Search results for: Numerical Model
5791 An Asymptotic Solution for the Free Boundary Parabolic Equations
Authors: Hsuan-Ku Liu, Ming Long Liu
Abstract:
In this paper, we investigate the solution of a two dimensional parabolic free boundary problem. The free boundary of this problem is modelled as a nonlinear integral equation (IE). For this integral equation, we propose an asymptotic solution as time is near to maturity and develop an integral iterative method. The computational results reveal that our asymptotic solution is very close to the numerical solution as time is near to maturity.
Keywords: Integral equation, asymptotic solution, free boundary problem, American exchange option.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14735790 Confidence Intervals for Double Exponential Distribution: A Simulation Approach
Authors: M. Alrasheedi
Abstract:
The double exponential model (DEM), or Laplace distribution, is used in various disciplines. However, there are issues related to the construction of confidence intervals (CI), when using the distribution.In this paper, the properties of DEM are considered with intention of constructing CI based on simulated data. The analysis of pivotal equations for the models here in comparisons with pivotal equations for normal distribution are performed, and the results obtained from simulation data are presented.Keywords: Confidence intervals, double exponential model, pivotal equations, simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35525789 Estimating Shortest Circuit Path Length Complexity
Authors: Azam Beg, P. W. Chandana Prasad, S.M.N.A Senenayake
Abstract:
When binary decision diagrams are formed from uniformly distributed Monte Carlo data for a large number of variables, the complexity of the decision diagrams exhibits a predictable relationship to the number of variables and minterms. In the present work, a neural network model has been used to analyze the pattern of shortest path length for larger number of Monte Carlo data points. The neural model shows a strong descriptive power for the ISCAS benchmark data with an RMS error of 0.102 for the shortest path length complexity. Therefore, the model can be considered as a method of predicting path length complexities; this is expected to lead to minimum time complexity of very large-scale integrated circuitries and related computer-aided design tools that use binary decision diagrams.Keywords: Monte Carlo circuit simulation data, binary decision diagrams, neural network modeling, shortest path length estimation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13785788 Modeling Influence on Petty Corruption Attitudes
Authors: Nina Bijedic, Drazena Gaspar, Mirsad Hadzikadic
Abstract:
Corruption is an influential and widespread problem. One part of it is so-called petty corruption, related to large-scale bribe giving by ordinary citizens trying to influence the works of public administration or public services. As it is with all means of corruption, petty corruption is related to the level of democracy (or administration efficiency) in a society. The developed model captures some of the factors related to corruptive behavior, as well as people’s attitude towards petty corruption. It has four basic elements: user’s perception of corruption in the society of interest, the influence of social interactions, the influence of penalizing mechanism, and influence of campaigns against petty corruption. The model is agent-based, developed in NetLogo, with a lot of random settings that provide a wider scope of responses. Interactions of different settings for variables of elements provide insight into the influence of each element on attitude towards petty corruption, as well as petty corruptive behavior.
Keywords: Agent based model, attitude, influence, petty corruption, society.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13495787 Radial Basis Surrogate Model Integrated to Evolutionary Algorithm for Solving Computation Intensive Black-Box Problems
Authors: Abdulbaset Saad, Adel Younis, Zuomin Dong
Abstract:
For design optimization with high-dimensional expensive problems, an effective and efficient optimization methodology is desired. This work proposes a series of modification to the Differential Evolution (DE) algorithm for solving computation Intensive Black-Box Problems. The proposed methodology is called Radial Basis Meta-Model Algorithm Assisted Differential Evolutionary (RBF-DE), which is a global optimization algorithm based on the meta-modeling techniques. A meta-modeling assisted DE is proposed to solve computationally expensive optimization problems. The Radial Basis Function (RBF) model is used as a surrogate model to approximate the expensive objective function, while DE employs a mechanism to dynamically select the best performing combination of parameters such as differential rate, cross over probability, and population size. The proposed algorithm is tested on benchmark functions and real life practical applications and problems. The test results demonstrate that the proposed algorithm is promising and performs well compared to other optimization algorithms. The proposed algorithm is capable of converging to acceptable and good solutions in terms of accuracy, number of evaluations, and time needed to converge.
