Search results for: Correlation Network
767 Structural Characteristics of Batch Processed Agro-Waste Fibres
Authors: E. I. Akpan, S. O. Adeosun, G. I. Lawal, S. A. Balogun, X. D. Chen
Abstract:
The characterisation of agro-wastes fibres for composite applications from Nigeria using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) has been done. Fibres extracted from groundnut shell, coconut husk, rice husk, palm fruit bunch and palm fruit stalk are processed using two novel cellulose fibre production methods developed by the authors. Cellulose apparent crystallinity calculated using the deconvolution of the diffractometer trace shows that the amorphous portion of cellulose was permeable to hydrolysis yielding high crystallinity after treatment. All diffratograms show typical cellulose structure with well-defined 110, 200 and 040 peaks. Palm fruit fibres had the highest 200 crystalline cellulose peaks compared to others and it is an indication of rich cellulose content. Surface examination of the resulting fibres using SEM indicates the presence of regular cellulose network structure with some agglomerated laminated layer of thin leaves of cellulose microfibrils. The surfaces were relatively smooth indicating the removal of hemicellulose, lignin and pectin.
Keywords: X-ray diffraction, SEM, cellulose, deconvolution, crystallinity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2732766 Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement
Authors: Ferinar Moaidi, Mahdi Moaidi
Abstract:
Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state.Keywords: Distributed generation, genetic algorithm, microgrid, load modelling, loss reduction, voltage improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1058765 A Novel Approach for Tracking of a Mobile Node Based on Particle Filter and Trilateration
Authors: Muhammad Haroon Siddiqui, Muhammad Rehan Khalid
Abstract:
This paper evaluates the performance of a novel algorithm for tracking of a mobile node, interms of execution time and root mean square error (RMSE). Particle Filter algorithm is used to track the mobile node, however a new technique in particle filter algorithm is also proposed to reduce the execution time. The stationary points were calculated through trilateration and finally by averaging the number of points collected for a specific time, whereas tracking is done through trilateration as well as particle filter algorithm. Wi-Fi signal is used to get initial guess of the position of mobile node in x-y coordinates system. Commercially available software “Wireless Mon" was used to read the WiFi signal strength from the WiFi card. Visual Cµ version 6 was used to interact with this software to read only the required data from the log-file generated by “Wireless Mon" software. Results are evaluated through mathematical modeling and MATLAB simulation.Keywords: Particle Filter, Tracking, Wireless Local Area Network, WiFi, Trilateration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068764 Method for Tuning Level Control Loops Based on Internal Model Control and Closed Loop Step Test Data
Authors: Arnaud Nougues
Abstract:
This paper describes a two-stage methodology derived from IMC (Internal Model Control) for tuning a PID (Proportional-Integral-Derivative) controller for levels or other integrating processes in an industrial environment. Focus is ease of use and implementation speed which are critical for an industrial application. Tuning can be done with minimum effort and without the need of time-consuming open-loop step tests on the plant. The first stage of the method applies to levels only: the vessel residence time is calculated from equipment dimensions and used to derive a set of preliminary PI (Proportional-Integral) settings with IMC. The second stage, re-tuning in closed-loop, applies to levels as well as other integrating processes: a tuning correction mechanism has been developed based on a series of closed-loop simulations with model errors. The tuning correction is done from a simple closed-loop step test and application of a generic correlation between observed overshoot and integral time correction. A spin-off of the method is that an estimate of the vessel residence time (levels) or open-loop process gain (other integrating process) is obtained from the closed-loop data.
