements of a particular application. Some composites also exhibit great resistance to high-temperature corrosion, oxidation, and wear. Polymers are widely used indoors and outdoors, therefore they are exposed to a chemical environment which may include atmospheric oxygen, acidic fumes, acidic rain, moisture heat and thermal shock, ultra-violet light, high energy radiation, etc. Different polymers are affected differently by these factors even though the amorphous polymers are more sensitive. Ageing is also important and it is defined as the process of deterioration of engineering materials resulting from the combined effects of atmospheric radiation, heat, oxygen, water, microorganisms and other atmospheric factors.Keywords: Composites with glass fibres, mechanical properties, polyamides, UV degradation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184780 Centralized Cooperative Spectrum Sensing with MIMO in the Reporting Network over κ − μ Fading Channel
Authors: S Hariharan, K Chaitanya, P Muthuchidambaranathan
Abstract:
The IEEE 802.22 working group aims to drive the Digital Video Broadcasting-Terrestrial (DVB-T) bands for data communication to the rural area without interfering the TV broadcast. In this paper, we arrive at a closed-form expression for average detection probability of Fusion center (FC) with multiple antenna over the κ − μ fading channel model. We consider a centralized cooperative multiple antenna network for reporting. The DVB-T samples forwarded by the secondary user (SU) were combined using Maximum ratio combiner at FC, an energy detection is performed to make the decision. The fading effects of the channel degrades the detection probability of the FC, a generalized independent and identically distributed (IID) κ − μ and an additive white Gaussian noise (AWGN) channel is considered for reporting and sensing respectively. The proposed system performance is verified through simulation results.
Keywords: IEEE 802.22, Cooperative spectrum sensing, Multiple antenna, κ − μ .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5457779 Active Fiber Composites for Smart Damping of Doubly Curved Laminated Shells
Authors: Saroj Kumar Sarangi, M. C. Ray
Abstract:
This paper deals with the analysis of active constrained layer damping (ACLD) of doubly curved laminated composite shells using active fiber composite (AFC) materials. The constraining layer of the ACLD treatment has been considered to be made of the AFC materials. A three dimensional energy based finite element model of the smart doubly curved laminated composite shell integrated with a patch of such ACLD treatment has been developed to demonstrate the performance of the patch on enhancing the damping characteristics of the doubly curved laminated composite shells. Particular emphasis has been placed on studying the effect of variation of piezoelectric fiber orientation angle in the constraining AFC layer on the control authority of the ACLD patch.
Keywords: Active constrained layer damping, Active fibercomposites, Finite element modeling, First order shear deformationtheory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640778 Iris Localization using Circle and Fuzzy Circle Detection Method
Authors: Marzieh. Savoj, S. Amirhassan. Monadjemi
Abstract:
Iris localization is a very important approach in biometric identification systems. Identification process usually is implemented in three levels: iris localization, feature extraction, and pattern matching finally. Accuracy of iris localization as the first step affects all other levels and this shows the importance of iris localization in an iris based biometric system. In this paper, we consider Daugman iris localization method as a standard method, propose a new method in this field and then analyze and compare the results of them on a standard set of iris images. The proposed method is based on the detection of circular edge of iris, and improved by fuzzy circles and surface energy difference contexts. Implementation of this method is so easy and compared to the other methods, have a rather high accuracy and speed. Test results show that the accuracy of our proposed method is about Daugman method and computation speed of it is 10 times faster.Keywords: Convolution, Edge detector filter, Fuzzy circle, Identification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037777 Mathematical Modeling for Continuous Reactive Extrusion of Poly Lactic Acid formation by Ring Opening Polymerization Considering Metal/Organic Catalyst and Alternative Energies
Authors: Satya P. Dubey, Hrushikesh A. Abhyankar, Veronica Marchante, James L. Brighton, Björn Bergmann
Abstract:
PLA emerged as a promising polymer because of its property as a compostable, biodegradable thermoplastic made from renewable sources. PLA can be polymerized from monomers (Lactide or Lactic acid) obtained by fermentation processes from renewable sources such as corn starch or sugarcane. For PLA synthesis, ring opening polymerization (ROP) of Lactide monomer is one of the preferred methods. In the literature, the technique mainly developed for ROP of PLA is based on metal/bimetallic catalyst (Sn, Zn and Al) or other organic catalysts in suitable solvent. However, the PLA synthesized using such catalysts may contain trace elements of the catalyst which may cause toxicity. This work estimated the usefulness and drawbacks of using different catalysts as well as effect of alternative energies and future aspects for PLA production.