Keywords: Differential evolution, engineering design, expensive computations, meta-modeling, radial basis function, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11735786 Modeling of Flood Mitigation Structures for Sarawak River Sub-basin Using Info Works River Simulation (RS)
Authors: Rosmina Bustami, Charles Bong, Darrien Mah, Afnie Hamzah, Marina Patrick
Abstract:
The distressing flood scenarios that occur in recent years at the surrounding areas of Sarawak River have left damages of properties and indirectly caused disruptions of productive activities. This study is meant to reconstruct a 100-year flood event that took place in this river basin. Sarawak River Subbasin was chosen and modeled using the one-dimensional hydrodynamic modeling approach using InfoWorks River Simulation (RS), in combination with Geographical Information System (GIS). This produces the hydraulic response of the river and its floodplains in extreme flooding conditions. With different parameters introduced to the model, correlations of observed and simulated data are between 79% – 87%. Using the best calibrated model, flood mitigation structures are imposed along the sub-basin. Analysis is done based on the model simulation results. Result shows that the proposed retention ponds constructed along the sub-basin provide the most efficient reduction of flood by 34.18%.Keywords: Flood, Flood mitigation structure, InfoWorks RS, Retention pond, Sarawak River sub-basin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27175785 Dynamic Process Monitoring of an Ammonia Synthesis Fixed-Bed Reactor
Authors: Bothinah Altaf, Gary Montague, Elaine B. Martin
Abstract:
This study involves the modeling and monitoring of an ammonia synthesis fixed-bed reactor using partial least squares (PLS) and its variants. The process exhibits complex dynamic behavior due to the presence of heat recycling and feed quench. One limitation of static PLS model in this situation is that it does not take account of the process dynamics and hence dynamic PLS was used. Although it showed, superior performance to static PLS in terms of prediction, the monitoring scheme was inappropriate hence adaptive PLS was considered. A limitation of adaptive PLS is that non-conforming observations also contribute to the model, therefore, a new adaptive approach was developed, robust adaptive dynamic PLS. This approach updates a dynamic PLS model and is robust to non-representative data. The developed methodology showed a clear improvement over existing approaches in terms of the modeling of the reactor and the detection of faults.Keywords: Ammonia synthesis fixed-bed reactor, dynamic partial least squares modeling, recursive partial least squares, robust modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19225784 Modeling Child Development Factors for the Early Introduction of ICTs in Schools
Authors: K. E. Oyetade, S. D. Eyono Obono
Abstract:
One of the fundamental characteristics of Information and Communication Technology (ICT) has been the ever-changing nature of continuous release and models of ICTs with its impact on the academic, social, and psychological benefits of its introduction in schools. However, there seems to be a growing concern about its negative impact on students when introduced early in schools for teaching and learning. This study aims to design a model of child development factors affecting the early introduction of ICTs in schools in an attempt to improve the understanding of child development and introduction of ICTs in schools. The proposed model is based on a sound theoretical framework. It was designed following a literature review of child development theories and child development factors. The child development theoretical framework that fitted to the best of all child development factors was then chosen as the basis for the proposed model. This study hence found that the Jean Piaget cognitive developmental theory is the most adequate theoretical frameworks for modeling child development factors for ICT introduction in schools.Keywords: Child development factors, child development theories, ICTs, theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20315783 New Delay-dependent Stability Conditions for Neutral Systems with Nonlinear Perturbations
Authors: Lianglin Xiong, Xiuyong Ding, Shouming Zhong
Abstract:
In this paper, the problem of asymptotical stability of neutral systems with nonlinear perturbations is investigated. Based on a class of novel augment Lyapunov functionals which contain freeweighting matrices, some new delay-dependent asymptotical stability criteria are formulated in terms of linear matrix inequalities (LMIs) by using new inequality analysis technique. Numerical examples are given to demonstrate the derived condition are much less conservative than those given in the literature.
