Search results for: Linear Fredholm integral equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3093

Search results for: Linear Fredholm integral equations

2823 Recognition and Reconstruction of Partially Occluded Objects

Authors: Michela Lecca, Stefano Messelodi

Abstract:

A new automatic system for the recognition and re¬construction of resealed and/or rotated partially occluded objects is presented. The objects to be recognized are described by 2D views and each view is occluded by several half-planes. The whole object views and their visible parts (linear cuts) are then stored in a database. To establish if a region R of an input image represents an object possibly occluded, the system generates a set of linear cuts of R and compare them with the elements in the database. Each linear cut of R is associated to the most similar database linear cut. R is recognized as an instance of the object 0 if the majority of the linear cuts of R are associated to a linear cut of views of 0. In the case of recognition, the system reconstructs the occluded part of R and determines the scale factor and the orientation in the image plane of the recognized object view. The system has been tested on two different datasets of objects, showing good performance both in terms of recognition and reconstruction accuracy.

Keywords: Occluded Object Recognition, Shape Reconstruction, Automatic Self-Adaptive Systems, Linear Cut.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284
2822 Time Development of Local Scour around Semi Integral Bridge Piers and Piles in Malaysia

Authors: Shatirah Akib, Sadia Rahman

Abstract:

Scouring around a bridge pier is a complex phenomenon. More laboratory experiments are required to understand the scour mechanism. This paper focused on time development of local scour around piers and piles in semi integral bridges. Laboratory data collected at Hydraulics Laboratory, University of Malaya was analyzed for this purpose. Tests were performed with two different uniform sediment sizes and five ranges of flow velocities. Fine and coarse sediments were tested in the flume. Results showed that scour depths for both pier and piles increased with time up to certain levels and after that they became almost constant. It had been found that scour depths increased when discharges increased. Coarser sediment also produced lesser scouring at the piers and combined piles.

Keywords: Pier, pile, scour, semi integral bridge, time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2920
2821 Lagrangian Geometrical Model of the Rheonomic Mechanical Systems

Authors: Camelia Frigioiu, Katica (Stevanovic) Hedrih, Iulian Gabriel Birsan

Abstract:

In this paper we study the rheonomic mechanical systems from the point of view of Lagrange geometry, by means of its canonical semispray. We present an example of the constraint motion of a material point, in the rheonomic case.

Keywords: Lagrange's equations, mechanical system, non-linear connection, rheonomic Lagrange space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
2820 Model Predictive Control and Proportional-Integral-Derivative Control of Quadcopters: A Comparative Analysis

Authors: Anel Hasić, Naser Prljača

Abstract:

In the domain of autonomous or piloted flights, the accurate control of quadrotor trajectories is of paramount significance for large numbers of tasks. These adaptable aerial platforms find applications that span from high-precision aerial photography and surveillance to demanding search and rescue missions. Among the fundamental challenges confronting quadrotor operation is the demand for accurate following of desired flight paths. To address this control challenge, among others, two celebrated well-established control strategies have emerged as noteworthy contenders: Model Predictive Control (MPC) and Proportional-Integral-Derivative (PID) control. In this work, we focus on the extensive examination of MPC and PID control techniques by using comprehensive simulation studies in MATLAB/Simulink. Intensive simulation results demonstrate the performance of the studied control algorithms.

Keywords: MATLAB, MPC, Model Predictive Control, PID, Proportional-Integral-Derivative, quadcopter, Simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28
2819 Coding Structures for Seated Row Simulation of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform

Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho

Abstract:

Simulation for seated row exercise was a continued task to assist NASA in analyzing a one-dimensional vibration isolation and stabilization system for astronaut’s exercise platform. Feedback delay and signal noise were added to the simulation model. Simulation runs for this study were conducted in two software simulation tools, Trick and MBDyn, software simulation environments developed at the NASA Johnson Space Center. The exciter force in the simulation was calculated from motion capture of an exerciser during a seated aerobic row exercise. The simulation runs include passive control, active control using a Proportional, Integral, Derivative (PID) controller, and active control using a Piecewise Linear Integral Derivative (PWLID) controller. Output parameters include displacements of the exercise platform, the exerciser, and the counterweight; transmitted force to the wall of spacecraft; and actuator force to the platform. The simulation results showed excellent force reduction in the active controlled system compared to the passive controlled system, which showed less force reduction.