Keywords: closed-loop model identification, IMC-PID tuning method, integrating process control, on-line PID tuning adaptation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 579763 Secure Data Aggregation Using Clusters in Sensor Networks
Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik
Abstract:
Wireless sensor network can be applied to both abominable and military environments. A primary goal in the design of wireless sensor networks is lifetime maximization, constrained by the energy capacity of batteries. One well-known method to reduce energy consumption in such networks is data aggregation. Providing efcient data aggregation while preserving data privacy is a challenging problem in wireless sensor networks research. In this paper, we present privacy-preserving data aggregation scheme for additive aggregation functions. The Cluster-based Private Data Aggregation (CPDA)leverages clustering protocol and algebraic properties of polynomials. It has the advantage of incurring less communication overhead. The goal of our work is to bridge the gap between collaborative data collection by wireless sensor networks and data privacy. We present simulation results of our schemes and compare their performance to a typical data aggregation scheme TAG, where no data privacy protection is provided. Results show the efficacy and efficiency of our schemes.Keywords: Aggregation, Clustering, Query Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734762 A Utilitarian Approach to Modeling Information Flows in Social Networks
Authors: Usha Sridhar, Sridhar Mandyam
Abstract:
We propose a multi-agent based utilitarian approach to model and understand information flows in social networks that lead to Pareto optimal informational exchanges. We model the individual expected utility function of the agents to reflect the net value of information received. We show how this model, adapted from a theorem by Karl Borch dealing with an actuarial Risk Exchange concept in the Insurance industry, can be used for social network analysis. We develop a utilitarian framework that allows us to interpret Pareto optimal exchanges of value as potential information flows, while achieving a maximization of a sum of expected utilities of information of the group of agents. We examine some interesting conditions on the utility function under which the flows are optimal. We illustrate the promise of this new approach to attach economic value to information in networks with a synthetic example.Keywords: Borch's Theorem , Economic value of information, Information Exchange, Pareto Optimal Solution, Social Networks, Utility Functions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505761 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model
Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin
Abstract:
Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.
Keywords: Anomaly detection, autoencoder, data centers, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 744760 Application of Lattice Boltzmann Methods in Heat and Moisture Transfer in Frozen Soil
Authors: Wenyu Song, Bingxi Li, Zhongbin Fu, Bo Zhang
Abstract:
Although water only takes a little percentage in the total mass of soil, it indeed plays an important role to the strength of structure. Moisture transfer can be carried out by many different mechanisms which may involve heat and mass transfer, thermodynamic phase change, and the interplay of various forces such as viscous, buoyancy, and capillary forces. The continuum models are not well suited for describing those phenomena in which the connectivity of the pore space or the fracture network, or that of a fluid phase, plays a major role. However, Lattice Boltzmann methods (LBMs) are especially well suited to simulate flows around complex geometries. Lattice Boltzmann methods were initially invented for solving fluid flows. Recently, fluid with multicomponent and phase change is also included in the equations. By comparing the numerical result with experimental result, the Lattice Boltzmann methods with phase change will be optimized.
Keywords: Frozen soil, Lattice Boltzmann method, Phase change, Test rig.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745759 Lithofacies Classification from Well Log Data Using Neural Networks, Interval Neutrosophic Sets and Quantification of Uncertainty
Authors: Pawalai Kraipeerapun, Chun Che Fung, Kok Wai Wong
Abstract:
This paper proposes a novel approach to the question of lithofacies classification based on an assessment of the uncertainty in the classification results. The proposed approach has multiple neural networks (NN), and interval neutrosophic sets (INS) are used to classify the input well log data into outputs of multiple classes of lithofacies. A pair of n-class neural networks are used to predict n-degree of truth memberships and n-degree of false memberships. Indeterminacy memberships or uncertainties in the predictions are estimated using a multidimensional interpolation method. These three memberships form the INS used to support the confidence in results of multiclass classification. Based on the experimental data, our approach improves the classification performance as compared to an existing technique applied only to the truth membership. In addition, our approach has the capability to provide a measure of uncertainty in the problem of multiclass classification.