Keywords: Asymptotical stability, neutral system, nonlinear perturbation, delay-dependent, linear matrix inequality (LMI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15215782 A Calibration Approach towards Reducing ASM2d Parameter Subsets in Phosphorus Removal Processes
Authors: N.Boontian
Abstract:
A novel calibration approach that aims to reduce ASM2d parameter subsets and decrease the model complexity is presented. This approach does not require high computational demand and reduces the number of modeling parameters required to achieve the ASMs calibration by employing a sensitivity and iteration methodology. Parameter sensitivity is a crucial factor and the iteration methodology enables refinement of the simulation parameter values. When completing the iteration process, parameters values are determined in descending order of their sensitivities. The number of iterations required is equal to the number of model parameters of the parameter significance ranking. This approach was used for the ASM2d model to the evaluated EBPR phosphorus removal and it was successful. Results of the simulation provide calibration parameters. These included YPAO, YPO4, YPHA, qPHA, qPP, μPAO, bPAO, bPP, bPHA, KPS, YA, μAUT, bAUT, KO2 AUT, and KNH4 AUT. Those parameters were corresponding to the experimental data available.Keywords: ASM2d, calibration approach, iteration methodology, sensitivity, phosphorus removal
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24205781 Closely Parametrical Model for an Electrical Arc Furnace
Authors: Labar Hocine, Dgeghader Yacine, Kelaiaia Mounia Samira, Bounaya Kamel
Abstract:
To maximise furnace production it-s necessary to optimise furnace control, with the objectives of achieving maximum power input into the melting process, minimum network distortion and power-off time, without compromise on quality and safety. This can be achieved with on the one hand by an appropriate electrode control and on the other hand by a minimum of AC transformer switching. Electrical arc is a stochastic process; witch is the principal cause of power quality problems, including voltages dips, harmonic distortion, unbalance loads and flicker. So it is difficult to make an appropriate model for an Electrical Arc Furnace (EAF). The factors that effect EAF operation are the melting or refining materials, melting stage, electrode position (arc length), electrode arm control and short circuit power of the feeder. So arc voltages, current and power are defined as a nonlinear function of the arc length. In this article we propose our own empirical function of the EAF and model, for the mean stages of the melting process, thanks to the measurements in the steel factory.Keywords: Modelling, electrical arc, melting, power, EAF, steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32475780 Transformation of the Business Model in an Occupational Health Care Company Embedded in an Emerging Personal Data Ecosystem: A Case Study in Finland
Authors: Tero Huhtala, Minna Pikkarainen, Saila Saraniemi
Abstract:
Information technology has long been used as an enabler of exchange for goods and services. Services are evolving from generic to personalized, and the reverse use of customer data has been discussed in both academia and industry for the past few years. This article presents the results of an empirical case study in the area of preventive health care services. The primary data were gathered in workshops, in which future personal data-based services were conceptualized by analyzing future scenarios from a business perspective. The aim of this study is to understand business model transformation in emerging personal data ecosystems. The work was done as a case study in the context of occupational healthcare. The results have implications to theory and practice, indicating that adopting personal data management principles requires transformation of the business model, which, if successfully managed, may provide access to more resources, potential to offer better value, and additional customer channels. These advantages correlate with the broadening of the business ecosystem. Expanding the scope of this study to include more actors would improve the validity of the research. The results draw from existing literature and are based on findings from a case study and the economic properties of the healthcare industry in Finland.
Keywords: Ecosystem, business model, personal data, preventive healthcare.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11405779 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: Crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11755778 Using Stresses Obtained from a Low Detailed FE Model and Located at a Reference Point to Quickly Calculate the Free-edge Stress Intensity Factors of Bonded Joints
Abstract:
The present study focuses on methods allowing a convenient and quick calculation of the SIFs in order to predict the static adhesive strength of bonded joints. A new SIF calculation method is proposed, based on the stresses obtained from a FE model at a reference point located in the adhesive layer at equal distance of the free-edge and of the two interfaces. It is shown that, even limiting ourselves to the two main modes, i.e. the opening and the shearing modes, and using the values of the stresses resulting from a low detailed FE model, an efficient calculation of the peeling stress at adhesive-substrate corners can be obtained by this way. The proposed method is interesting in that it can be the basis of a prediction tool that will allow the designer to quickly evaluate the SIFs characterizing a particular application without developing a detailed analysis.