Keywords: Simulation, counterweight, exercise, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 315
2818 Fuzzy Logic and Control Strategies on a Sump

Authors: Nasser Mohamed Ramli, Nurul Izzati Zulkifli

Abstract:

Sump can be defined as a reservoir which contains slurry; a mixture of solid and liquid or water, in it. Sump system is an unsteady process owing to the level response. Sump level shall be monitored carefully by using a good controller to avoid overflow. The current conventional controllers would not be able to solve problems with large time delay and nonlinearities, Fuzzy Logic controller is tested to prove its ability in solving the listed problems of slurry sump. Therefore, in order to justify the effectiveness and reliability of these controllers, simulation of the sump system was created by using MATLAB and the results were compared. According to the result obtained, instead of Proportional-Integral (PI) and Proportional-Integral and Derivative (PID), Fuzzy Logic controller showed the best result by offering quick response of 0.32 s for step input and 5 s for pulse generator, by producing small Integral Absolute Error (IAE) values that are 0.66 and 0.36 respectively.

Keywords: Fuzzy, sump, level, controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782
2817 Pricing European Options under Jump Diffusion Models with Fast L-stable Padé Scheme

Authors: Salah Alrabeei, Mohammad Yousuf

Abstract:

The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. Modeling option pricing by Black-School models with jumps guarantees to consider the market movement. However, only numerical methods can solve this model. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, the exponential time differencing (ETD) method is applied for solving partial integrodifferential equations arising in pricing European options under Merton’s and Kou’s jump-diffusion models. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). A partial fraction form of Pad`e schemes is used to overcome the complexity of inverting polynomial of matrices. These two tools guarantee to get efficient and accurate numerical solutions. We construct a parallel and easy to implement a version of the numerical scheme. Numerical experiments are given to show how fast and accurate is our scheme.

Keywords: Integral differential equations, L-stable methods, pricing European options, Jump–diffusion model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 499
2816 Existence of Iterative Cauchy Fractional Differential Equation

Authors: Rabha W. Ibrahim

Abstract:

Our main aim in this paper is to use the technique of non expansive operators to more general iterative and non iterative fractional differential equations (Cauchy type ). The non integer case is taken in sense of Riemann-Liouville fractional operators. Applications are illustrated.

Keywords: Fractional calculus, fractional differential equation, Cauchy equation, Riemann-Liouville fractional operators, Volterra integral equation, non-expansive mapping, iterative differential equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2684
2815 Unsteady Free Convection Flow Over a Three-Dimensional Stagnation Point With Internal Heat Generation or Absorption

Authors: Mohd Ariff Admon, Abdul Rahman Mohd Kasim, Sharidan Shafie

Abstract:

This paper considers the effect of heat generation proportional l to (T - T∞ )p , where T is the local temperature and T∞ is the ambient temperature, in unsteady free convection flow near the stagnation point region of a three-dimensional body. The fluid is considered in an ambient fluid under the assumption of a step change in the surface temperature of the body. The non-linear coupled partial differential equations governing the free convection flow are solved numerically using an implicit finite-difference method for different values of the governing parameters entering these equations. The results for the flow and heat characteristics when p ≤ 2 show that the transition from the initial unsteady-state flow to the final steadystate flow takes place smoothly. The behavior of the flow is seen strongly depend on the exponent p.

Keywords: Free convection, Boundary layer flow, Stagnationpoint, Heat generation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
2814 A High Order Theory for Functionally Graded Shell

Authors: V. V. Zozulya

Abstract:

New theory for functionally graded (FG) shell based on expansion of the equations of elasticity for functionally graded materials (GFMs) into Legendre polynomials series has been developed. Stress and strain tensors, vectors of displacements, traction and body forces have been expanded into Legendre polynomials series in a thickness coordinate. In the same way functions that describe functionally graded relations has been also expanded. Thereby all equations of elasticity including Hook-s law have been transformed to corresponding equations for Fourier coefficients. Then system of differential equations in term of displacements and boundary conditions for Fourier coefficients has been obtained. Cases of the first and second approximations have been considered in more details. For obtained boundary-value problems solution finite element (FE) has been used of Numerical calculations have been done with Comsol Multiphysics and Matlab.