Keywords: Alternative energy, bio-degradable, metal catalyst, poly lactic acid (PLA), ring opening polymerization (ROP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2798776 Some Design Issues in Designing of 50KW 50Krpm Permanent Magnet Synchronous Machine
Authors: Ali A. Mehna, Mohmed A. Ali, Ali S. Zayed
Abstract:
A numbers of important developments have led to an increasing attractiveness for very high speed electrical machines (either motor or generator). Specifically the increasing switching speed of power electronics, high energy magnets, high strength retaining materials, better high speed bearings and improvements in design analysis are the primary drivers in a move to higher speed. The design challenges come in the mechanical design both in terms of strength and resonant modes and in the electromagnetic design particularly in respect of iron losses and ac losses in the various conducting parts including the rotor. This paper describes detailed design work which has been done on a 50,000 rpm, 50kW permanent magnet( PM) synchronous machine. It describes work on electromagnetic and rotor eddy current losses using a variety of methods including both 2D finite element analysisKeywords: High speed, PM motor, rotor and stator losses, finiteelement analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2648775 Evaluation Method for Information Security Levels of CIIP (Critical Information Infrastructure Protection)
Authors: Soon-Tai Park, Jong-Whoi Shin, Bog-Ki Min, Ik-Sub Lee, Gang-Shin Lee, Jae-Il Lee
Abstract:
As the information age matures, major social infrastructures such as communication, finance, military and energy, have become ever more dependent on information communication systems. And since these infrastructures are connected to the Internet, electronic intrusions such as hacking and viruses have become a new security threat. Especially, disturbance or neutralization of a major social infrastructure can result in extensive material damage and social disorder. To address this issue, many nations around the world are researching and developing various techniques and information security policies as a government-wide effort to protect their infrastructures from newly emerging threats. This paper proposes an evaluation method for information security levels of CIIP (Critical Information Infrastructure Protection), which can enhance the security level of critical information infrastructure by checking the current security status and establish security measures accordingly to protect infrastructures effectively.Keywords: Information Security Evaluation Methodology, Critical Information Infrastructure Protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783774 Phase-Averaged Analysis of Three-Dimensional Vorticity in the Wake of Two Yawed Side-By-Side Circular Cylinders
Authors: T. Zhou, S. F. Mohd. Razali, Y. Zhou, H. Wang, L. Cheng
Abstract:
Thewake flow behind two yawed side-by-sidecircular cylinders is investigated using athree-dimensional vorticity probe. Four yaw angles (α), namely, 0°, 15°, 30° and 45° and twocylinder spacing ratios T* of 1.7 and 3.0 were tested. For T* = 3.0, there exist two vortex streets and the cylinders behave as independent and isolated ones. The maximum contour value of the coherent streamwise vorticity ~* ωx is only about 10% of that of the spanwise vorticity ~* ωz . With the increase of α, ~* ωx increases whereas ~* ωz decreases. At α = 45°, ~* ωx is about 67% of ~* ωz .For T* = 1.7, only a single peak is detected in the energy spectrum. The spanwise vorticity contours have an organized pattern only at α = 0°. The maximum coherent vorticity contours of ~* ω x and ~* ωz for T* = 1.7 are about 30% and 7% of those for T* = 3.0.The independence principle (IP)in terms of Strouhal numbers is applicable in both wakes when α< 40°.