Keywords: Adhesive layer, bounded joints, free-edge corner, stress intensity factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11445777 A TIPSO-SVM Expert System for Efficient Classification of TSTO Surrogates
Authors: Ali Sarosh, Dong Yun-Feng, Muhammad Umer
Abstract:
Fully reusable spaceplanes do not exist as yet. This implies that design-qualification for optimized highly-integrated forebody-inlet configuration of booster-stage vehicle cannot be based on archival data of other spaceplanes. Therefore, this paper proposes a novel TIPSO-SVM expert system methodology. A non-trivial problem related to optimization and classification of hypersonic forebody-inlet configuration in conjunction with mass-model of the two-stage-to-orbit (TSTO) vehicle is solved. The hybrid-heuristic machine learning methodology is based on two-step improved particle swarm optimizer (TIPSO) algorithm and two-step support vector machine (SVM) data classification method. The efficacy of method is tested by first evolving an optimal configuration for hypersonic compression system using TIPSO algorithm; thereafter, classifying the results using two-step SVM method. In the first step extensive but non-classified mass-model training data for multiple optimized configurations is segregated and pre-classified for learning of SVM algorithm. In second step the TIPSO optimized mass-model data is classified using the SVM classification. Results showed remarkable improvement in configuration and mass-model along with sizing parameters.
Keywords: TIPSO-SVM expert system, TIPSO algorithm, two-step SVM method, aerothermodynamics, mass-modeling, TSTO vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23185776 A Development of Creative Instruction Model through Digital Media
Authors: Kathaleeya Chanda, Panupong Chanplin, Suppara Charoenpoom
Abstract:
This purposes of the development of creative instruction model through digital media are to: 1) enable learners to learn from instruction media application; 2) help learners implementing instruction media correctly and appropriately; and 3) facilitate learners to apply technology for searching information and practicing skills to implement technology creatively. The sample group consists of 130 cases of secondary students studying in Bo Kluea School, Bo Kluea Nuea Sub-district, Bo Kluea District, Nan Province. The probability sampling was selected through the simple random sampling and the statistics used in this research are percentage, mean, standard deviation and one group pretest – posttest design. The findings are summarized as follows: The congruence index of instruction media for occupation and technology subjects is appropriate. By comparing between learning achievements before implementing the instruction media and learning achievements after implementing the instruction media, it is found that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. For the learning achievements from instruction media implementation, pretest mean is 16.24 while posttest mean is 26.28. Besides, pretest and posttest results are compared and differences of mean are tested, the test results show that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. This can be interpreted that the learners achieve better learning progress.
Keywords: Teaching learning model, digital media, creative instruction model, facilitate learners.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6925775 Grading Fourteen Zones of Isfahan in Terms of the Impact of Globalization on the Urban Fabric of the City, Using the TOPSIS Model
Authors: A. Zahedi Yeganeh, A. Khademolhosseini, R. Mokhtari Malekabadi
Abstract:
Undoubtedly one of the most far-reaching and controversial topics considered in the past few decades, has been globalization. Globalization lies in the essence of the modern culture. It is a complex and rapidly expanding network of links and mutual interdependence that is an aspect of modern life; though some argue that this link existed since the beginning of human history. If we consider globalization as a dynamic social process in which the geographical constraints governing the political, economic, social and cultural relationships have been undermined, it might not be possible to simply describe its impact on the urban fabric. But since in this phenomenon the increase in communications of societies (while preserving the main cultural - regional characteristics) with one another and the increase in the possibility of influencing other societies are discussed, the need for more studies will be felt. The main objective of this study is to grade based on some globalization factors on urban fabric applying the TOPSIS model. The research method is descriptive - analytical and survey. For data analysis, the TOPSIS model and SPSS software were used and the results of GIS software with fourteen cities are shown on the map. The results show that the process of being influenced by the globalization of the urban fabric of fourteen zones of Isfahan was not similar and there have been large differences in this respect between city zones; the most affected areas are zones 5, 6 and 9 of the municipality and the least impact has been on the zones 4 and 3 and 2.