Keywords: Multiclass classification, feed-forward backpropagation neural network, interval neutrosophic sets, uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634758 Correlation of Microstructure and Corrosion Behavior of Martensitic Stainless Steel Surgical Grade AISI 420A Exposed to 980-1035oC
Authors: Taqi Zahid Butt, Tanveer Ahmad Tabish
Abstract:
Martensitic stainless steels have been extensively used for their good corrosion resistance and better mechanical properties. Heat treatment was suggested as one of the most excellent ways to this regard; hence, it affects the microstructure, mechanical and corrosion properties of the steel. In the current research work the microstructural changes and corrosion behavior in an AISI 420A stainless steel exposed to temperatures in the 980-1035oC range were investigated. The heat treatment is carried out in vacuum furnace within the said temperature range. The quenching of the samples was carried out in oil, brine and water media. The formation and stability of passive film was studied by Open Circuit Potential, Potentiodynamic polarization and Electrochemical Scratch Tests. The Electrochemical Impedance Spectroscopy results simulated with Equivalent Electrical Circuit suggested bilayer structure of outer porous and inner barrier oxide films. The quantitative data showed thick inner barrier oxide film retarded electrochemical reactions. Micrographs of the quenched samples showed sigma and chromium carbide phases which prove the corrosion resistance of steel alloy.Keywords: Martensitic stainless steel corrosion, microstructure, vacuum furnace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2646757 Simulation of Acoustic Properties of Borate and Tellurite Glasses
Authors: M. S. Gaafar, S. Y. Marzouk, I. S. Mahmoud, S. Al-Zobaidi
Abstract:
Makishima and Mackenzie model was used to simulation of acoustic properties (longitudinal and shear ultrasonic wave velocities, elastic moduli theoretically for many tellurite and borate glasses. The model was proposed mainly depending on the values of the experimentally measured density, which are obtained before. In this search work, we are trying to obtain the values of densities of amorphous glasses (as the density depends on the geometry of the network structure of these glasses). In addition, the problem of simulating the slope of linear regression between the experimentally determined bulk modulus and the product of packing density and experimental Young's modulus, were solved in this search work. The results showed good agreement between the experimentally measured values of densities and both ultrasonic wave velocities, and those theoretically determined.Keywords: Glasses, ultrasonic wave velocities, elastic moduli, Makishima and Mackenzie model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523756 Characterization and Predictors of Community Integration of People with Psychiatric Problems: Comparisons with the General Population
Authors: J. Cabral, C. Barreto Carvalho, C. da Motta, M. Sousa
Abstract:
Community integration is a construct that an increasing body of research has shown to have a significant impact on the wellbeing and recovery of people with psychiatric problems. However, there are few studies that explore which factors can be associated and predict community integration. Moreover, community integration has been mostly studied in minority groups, and current literature on the definition and manifestation of community integration in the general population is scarcer. Thus, the current study aims to characterize community integration and explore possible predictor variables in a sample of participants with psychiatric problems (PP, N=183) and a sample of participants from the general population (GP, N=211). Results show that people with psychiatric problems present above average values of community integration, but are significantly lower than their healthy counterparts. It was also possible to observe that community integration does not vary in terms of the sociodemographic characteristics of both groups in this study. Correlation and multiple regression showed that, among several variables that literature present as relevant in the community integration process, only three variables emerged as having the most explanatory value in community integration of both groups: sense of community, basic needs satisfaction and submission. These results also shown that those variables have increased explanatory power in the PP sample, which leads us to emphasize the need to address this issue in future studies and increase the understanding of the factors that can be involved in the promotion of community integration, in order to devise more effective interventions in this field.Keywords: Community integration, mental illness, predictors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838755 Design of Wireless Sensor Networks for Environmental Monitoring Using LoRa
Authors: Shathya Duobiene, Gediminas Račiukaitis
Abstract:
Wireless Sensor Networks (WSNs) are an emerging technology that opens up a new field of research. The significant advance in WSN leads to an increasing prevalence of various monitoring applications and real-time assistance in labs and factories. Selective surface activation induced by laser (SSAIL) is a promising technology that adapts to the WSN design freedom of shape, dimensions, and material. This article proposes and implements a WSN-based temperature and humidity monitoring system, and its deployed architectures made for the monitoring task are discussed. Experimental results of developed sensor nodes implemented in university campus laboratories are shown. Then, the simulation and the implementation results obtained through monitoring scenarios are displayed. At last, a convenient solution to keep the WSN alive and functional as long as possible is proposed. Unlike other existing models, on success, the node is self-powered and can utilize minimal power consumption for sensing and data transmission to the base station.