Keywords: Circular cylinder wake, vorticity, vortex shedding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795773 Designing a Single-Floor Structure for the Control Room of a Petroleum Refinery and Assessing the Resistance of Such a Structure against Gas Explosion Load
Authors: Amin Lotfi Eghlim, Mehran pourgholi
Abstract:
Explosion occurs due to sudden release of energy. Common examples of explosion include chemical, atomic, heat, and pressure tank (due to ignition) explosions. Petroleum, gas, and petrochemical industries operations are threatened by natural risks and processes. Fires and explosions are the greatest process risks which cause financial damages. This study aims at designing a single-floor structure for the control room of a petroleum refinery to be resistant against gas explosion loads, and the information related to the structure specifications have been provided regarding the fact that the structure is made on the ground's surface. In this research, the lateral stiffness of single pile is calculated by SPPLN.FOR computer program, and its value for 13624 KN/m single pile has been assessed. The analysis used due to the loading conditions, is dynamic nonlinear analysis with direct integration method.Keywords: Gas Explosion Load, Petroleum Refinery, Single-Floor Structure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1264772 Molding Properties of Cobalt-Chrome-Based Feedstocks Used in Low-Pressure Powder Injection Molding
Authors: Ehsan Gholami, Vincent Demers
Abstract:
Low-pressure powder injection molding is an emerging technology for cost-effectively producing complex shape metallic parts with the proper dimensional tolerances, either in high or in low production volumes. In this study, the molding properties of cobalt-chrome-based feedstocks were evaluated for use in a low-pressure powder injection molding process. The rheological properties of feedstock formulations were obtained by mixing metallic powder with a proprietary wax-based binder system. Rheological parameters such as reference viscosity, shear rate sensitivity index, and activation energy for viscous flow, were extracted from the viscosity profiles and introduced into the Weir model to calculate the moldability index. Feedstocks were experimentally injected into a spiral mold cavity to validate the injection performance calculated with the model.
Keywords: Binder, feedstock, moldability, powder injection molding, viscosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 729771 Conventional Synthesis and Characterization of Zirconium Molybdate, Nd2Zr3(MoO4)9
Authors: G. Çelik Gül, F. Kurtuluş
Abstract:
Rare earths containing complex metal oxides have drawn much attention due to physical, chemical and optical properties which make them feasible in so many areas such as non-linear optical materials and ion exchanger. We have researched a systematic study to obtain rare earth containing zirconium molybdate compound, characterization, investigation of crystal system and calculation of unit cell parameters. After a successful synthesis of Nd2Zr3(MoO4)9 which is a member of rare earth metal containing complex oxides family, X-ray diffraction (XRD), High Score Plus/Rietveld refinement analysis, and Fourier Transform Infrared Spectroscopy (FTIR) were completed to determine the crystal structure. Morphological properties and elemental composition were determined by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. Thermal properties were observed via Thermogravimetric-differential thermal analysis (TG/DTA).Keywords: Nd2Zr3(MoO4)9, solid state synthesis, powder x-ray diffraction, zirconium molybdates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1091770 Modeling of Normal and Atherosclerotic Blood Vessels using Finite Element Methods and Artificial Neural Networks
Authors: K. Kamalanand, S. Srinivasan
Abstract:
Analysis of blood vessel mechanics in normal and diseased conditions is essential for disease research, medical device design and treatment planning. In this work, 3D finite element models of normal vessel and atherosclerotic vessel with 50% plaque deposition were developed. The developed models were meshed using finite number of tetrahedral elements. The developed models were simulated using actual blood pressure signals. Based on the transient analysis performed on the developed models, the parameters such as total displacement, strain energy density and entropy per unit volume were obtained. Further, the obtained parameters were used to develop artificial neural network models for analyzing normal and atherosclerotic blood vessels. In this paper, the objectives of the study, methodology and significant observations are presented.Keywords: Blood vessel, atherosclerosis, finite element model, artificial neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309769 Properties of Bio-Phenol Formaldehyde Composites Filled with Empty Fruit Bunch Fiber
Authors: Sharifah Nabihah Syed Jaafar, Umar Adli Amran, Rasidi Roslan, Chia Chin Hua, Sarani Zakaria
Abstract:
Bio-composites derived from plant fiber and/or bioderived polymer, are likely more ecofriendly and demonstrate competitive performance with petroleum based composites. In this research, the bio phenol-formaldehyde (bio-PF) was used as a matrix and oil palm empty fruit bunch fiber (EFB) as reinforcement. The matrix was synthesized via liquefaction and condensation to enhance the combination of phenol and formaldehyde, during the process. Then, the bio-PF was mixed with different percentage of EFB (5%, 10%, 15% and 20%) and molded at 180oC. The samples that viewed under scanning electron microscopy (SEM) showed an excellent wettability and interaction between EFB and matrix. Samples of 10% EFB gave the optimum properties of impact and hardness meanwhile sample 15% of EFB gave the highest reading of flexural modulus (MOE) and flexural strength (MOR). For thermal stability analysis, it was found that the weight loss and the activation energy (Ea) of the bio-composites samples were decreased as the filler content increased.