Keywords: Grading, Globalization, Urban fabric, 14 zones of Isfahan, TOPSIS model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19885774 A Time-Reducible Approach to Compute Determinant |I-X|
Authors: Wang Xingbo
Abstract:
Computation of determinant in the form |I-X| is primary and fundamental because it can help to compute many other determinants. This article puts forward a time-reducible approach to compute determinant |I-X|. The approach is derived from the Newton’s identity and its time complexity is no more than that to compute the eigenvalues of the square matrix X. Mathematical deductions and numerical example are presented in detail for the approach. By comparison with classical approaches the new approach is proved to be superior to the classical ones and it can naturally reduce the computational time with the improvement of efficiency to compute eigenvalues of the square matrix.Keywords: Algorithm, determinant, computation, eigenvalue, time complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11565773 Reliable Consensus Problem for Multi-Agent Systems with Sampled-Data
Authors: S. H. Lee, M. J. Park, O. M. Kwon
Abstract:
In this paper, reliable consensus of multi-agent systems with sampled-data is investigated. By using a suitable Lyapunov-Krasovskii functional and some techniques such as Wirtinger Inequality, Schur Complement and Kronecker Product, the results of such system are obtained by solving a set of Linear Matrix Inequalities (LMIs). One numerical example is included to show the effectiveness of the proposed criteria.
Keywords: Multi-agent, Linear Matrix Inequalities (LMIs), Kronecker Product, Sampled-Data, Lyapunov method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17455772 An Improved Single Point Closure Model Based on Dissipation Anisotropy for Geophysical Turbulent Flows
Authors: A. P. Joshi, H. V. Warrior, J. P. Panda
Abstract:
This paper is a continuation of the work carried out by various turbulence modelers in Oceanography on the topic of oceanic turbulent mixing. It evaluates the evolution of ocean water temperature and salinity by the appropriate modeling of turbulent mixing utilizing proper prescription of eddy viscosity. Many modelers in past have suggested including terms like shear, buoyancy and vorticity to be the parameters that decide the slow pressure strain correlation. We add to it the fact that dissipation anisotropy also modifies the correlation through eddy viscosity parameterization. This recalibrates the established correlation constants slightly and gives improved results. This anisotropization of dissipation implies that the critical Richardson’s number increases much beyond unity (to 1.66) to accommodate enhanced mixing, as is seen in reality. The model is run for a couple of test cases in the General Ocean Turbulence Model (GOTM) and the results are presented here.
Keywords: Anisotropy, GOTM, pressure-strain correlation, Richardson Critical number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9495771 Error Propagation in the RK5GL3 Method
Authors: J.S.C. Prentice
Abstract:
The RK5GL3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on a combination of a fifth-order Runge-Kutta method and 3-point Gauss-Legendre quadrature. In this paper we describe the propagation of local errors in this method, and show that the global order of RK5GL3 is expected to be six, one better than the underlying Runge- Kutta method.Keywords: RK5GL3, RKrGLm, Runge-Kutta, Gauss-Legendre, initial value problem, order, local error, global error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12115770 Scheduling a Project to Minimize Costs of Material Requirements
Authors: Amir Abbas Najafi, Nima Zoraghi, Fatemeh Azimi
Abstract:
Traditionally, project scheduling and material planning have been treated independently. In this research, a mixed integer programming model is presented to integrate project scheduling and materials ordering problems. The goal is to minimize the total material holding and ordering costs. In addition, an efficient metaheuristic algorithm is proposed to solve the model. The proposed algorithm is computationally tested, the results are analyzed, and conclusions are given.