Keywords: Internet of Things, IoT, network formation, sensor nodes, SSAIL technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 385754 Five Vital Factors Related to Employees’ Job Performance
Authors: Siri-orn Champatong
Abstract:
The purpose of this research was to study five vital factors related to employees’ job performance. A total of 250 respondents were sampled from employees who worked at a public warehouse organization, Bangkok, Thailand. Samples were divided into two groups according to their work experience. The average working experience was about 9 years for group one and 28 years for group two. A questionnaire was utilized as a tool to collect data. Statistics utilized in this research included frequency, percentage, mean, standard deviation, t-test analysis, one way ANOVA, and Pearson Product-moment correlation coefficient. Data were analyzed by using Statistical Package for the Social Sciences. The findings disclosed that the majority of respondents were female between 23- 31 years old, single, and hold an undergraduate degree. The average income of respondents was less than 30,900 baht. The findings also revealed that the factors of organization chart awareness, job process and technology, internal environment, employee loyalty, and policy and management were ranked as medium level. The hypotheses testing revealed that difference in gender, age, and position had differences in terms of the awareness of organization chart, job process and technology, internal environment, employee loyalty, and policy and management in the same direction with low level.
Keywords: Employees, Factors Related, Job Performance, Public Warehouse Organization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647753 Acidity of different Jordanian Clays characterized by TPD-NH3 and MBOH Conversion
Authors: M. AlSawalha, F. Roessner, L. Novikova, L. Bel'chinskaya
Abstract:
The acidity of different raw Jordanian clays containing zeolite, bentonite, red and white kaolinite and diatomite was characterized by means of temperature programmed desorption (TPD) of ammonia, conversion of 2-methyl-3-butyn-2-ol (MBOH), FTIR and BET-measurements. FTIR spectra proved presence of silanol and bridged hydroxyls on the clay surface. The number of acidic sites was calculated from experimental TPD-profiles. We observed the decrease of surface acidity correlates with the decrease of Si/Al ratio except for diatomite. On the TPD-plot for zeolite two maxima were registered due to different strength of surface acidic sites. Values of MBOH conversion, product yields and selectivity were calculated for the catalysis on Jordanian clays. We obtained that all clay samples are able to convert MBOH into a major product which is 3-methyl-3-buten-1-yne (MBYNE) catalyzed by acid surface sites with the selectivity close to 70%. There was found a correlation between MBOH conversion and acidity of clays determined by TPD-NH3, i.e. the higher the acidity the higher the conversion of MBOH. However, diatomite provided the lowest conversion of MBOH as result of poor polarization of silanol groups. Comparison of surface areas and conversions revealed the highest density of active sites for red kaolinite and the lowest for zeolite and diatomite.Keywords: Acidity, Jordanian clay, Methylbutynol conversion, Temperature programmed desorption of ammonia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3305752 A Predictive Rehabilitation Software for Cerebral Palsy Patients
Authors: J. Bouchard, B. Prosperi, G. Bavre, M. Daudé, E. Jeandupeux
Abstract:
Young patients suffering from Cerebral Palsy are facing difficult choices concerning heavy surgeries. Diagnosis settled by surgeons can be complex and on the other hand decision for patient about getting or not such a surgery involves important reflection effort. Proposed software combining prediction for surgeries and post surgery kinematic values, and from 3D model representing the patient is an innovative tool helpful for both patients and medicine professionals. Beginning with analysis and classification of kinematics values from Data Base extracted from gait analysis in 3 separated clusters, it is possible to determine close similarity between patients. Prediction surgery best adapted to improve a patient gait is then determined by operating a suitable preconditioned neural network. Finally, patient 3D modeling based on kinematic values analysis, is animated thanks to post surgery kinematic vectors characterizing the closest patient selected from patients clustering.