Keywords: EFB, liquefaction, phenol formaldehyde, lignin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118768 Reliability-based Selection of Wind Turbines for Large-Scale Wind Farms
Authors: M. Fotuhi-Firuzabad, A. Salehi Dobakhshari
Abstract:
This paper presents a reliability-based approach to select appropriate wind turbine types for a wind farm considering site-specific wind speed patterns. An actual wind farm in the northern region of Iran with the wind speed registration of one year is studied in this paper. An analytic approach based on total probability theorem is utilized in this paper to model the probabilistic behavior of both turbines- availability and wind speed. Well-known probabilistic reliability indices such as loss of load expectation (LOLE), expected energy not supplied (EENS) and incremental peak load carrying capability (IPLCC) for wind power integration in the Roy Billinton Test System (RBTS) are examined. The most appropriate turbine type achieving the highest reliability level is chosen for the studied wind farm.
Keywords: Wind Turbine Generator, Wind Farm, Power System Reliability, Wind Turbine Type Selection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776767 Impact of Viscous and Heat Relaxation Loss on the Critical Temperature Gradients of Thermoacoustic Stacks
Authors: Zhibin Yu, Artur J. Jaworski, Abdulrahman S. Abduljalil
Abstract:
A stack with a small critical temperature gradient is desirable for a standing wave thermoacoustic engine to obtain a low onset temperature difference (the minimum temperature difference to start engine-s self-oscillation). The viscous and heat relaxation loss in the stack determines the critical temperature gradient. In this work, a dimensionless critical temperature gradient factor is obtained based on the linear thermoacoustic theory. It is indicated that the impedance determines the proportion between the viscous loss, heat relaxation losses and the power production from the heat energy. It reveals the effects of the channel dimensions, geometrical configuration and the local acoustic impedance on the critical temperature gradient in stacks. The numerical analysis shows that there exists a possible optimum combination of these parameters which leads to the lowest critical temperature gradient. Furthermore, several different geometries have been tested and compared numerically.Keywords: Critical temperature gradient, heat relaxation, stack, viscous effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807766 Urban Environmental Challenges in Developing Cities: The Case of Ethiopian Capital Addis Ababa
Authors: Dubbale Daniel A., Tsutsumi J., Michael J. Bendewald
Abstract:
Addis Ababa is a seat of African Union (AU), United Nations Economic Commission for Africa (UN-ECA) and hundreds of embassies and consular representatives. Addis Ababa is one of the highest capitals in the world with an average 2400 meters above sea level. It is dichotomous city with a blend of modern high-rise and deteriorating slum quarters. Water supply and sanitation, waste management and housing are continuing to be serious problems. Forest wood based domestic energy use as well as uncontrolled emissions from mobile and fixed sources has endangered the state of the urban environment. Analysis based on satellite imagery has revealed the deteriorating urban environment within the last three decades. The recently restructured city administration has brought improvements in the condition of the urban environment. However, the overwhelming size of the challenges faced by the city dwarfed their fairly good results.Keywords: Addis Ababa, Urban environment, Slum, Housing, Relocation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6475765 Micro-Hydrokinetic for Remote Rural Electrification
Authors: S. P. Koko, K. Kusakana, H. J. Vermaak
Abstract:
Standalone micro-hydrokinetic river (MHR) system is one of the promising technologies to be used for remote rural electrification. It simply requires the flow of water instead of elevation or head, leading to expensive civil works. This paper demonstrates an economic benefit offered by a standalone MHR system when compared to the commonly used standalone systems such as solar, wind and diesel generator (DG) at the selected study site in Kwazulu Natal. Wind speed and solar radiation data of the selected rural site have been taken from national aeronautics and space administration (NASA) surface meteorology database. The hybrid optimization model for electric renewable (HOMER) software was used to determine the most feasible solution when using MHR, solar, wind or DG system to supply 5 rural houses. MHR system proved to be the best cost-effective option to consider at the study site due to its low cost of energy (COE) and low net present cost (NPC).