Keywords: Project scheduling, metaheuristic, material ordering, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17035769 Controller Design for Euler-Bernoulli Smart Structures Using Robust Decentralized FOS via Reduced Order Modeling
Authors: T.C. Manjunath, B. Bandyopadhyay
Abstract:
This paper features the modeling and design of a Robust Decentralized Fast Output Sampling (RDFOS) Feedback control technique for the active vibration control of a smart flexible multimodel Euler-Bernoulli cantilever beams for a multivariable (MIMO) case by retaining the first 6 vibratory modes. The beam structure is modeled in state space form using the concept of piezoelectric theory, the Euler-Bernoulli beam theory and the Finite Element Method (FEM) technique by dividing the beam into 4 finite elements and placing the piezoelectric sensor / actuator at two finite element locations (positions 2 and 4) as collocated pairs, i.e., as surface mounted sensor / actuator, thus giving rise to a multivariable model of the smart structure plant with two inputs and two outputs. Five such multivariable models are obtained by varying the dimensions (aspect ratios) of the aluminium beam. Using model order reduction technique, the reduced order model of the higher order system is obtained based on dominant Eigen value retention and the Davison technique. RDFOS feedback controllers are designed for the above 5 multivariable-multimodel plant. The closed loop responses with the RDFOS feedback gain and the magnitudes of the control input are obtained and the performance of the proposed multimodel smart structure system is evaluated for vibration control.Keywords: Smart structure, Euler-Bernoulli beam theory, Fastoutput sampling feedback control, Finite Element Method, Statespace model, Vibration control, LMI, Model order Reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17535768 GPS Devices to Increase Efficiency of Indian Auto-Rickshaw Segment
Authors: Sanchay Vaidya, Sourabh Gupta, Gouresh Singhal
Abstract:
There are various modes of transport in metro cities in India, auto-rickshaws being one of them. Auto-rickshaws provide connectivity to all the places in the city offering last mile connectivity. Among all the modes of transport the auto-rickshaw industry is the most unorganized and inefficient. Although unions exist in different cities they aren’t good enough to cope up with the upcoming advancements in the field of technology. An introduction of simple technology in this field may do wonders and help increase the revenues. This paper aims to organize this segment under a single umbrella using GPS devices and mobile phones. The paper includes surveys of about 300 auto-rickshaw drivers and 1000 plus commuters across 6 metro cities in India. Carrying out research and analysis provides a base for the development of this model and implementation of this innovative technique, which is discussed in this paper in detail with ample emphasis given on the implementation of this model.
Keywords: Auto-rickshaws, Business Model, GPS device, Mobile application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33855767 Mathematical Modeling of SISO based Timoshenko Structures – A Case Study
Authors: T.C. Manjunath, Student Member, B. Bandyopadhyay
Abstract:
This paper features the mathematical modeling of a single input single output based Timoshenko smart beam. Further, this mathematical model is used to design a multirate output feedback based discrete sliding mode controller using Bartoszewicz law to suppress the flexural vibrations. The first 2 dominant vibratory modes is retained. Here, an application of the discrete sliding mode control in smart systems is presented. The algorithm uses a fast output sampling based sliding mode control strategy that would avoid the use of switching in the control input and hence avoids chattering. This method does not need the measurement of the system states for feedback as it makes use of only the output samples for designing the controller. Thus, this methodology is more practical and easy to implement.