Keywords: Shell, FEM, FGM, legendre polynomial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
2813 Soil Moisture Regulation in Irrigated Agriculture

Authors: I. Kruashvili, I. Inashvili, K. Bziava, M. Lomishvili

Abstract:

Seepage capillary anomalies in the active layer of soil, related to the soil water movement, often cause variation of soil hydrophysical properties and become one of the main objectives of the hydroecology. It is necessary to mention that all existing equations for computing the seepage flow particularly from soil channels, through dams, bulkheads, and foundations of hydraulic engineering structures are preferable based on the linear seepage law. Regarding the existing beliefs, anomalous seepage is based on postulates according to which the fluid in free volume is characterized by resistance against shear deformation and is presented in the form of initial gradient. According to the above-mentioned information, we have determined: Equation to calculate seepage coefficient when the velocity of transition flow is equal to seepage flow velocity; by means of power function, equations for the calculation of average and maximum velocities of seepage flow have been derived; taking into consideration the fluid continuity condition, average velocity for calculation of average velocity in capillary tube has been received.

Keywords: Seepage, soil, velocity, water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1005
2812 Parallel Alternating Two-stage Methods for Solving Linear System

Authors: Guangbin Wang, Ning Zhang, Fuping Tan

Abstract:

In this paper, we present parallel alternating two-stage methods for solving linear system Ax = b, where A is a monotone matrix or an H-matrix. And we give some convergence results of these methods for nonsingular linear system.

Keywords: Parallel, alternating two-stage, convergence, linear system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1145
2811 Cryptography over Sextic Extension with Cubic Subfield

Authors: A. Chillali, M. Sahmoudi

Abstract:

In this paper, we will give a cryptographic application over the integral closure O_Lof sextic extension L, namely L is an extension of Q of degree 6 in the form Q(a,b), which is a rational quadratic and monogenic extension over a pure monogenic cubic subfield K generated by a who is a root of monic irreducible polynomial of degree 2 andb is a root of irreducible polynomial of degree 3.

Keywords: Integral bases, Cryptography, Discrete logarithm problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
2810 Determination of Geometric Dimensions of a Double Sided Linear Switched Reluctance Motor

Authors: Dursun M., Koc F., Ozbay H.

Abstract:

In this study, a double-sided linear switched reluctance motor (LSRM) drive was investigated as an alternative actuator for vertical linear transportation applications such as a linear elevator door, hospital and subway doors which move linearly and where accurate position control and rapid response is requested. A prototype sliding elevator door that is focused on a home elevator with LSRMs is designed. The motor has 6/4 poles, 3 phases, 8A, 24V, 250 W and 250 N pull forces. Air gap between rotor and translator poles of the designed motor and phase coil-s ideal inductance profile are obtained in compliance with the geometric dimensions. Operation and switching sections as motor and generator has been determined from the inductance profile.

Keywords: Linear switched reluctance motor, sliding door, elevator door, linear motor design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2705
2809 Weak Instability in Direct Integration Methods for Structural Dynamics

Authors: Shuenn-Yih Chang, Chiu-Li Huang

Abstract:

Three structure-dependent integration methods have been developed for solving equations of motion, which are second-order ordinary differential equations, for structural dynamics and earthquake engineering applications. Although they generally have the same numerical properties, such as explicit formulation, unconditional stability and second-order accuracy, a different performance is found in solving the free vibration response to either linear elastic or nonlinear systems with high frequency modes. The root cause of this different performance in the free vibration responses is analytically explored herein. As a result, it is verified that a weak instability is responsible for the different performance of the integration methods. In general, a weak instability will result in an inaccurate solution or even numerical instability in the free vibration responses of high frequency modes. As a result, a weak instability must be prohibited for time integration methods.

Keywords: Dynamic analysis, high frequency, integration method, overshoot, weak instability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 672
2808 Constructing Distinct Kinds of Solutions for the Time-Dependent Coefficients Coupled Klein-Gordon-Schrödinger Equation

Authors: Anupma Bansal

Abstract:

We seek exact solutions of the coupled Klein-Gordon-Schrödinger equation with variable coefficients with the aid of Lie classical approach. By using the Lie classical method, we are able to derive symmetries that are used for reducing the coupled system of partial differential equations into ordinary differential equations. From reduced differential equations we have derived some new exact solutions of coupled Klein-Gordon-Schrödinger equations involving some special functions such as Airy wave functions, Bessel functions, Mathieu functions etc.