Keywords: Economic analysis, Micro-hydrokinetic system, Rural-electrification, Stand-alone system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2988764 Thermodynamic, Structural and Transport Properties of Molten Copper-Thallium Alloys
Authors: D. Adhikari, R. P. Koirala, B.P. Singh
Abstract:
A self-association model has been used to understand the concentration dependence of free energy of mixing (GM), heat of mixing (HM), entropy of mixing (SM), activity (a) and microscopic structures, such as concentration fluctuation in long wavelength limit (Scc(0)) and Warren-Cowley short range order parameter ( 1 α )for Cu- Tl molten alloys at 1573K. A comparative study of surface tension of the alloys in the liquid state at that temperature has also been carried out theoretically as function of composition in the light of Butler-s model, Prasad-s model and quasi-chemical approach. Most of the computed thermodynamic properties have been found in agreement with the experimental values. The analysis reveals that the Cu-Tl molten alloys at 1573K represent a segregating system at all concentrations with moderate interaction. Surface tensions computed from different approaches have been found to be comparable to each other showing increment with the composition of copper.Keywords: Concentration fluctuations, surface tension, thermodynamic properties, Quasi-chemical approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165763 The Application of Bayesian Heuristic for Scheduling in Real-Time Private Clouds
Authors: Sahar Sohrabi
Abstract:
The emergence of Cloud data centers has revolutionized the IT industry. Private Clouds in specific provide Cloud services for certain group of customers/businesses. In a real-time private Cloud each task that is given to the system has a deadline that desirably should not be violated. Scheduling tasks in a real-time private CLoud determine the way available resources in the system are shared among incoming tasks. The aim of the scheduling policy is to optimize the system outcome which for a real-time private Cloud can include: energy consumption, deadline violation, execution time and the number of host switches. Different scheduling policies can be used for scheduling. Each lead to a sub-optimal outcome in a certain settings of the system. A Bayesian Scheduling strategy is proposed for scheduling to further improve the system outcome. The Bayesian strategy showed to outperform all selected policies. It also has the flexibility in dealing with complex pattern of incoming task and has the ability to adapt.Keywords: Bayesian, cloud computing, real-time private cloud, scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411762 Laser Welding of Titanium Alloy Ti64 to Polyamide 6.6: Effects of Welding Parameters on Temperature Profile Evolution
Authors: A. Al-Sayyad, P. Lama, J. Bardon, P. Hirchenhahn, L. Houssiau, P. Plapper
Abstract:
Composite metal–polymer materials, in particular titanium alloy (Ti-6Al-4V) to polyamide (PA6.6), fabricated by laser joining, have gained cogent interest among industries and researchers concerned with aerospace and biomedical applications. This work adopts infrared (IR) thermography technique to investigate effects of laser parameters used in the welding process on the three-dimensional temperature profile at the rear-side of titanium, at the region to be welded with polyamide. Cross sectional analysis of welded joints showed correlations between the morphology of titanium and polyamide at the weld zone with the corresponding temperature profile. In particular, spatial temperature profile was found to be correlated with the laser beam energy density, titanium molten pool width and depth, and polyamide heat affected zone depth.