Keywords: Smart structure, Timoshenko beam theory, Discretesliding mode control, Bartoszewicz law, Finite Element Method, State space model, Vibration control, Mathematical model, SISO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23925766 An Extended Model for Sustainable Food and Nutrition Security in the Agrifood Sector
Authors: Ioannis Manikas
Abstract:
The increased consumer demand for environmentally friendly production and distribution practices and the stricter environmental regulations turned environmental aspects into important criteria in business decision-making. On the other hand, Food and Nutrition Security (FNS) has evolved dramatically during the last decades in theory and practice serving as a reference point for exchanging experiences among all agents involved in programs and projects to fostering policy and strategy development. Global pressures make it more important than ever to gain a better understanding of the contribution that agrifood businesses make to FNS and to examine ways to make them more resilient in an increasingly globalized and uncertain world. This study extends the standard three-dimensional model of sustainability to include two more dimensions: A technological dimension and a policy/political dimension. Apart from the economic, environmental and social dimensions regularly used in sustainability literature, the extended model will accurately represent the measures and policies addressing food and nutrition security.Keywords: Food and nutrition security, sustainability, food safety, resilience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14775765 Performance Analysis of Evolutionary ANN for Output Prediction of a Grid-Connected Photovoltaic System
Authors: S.I Sulaiman, T.K Abdul Rahman, I. Musirin, S. Shaari
Abstract:
This paper presents performance analysis of the Evolutionary Programming-Artificial Neural Network (EPANN) based technique to optimize the architecture and training parameters of a one-hidden layer feedforward ANN model for the prediction of energy output from a grid connected photovoltaic system. The ANN utilizes solar radiation and ambient temperature as its inputs while the output is the total watt-hour energy produced from the grid-connected PV system. EP is used to optimize the regression performance of the ANN model by determining the optimum values for the number of nodes in the hidden layer as well as the optimal momentum rate and learning rate for the training. The EPANN model is tested using two types of transfer function for the hidden layer, namely the tangent sigmoid and logarithmic sigmoid. The best transfer function, neural topology and learning parameters were selected based on the highest regression performance obtained during the ANN training and testing process. It is observed that the best transfer function configuration for the prediction model is [logarithmic sigmoid, purely linear].Keywords: Artificial neural network (ANN), Correlation coefficient (R), Evolutionary programming-ANN (EPANN), Photovoltaic (PV), logarithmic sigmoid and tangent sigmoid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19015764 An Iterative Method for the Least-squares Symmetric Solution of AXB+CYD=F and its Application
Authors: Minghui Wang
Abstract:
Based on the classical algorithm LSQR for solving (unconstrained) LS problem, an iterative method is proposed for the least-squares like-minimum-norm symmetric solution of AXB+CYD=E. As the application of this algorithm, an iterative method for the least-squares like-minimum-norm biymmetric solution of AXB=E is also obtained. Numerical results are reported that show the efficiency of the proposed methods.
Keywords: Matrix equation, bisymmetric matrix, least squares problem, like-minimum norm, iterative algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14895763 Heat Transfer from Two Cam Shaped Cylinders in Side-by-Side Arrangement
Authors: Arash Mir Abdolah Lavasani, Hamidreza Bayat
Abstract:
Heat transfer from two cam shape cylinder in side-byside arrangement had been studied numerically. The transverse gap between the centers of cylinders (T) is allowed to vary to change the pitch ratio (T/Deq). The equivalent diameter of the cylinder (Deq) is 27.6 mm and pitch ratio varies in range of 1≤T/Deq≤3. The Reynolds numbers based on equivalent circular cylinder are within 50≤ Reeq≤150. Results show that Nusselt number of cylinders increases about 1 to 36 percent when pitch ratio increases from 1 to 3.Keywords: Cam shaped, side-by-side cylinders, numerical, heat Transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15075762 The Influence of Gravity on The Temporal Instability of Viscoelastic Liquid Curved Jets
Authors: Abdullah Madhi Alsharif, Jamal Uddin
Abstract:
A liquid curved jet has many applications in different industrial and engineering processes, such as the prilling process for generating small spherical pellets (fertilizer or magnesium). The liquids used are usually molten and contain small quantities of polymers and therefore can be modelled as non-Newtonian liquids. In this paper, we model the viscoelastic liquid jet by using the Oldroyd- B model. An asymptotic analysis has been used to simplify the governing equations. Furthermore, the trajectory and a linear temporal stability in the presence of gravity and rotation have been determined.
Keywords: gravity, prilling, rotation, viscoelastic jets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958