Keywords: Cerebral Palsy, Clustering, Crouch Gait, 3-D Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007751 Composite Distributed Generation and Transmission Expansion Planning Considering Security
Authors: Amir Lotfi, Seyed Hamid Hosseini
Abstract:
During the recent past, due to the increase of electrical energy demand and governmental resources constraints in creating additional capacity in the generation, transmission, and distribution, privatization, and restructuring in electrical industry have been considered. So, in most of the countries, different parts of electrical industry like generation, transmission, and distribution have been separated in order to create competition. Considering these changes, environmental issues, energy growth, investment of private equity in energy generation units and difficulties of transmission lines expansion, distributed generation (DG) units have been used in power systems. Moreover, reduction in the need for transmission and distribution, the increase of reliability, improvement of power quality, and reduction of power loss have caused DG to be placed in power systems. On the other hand, considering low liquidity need, private investors tend to spend their money for DGs. In this project, the main goal is to offer an algorithm for planning and placing DGs in order to reduce the need for transmission and distribution network.Keywords: Planning, transmission, distributed generation, power security, power systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1132750 A New Fuzzy Mathematical Model in Recycling Collection Networks: A Possibilistic Approach
Authors: B. Vahdani, R. Tavakkoli-Moghaddam, A. Baboli, S. M. Mousavi
Abstract:
Focusing on the environmental issues, including the reduction of scrap and consumer residuals, along with the benefiting from the economic value during the life cycle of goods/products leads the companies to have an important competitive approach. The aim of this paper is to present a new mixed nonlinear facility locationallocation model in recycling collection networks by considering multi-echelon, multi-suppliers, multi-collection centers and multifacilities in the recycling network. To make an appropriate decision in reality, demands, returns, capacities, costs and distances, are regarded uncertain in our model. For this purpose, a fuzzy mathematical programming-based possibilistic approach is introduced as a solution methodology from the recent literature to solve the proposed mixed-nonlinear programming model (MNLP). The computational experiments are provided to illustrate the applicability of the designed model in a supply chain environment and to help the decision makers to facilitate their analysis.
Keywords: Location-allocation model, recycling collection networks, fuzzy mathematical programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099749 Investigation the Difference of Several Hormones Correlated to Reproduction between Infertile and Fertile Dairy Cows
Authors: Ali M. Mutlag, Yang Zhiqiang, Meng Jiaren, Zhang Jingyan, Li Jianxi
Abstract:
The object of this study was to investigate several hormones correlated to the reproduction and inhibin A, inhibin B and NO levels in the infertile dairy cows as attempt to illustrate the physiological causes of dairy cows infertility.
40 Holstein cow (21 infertile and 19 fertile) were used at estrous phase of the cycle, Hormones FSH, LH, E2, Testosterone, were measured using ELISA method. inhibin A and B also estimated by ELISA method, Nitric oxide was measured by Greiss reagent method.
The results showed different concentrations of the hormone in which FSH illustrated significantly higher concentration in the infertile cows than fertile cows (P<0.05). LH and E2 showed significant decrease in the infertile cows than the fertile cows (P<0.05), no significant difference appeared in testosterone concentrations in the fertile cows and infertile cows (P>0.05). The both inhibins A and B showed significant P<0.05 decrease concentrations in the infertile cows also NO showed clearly significant decrease P<0.05 in the infertile cows.