Keywords: Laser welding, metals to polymers joining, process monitoring, temperature profile, thermography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 866761 Dynamics of a Vapour Bubble inside a Vertical Rigid Cylinder with a Deposit Rib
Authors: S. Mehran, S. Rouhi, F.Rouzbahani, E. Haghgoo
Abstract:
In this paper dynamics of a vapour bubble generated due to a local energy input inside a vertical rigid cylinder and in the absence of buoyancy forces is investigated. Different ratios of the diameter of the rigid cylinder to the maximum radius of the bubble are considered. The Boundary Integral Equation Method is employed for numerical simulation of the problem. Results show that during the collapse phase of the bubble inside a vertical rigid cylinder, two liquid micro jets are developed on the top and bottom sides of the vapour bubble and are directed inward. Results also show that existence of a deposit rib inside the vertical rigid cylinder slightly increases the life time of the bubble. It is found that by increasing the ratio of the cylinder diameter to the maximum radius of the bubble, the rate of the growth and collapse phases of the bubble increases and the life time of the bubble decreases.Keywords: Vapour bubble, Vertical rigid cylinder, Boundaryelement method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990760 Investigation of Dissolution in Diammonium Hydrogen Phosphate Solutions of Gypsum
Authors: Turan Çalban, Nursel Keskin, Sabri Çolak, Soner Kuşlu
Abstract:
Gypsum (CaSO4.2H2O) is a mineral that is found in large quantities in the Turkey and in the World. In this study, the dissolution of this mineral in the diammonium hydrogen phosphate solutions has been studied. The dissolution and dissolution kinetics of gypsum in diammonium hydrogen phosphate solutions will be useful for evaluating of solid wastes containing gypsum. Parameters such as diammonium hydrogen phosphate concentration, temperature and stirring speed affecting on the dissolution rate of the gypsum in diammonium hydrogen phosphate solutions were investigated. In experimental studies have researched effectiveness of the selected parameters. The dissolution of gypsum were examined in two parts at low and high temperatures. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solidfluid systems. The activation energy was found to be 34.58 kJ/mol and 44.45 kJ/mol for the low and the high temperatures. The dissolution of gypsum was controlled by chemical reaction both low temperatures and high temperatures.
Keywords: Diammonium hydrogen phosphate, Dissolution, Gypsum, Kinetics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051759 Theoretical Investigations on Different Casing and Rotor Diameters Ratio to Optimize Shaft Output of a Vaned Type Air Turbine
Authors: Bharat Raj Singh, Onkar Singh
Abstract:
This paper details a new concept of using compressed air as a potential zero pollution power source for motorbikes. In place of an internal combustion engine, the motorbike is equipped with an air turbine transforms the energy of the compressed air into shaft work. The mathematical modeling and performance evaluation of a small capacity compressed air driven vaned type novel air turbine is presented in this paper. The effect of isobaric admission and adiabatic expansion of high pressure air for different rotor diameters, casing diameters and ratio of rotor to casing diameters of the turbine have been considered and analyzed. It is concluded that the work output is found optimum for some typical values of rotor / casing diameter ratios. In this study, the maximum power works out to 3.825 kW (5.20 HP) for casing diameter of 200 mm and rotor to casing diameter ratio of 0.65 to 0.60 which is sufficient to run motorbike.
Keywords: zero pollution, compressed air, air turbine, injectionangle, rotor / casing diameter ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661758 Dependence of Densification, Hardness and Wear Behaviors of Ti6Al4V Powders on Sintering Temperature
Authors: Adewale O. Adegbenjo, Elsie Nsiah-Baafi, Mxolisi B. Shongwe, Mercy Ramakokovhu, Peter A. Olubambi
Abstract:
The sintering step in powder metallurgy (P/M) processes is very sensitive as it determines to a large extent the properties of the final component produced. Spark plasma sintering over the past decade has been extensively used in consolidating a wide range of materials including metallic alloy powders. This novel, non-conventional sintering method has proven to be advantageous offering full densification of materials, high heating rates, low sintering temperatures, and short sintering cycles over conventional sintering methods. Ti6Al4V has been adjudged the most widely used α+β alloy due to its impressive mechanical performance in service environments, especially in the aerospace and automobile industries being a light metal alloy with the capacity for fuel efficiency needed in these industries. The P/M route has been a promising method for the fabrication of parts made from Ti6Al4V alloy due to its cost and material loss reductions and the ability to produce near net and intricate shapes. However, the use of this alloy has been largely limited owing to its relatively poor hardness and wear properties. The effect of sintering temperature on the densification, hardness, and wear behaviors of spark plasma sintered Ti6Al4V powders was investigated in this present study. Sintering of the alloy powders was performed in the 650–850°C temperature range at a constant heating rate, applied pressure and holding time of 100°C/min, 50 MPa and 5 min, respectively. Density measurements were carried out according to Archimedes’ principle and microhardness tests were performed on sectioned as-polished surfaces at a load of 100gf and dwell time of 15 s. Dry sliding wear tests were performed at varied sliding loads of 5, 15, 25 and 35 N using the ball-on-disc tribometer configuration with WC as the counterface material. Microstructural characterization of the sintered samples and wear tracks were carried out using SEM and EDX techniques. The density and hardness characteristics of sintered samples increased with increasing sintering temperature. Near full densification (99.6% of the theoretical density) and Vickers’ micro-indentation hardness of 360 HV were attained at 850°C. The coefficient of friction (COF) and wear depth improved significantly with increased sintering temperature under all the loading conditions examined, except at 25 N indicating better mechanical properties at high sintering temperatures. Worn surface analyses showed the wear mechanism was a synergy of adhesive and abrasive wears, although the former was prevalent.
Keywords: Hardness, powder metallurgy, Spark plasma sintering, wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581757 Strengthening and Toughening of Dental Porcelain by the Inclusion of an Yttria-Stabilized Zirconia Reinforcing Phase
Authors: Bruno Henriques, Rafaela Santos, Mihaela Buciumeanu, Júlio Matias de Souza, Filipe Silva, Rubens Nascimento, Márcio Fredel
Abstract:
Dental porcelain composites reinforced and toughened by 20 wt.% tetragonal zirconia (3Y-TZP) were processed by hot pressing at 1000°C. Two types of particles were tested: yttriastabilized zirconia (ZrO2–3%Y2O3) agglomerates and pre-sintered yttria-stabilized zirconia (ZrO2–3%Y2O3) particles. The composites as well as the reinforcing particles were analyzed by the means of optical and Scanning Electron Microscopy (SEM), Energy Dispersion Spectroscopy (EDS) and X-Ray Diffraction (XRD). The mechanical properties were obtained by the transverse rupture strength test. Wear tests were also performed on the composites and monolithic porcelain. The best mechanical results were displayed by the porcelain reinforced with the pre-sintered ZrO2–3%Y2O3 agglomerates.
Keywords: Composite, dental restoration, porcelain, strengthening, toughening, wear, zirconia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108756 Improvement in Performance and Emission Characteristics of a Single Cylinder S.I. Engine Operated on Blends of CNG and Hydrogen
Authors: Sarbjot Singh Sandhu
Abstract:
This paper presents the experimental results of a single cylinder Enfield engine using an electronically controlled fuel injection system which was developed to carry out exhaustive tests using neat CNG, and mixtures of hydrogen in compressed natural gas (HCNG) as 0, 5, 10, 15 and 20% by energy. Experiments were performed at 2000 and 2400 rpm with wide open throttle and varying the equivalence ratio. Hydrogen which has fast burning rate, when added to compressed natural gas, enhances its flame propagation rate. The emissions of HC, CO, decreased with increasing percentage of hydrogen but NOx was found to increase. The results indicated a marked improvement in the brake thermal efficiency with the increase in percentage of hydrogen added. The improved thermal efficiency was clearly observed to be more in lean region as compared to rich region. This study is expected to reduce vehicular emissions along with increase in thermal efficiency and thus help in reduction of further environmental degradation.
Keywords: Hydrogen, CNG, HCNG, Emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2715