In conclusion, the present study approved the poorly ovarian activities and reproduction disturbance of infertile cows in spite of trigger estrous signs, the study confirmed a positive correlation between inhibins and NO to regulate the ovarian physiology. These inhibins represent effective markers of dairy cow infertility.
Keywords: Cows, Inhibin (A, B), Infertility, Nitric oxide (NO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921748 Using Interpretive Structural Modeling to Determine the Relationships among Knowledge Management Criteria inside Malaysian Organizations
Authors: Reza Sigari Tabrizi, Yeap Peik Foong, Nazli Ebrahimi
Abstract:
This paper is concerned with the establishment of relationships among knowledge management (KM) criteria that will ensure an essential foundation to evaluate KM outcomes. The major issue under investigation is to assess the popularity of criteria within organizations and to establish a structure of criteria for measuring KM results. An empirical survey was conducted among Malaysian organizations to investigate KM criteria for measuring success of KM initiatives. Therefore, knowledge workers as the respondents were targeted to establish a structure of criteria for evaluating KM outcomes. An established structure of criteria based on the Interpretive Structural Modeling (ISM) is used to map criteria relationships inside organizations. This structure is portrayed to identify that how these set of criteria are related. This network schema should be investigated and implemented to promote innovation and improve enterprise performance. To the researchers, this survey has significant insights into relationship between KM programs and business success.
Keywords: Knowledge Management, Knowledge ManagementOutcomes, KM Criteria, Innovation, Interpretive Structural Modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3637747 Application of Generalized Autoregressive Score Model to Stock Returns
Authors: Katleho Daniel Makatjane, Diteboho Lawrence Xaba, Ntebogang Dinah Moroke
Abstract:
The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns.
Keywords: Generalized autoregressive score model, stock returns, time-varying.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035746 Use of Integrated Knowledge Networks to Increase Innovation in Nanotechnology Research and Development
Authors: R. Byler
Abstract:
Innovation, particularly in technology development, is a crucial aspect of nanotechnology R&D and, although several approaches to effective innovation management exist, organizational structures that promote knowledge exchange have been found to be most effect in supporting new and emerging technologies. This paper discusses Integrated Knowledge Networks (IKNs) and evaluates its use within nanotechnology R&D to increase technology innovation. Specifically, this paper reviews the role of IKNs in bolstering national and international nanotechnology development and in enhancing nanotechnology innovation. Both physical and virtual IKNs, particularly IT-based network platforms for community-based innovation, offer strategies for enhanced technology innovation, interdisciplinary cooperation, and enterprise development. Effectively creating and managing technology R&D networks can facilitate successful knowledge exchange, enhanced innovation, commercialization, and technology transfer. As such, IKNs are crucial to technology development processes and, thus, in increasing the quality and access to new, innovative nanoscience and technologies worldwide.Keywords: Community-based innovation, integrated knowledge networks, nanotechnology, technology innovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 899745 A Fully-Automated Disturbance Analysis Vision for the Smart Grid Based on Smart Switch Data
Authors: Bernardo Cedano, Ahmed H. Eltom, Bob Hay, Jim Glass, Raga Ahmed
Abstract:
The deployment of smart grid devices such as smart meters and smart switches (SS) supported by a reliable and fast communications system makes automated distribution possible, and thus, provides great benefits to electric power consumers and providers alike. However, more research is needed before the full utility of smart switch data is realized. This paper presents new automated switching techniques using SS within the electric power grid. A concise background of the SS is provided, and operational examples are shown. Organization and presentation of data obtained from SS are shown in the context of the future goal of total automation of the distribution network. The description of application techniques, the examples of success with SS, and the vision outlined in this paper serve to motivate future research pertinent to disturbance analysis automation.
Keywords: Disturbance automation, electric power grid, smart grid, smart switch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992744 An Improved Conjugate Gradient Based Learning Algorithm for Back Propagation Neural Networks
Authors: N. M. Nawi, R. S. Ransing, M. R. Ransing
Abstract:
The conjugate gradient optimization algorithm is combined with the modified back propagation algorithm to yield a computationally efficient algorithm for training multilayer perceptron (MLP) networks (CGFR/AG). The computational efficiency is enhanced by adaptively modifying initial search direction as described in the following steps: (1) Modification on standard back propagation algorithm by introducing a gain variation term in the activation function, (2) Calculation of the gradient descent of error with respect to the weights and gains values and (3) the determination of a new search direction by using information calculated in step (2). The performance of the proposed method is demonstrated by comparing accuracy and computation time with the conjugate gradient algorithm used in MATLAB neural network toolbox. The results show that the computational efficiency of the proposed method was better than the standard conjugate gradient algorithm.
Keywords: Adaptive gain variation, back-propagation, activation function, conjugate gradient, search direction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521743 EFL Teachers’ Metacognitive Awareness as a Predictor of Their Professional Success
Authors: Saeedeh Shafiee Nahrkhalaji
Abstract:
Metacognitive knowledge increases EFL students’ ability to be successful learners. Although this relationship has been investigated by a number of scholars, EFL teachers’ explicit awareness of their cognitive knowledge has not been sufficiently explored. The aim of this study was to examine the role of EFL teachers’ metacognitive knowledge in their pedagogical performance. Furthermore, the role played by years of their academic education and teaching experience was also studied. Fifty female EFL teachers were selected. They completed Metacognitive Awareness Inventory (MAI) that assessed six components of metacognition including procedural knowledge, declarative knowledge, conditional knowledge, planning, evaluating, and management strategies. Near the end of the academic semester, the students of each class filled in ‘the Language Teacher Characteristics Questionnaire’ to evaluate their teachers’ pedagogical performance. Four elements of MAI, declarative knowledge, planning, evaluating, and management strategies were found to be significantly correlated with EFL teachers’ pedagogical success. Significant correlation was also established between metacognitive knowledge and EFL teachers’ years of academic education and teaching experience. The findings obtained from this research have contributing implication for EFL teacher educators. The discussion concludes by setting out directions for future research.
Keywords: Metacognotive Knowledge, Pedagogical Performance, Language Teacher Characteristics Questionnaire, Metacognitive Awareness Inventory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2708742 A Comparative Performance Evaluation Model of Mobile Agent Versus Remote Method Invocation for Information Retrieval
Authors: Yousry El-Gamal, Khalid El-Gazzar, Magdy Saeb
Abstract:
The development of distributed systems has been affected by the need to accommodate an increasing degree of flexibility, adaptability, and autonomy. The Mobile Agent technology is emerging as an alternative to build a smart generation of highly distributed systems. In this work, we investigate the performance aspect of agent-based technologies for information retrieval. We present a comparative performance evaluation model of Mobile Agents versus Remote Method Invocation by means of an analytical approach. We demonstrate the effectiveness of mobile agents for dynamic code deployment and remote data processing by reducing total latency and at the same time producing minimum network traffic. We argue that exploiting agent-based technologies significantly enhances the performance of distributed systems in the domain of information retrieval.Keywords: Mobile Agent, performance evaluation, RMI, information retrieval, distributed systems, database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253741 Natural Emergence of a Core Structure in Networks via Clique Percolation
Authors: A. Melka, N. Slater, A. Mualem, Y. Louzoun
Abstract:
Networks are often presented as containing a “core” and a “periphery.” The existence of a core suggests that some vertices are central and form the skeleton of the network, to which all other vertices are connected. An alternative view of graphs is through communities. Multiple measures have been proposed for dense communities in graphs, the most classical being k-cliques, k-cores, and k-plexes, all presenting groups of tightly connected vertices. We here show that the edge number thresholds for such communities to emerge and for their percolation into a single dense connectivity component are very close, in all networks studied. These percolating cliques produce a natural core and periphery structure. This result is generic and is tested in configuration models and in real-world networks. This is also true for k-cores and k-plexes. Thus, the emergence of this connectedness among communities leading to a core is not dependent on some specific mechanism but a direct result of the natural percolation of dense communities.Keywords: Networks, cliques, percolation, core structure, phase transition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 764740 Evaluation of Deformable Boundary Condition Using Finite Element Method and Impact Test for Steel Tubes
Authors: Abed Ahmed, Mehrdad Asadi, Jennifer Martay
Abstract:
Stainless steel pipelines are crucial components to transportation and storage in the oil and gas industry. However, the rise of random attacks and vandalism on these pipes for their valuable transport has led to more security and protection for incoming surface impacts. These surface impacts can lead to large global deformations of the pipe and place the pipe under strain, causing the eventual failure of the pipeline. Therefore, understanding how these surface impact loads affect the pipes is vital to improving the pipes’ security and protection. In this study, experimental test and finite element analysis (FEA) have been carried out on EN3B stainless steel specimens to study the impact behaviour. Low velocity impact tests at 9 m/s with 16 kg dome impactor was used to simulate for high momentum impact for localised failure. FEA models of clamped and deformable boundaries were modelled to study the effect of the boundaries on the pipes impact behaviour on its impact resistance, using experimental and FEA approach. Comparison of experimental and FE simulation shows good correlation to the deformable boundaries in order to validate the robustness of the FE model to be implemented in pipe models with complex anisotropic structure.
Keywords: Dynamic impact, deformable boundary conditions, finite element modeling, FEM, finite element, FE, LS-DYNA, Stainless steel pipe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 702739 Interannual Variations in Snowfall and Continuous Snow Cover Duration in Pelso, Central Finland, Linked to Teleconnection Patterns, 1944-2010
Authors: M. Irannezhad, E. H. N. Gashti, S. Mohammadighavam, M. Zarrini, B. Kløve
Abstract:
Climate warming would increase rainfall by shifting precipitation falling form from snow to rain, and would accelerate snow cover disappearing by increasing snowpack. Using temperature and precipitation data in the temperature-index snowmelt model, we evaluated variability of snowfall and continuous snow cover duration (CSCD) during 1944-2010 over Pelso, central Finland. Mann- Kendall non-parametric test determined that annual precipitation increased by 2.69 (mm/year, p<0.05) during the study period, but no clear trend in annual temperature. Both annual rainfall and snowfall increased by 1.67 and 0.78 (mm/year, p<0.05), respectively. CSCD was generally about 205 days from 14 October to 6 May. No clear trend was found in CSCD over Pelso. Spearman’s rank correlation showed most significant relationships of annual snowfall with the East Atlantic (EA) pattern, and CSCD with the East Atlantic/West Russia (EA/WR) pattern. Increased precipitation with no warming temperature caused the rainfall and snowfall to increase, while no effects on CSCD.
Keywords: Variations, snowfall, snow cover duration, temperature-index snowmelt model, teleconnection patterns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916738 Linking OpenCourseWares and Open Education Resources: Creating an Effective Search and Recommendation System
Authors: Brett E. Shelton, Joel Duffin, Yuxuan Wang, Justin Ball
Abstract:
With a growing number of digital libraries and other open education repositories being made available throughout the world, effective search and retrieval tools are necessary to access the desired materials that surpass the effectiveness of traditional, allinclusive search engines. This paper discusses the design and use of Folksemantic, a platform that integrates OpenCourseWare search, Open Educational Resource recommendations, and social network functionality into a single open source project. The paper describes how the system was originally envisioned, its goals for users, and data that provides insight into how it is actually being used. Data sources include website click-through data, query logs, web server log files and user account data. Based on a descriptive analysis of its current use, modifications to the platform's design are recommended to better address goals of the system, along with recommendations for additional phases of research.Keywords: Digital libraries, open education, recommendation system, social networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2202