Keywords: Klein-Gordon-Schödinger Equation, Lie Classical Method, Exact Solutions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4530
2807 Economic Dispatch Fuzzy Linear Regression and Optimization

Authors: A. K. Al-Othman

Abstract:

This study presents a new approach based on Tanaka's fuzzy linear regression (FLP) algorithm to solve well-known power system economic load dispatch problem (ELD). Tanaka's fuzzy linear regression (FLP) formulation will be employed to compute the optimal solution of optimization problem after linearization. The unknowns are expressed as fuzzy numbers with a triangular membership function that has middle and spread value reflected on the unknowns. The proposed fuzzy model is formulated as a linear optimization problem, where the objective is to minimize the sum of the spread of the unknowns, subject to double inequality constraints. Linear programming technique is employed to obtain the middle and the symmetric spread for every unknown (power generation level). Simulation results of the proposed approach will be compared with those reported in literature.

Keywords: Economic Dispatch, Fuzzy Linear Regression (FLP)and Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292
2806 The Banzhaf-Owen Value for Fuzzy Games with a Coalition Structure

Authors: Fan-Yong Meng

Abstract:

In this paper, a generalized form of the Banzhaf-Owen value for cooperative fuzzy games with a coalition structure is proposed. Its axiomatic system is given by extending crisp case. In order to better understand the Banzhaf-Owen value for fuzzy games with a coalition structure, we briefly introduce the Banzhaf-Owen values for two special kinds of fuzzy games with a coalition structure, and give their explicit forms.

Keywords: Cooperative fuzzy game, Banzhaf-Owen value, multi linear extension, Choquet integral.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
2805 A New Iterative Method for Solving Nonlinear Equations

Authors: Ibrahim Abu-Alshaikh

Abstract:

In this study, a new root-finding method for solving nonlinear equations is proposed. This method requires two starting values that do not necessarily bracketing a root. However, when the starting values are selected to be close to a root, the proposed method converges to the root quicker than the secant method. Another advantage over all iterative methods is that; the proposed method usually converges to two distinct roots when the given function has more than one root, that is, the odd iterations of this new technique converge to a root and the even iterations converge to another root. Some numerical examples, including a sine-polynomial equation, are solved by using the proposed method and compared with results obtained by the secant method; perfect agreements are found.

Keywords: Iterative method, root-finding method, sine-polynomial equations, nonlinear equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
2804 Nonlinear and Chaotic Motions for a Shock Absorbing Structure Supported by Nonlinear Springs with Hysteresis Using Fast FEA

Authors: T. Yamaguchi, Y. Kurosawa, S. Maruyama, K. Tobita, Y. Hirano, K. Yokouchi, K. Kihara, T. Sunaga

Abstract:

This paper describes dynamic analysis using proposed fast finite element method for a shock absorbing structure including a sponge. The structure is supported by nonlinear concentrated springs. The restoring force of the spring has cubic nonlinearity and linear hysteresis damping. To calculate damping properties for the structures including elastic body and porous body, displacement vectors as common unknown variable are solved under coupled condition. Under small amplitude, we apply asymptotic method to complex eigenvalue problem of this system to obtain modal parameters. And then expressions of modal loss factor are derived approximately. This approach was proposed by one of the authors previously. We call this method as Modal Strain and Kinetic Energy Method (MSKE method). Further, using the modal loss factors, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled equations using normal coordinate corresponding to linear natural modes. This transformation yields computation efficiency. As a numerical example of a shock absorbing structures, we adopt double skins with a sponge. The double skins are supported by nonlinear concentrated springs. We clarify influences of amplitude of the input force on nonlinear and chaotic responses.

Keywords: Dynamic response, Nonlinear and chaotic motions, Finite Element analysis, Numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
2803 FEA for Transient Responses of an S-Shaped Force Transducer with a Viscoelastic Absorber Using a Nonlinear Complex Spring

Authors: T. Yamaguchi, Y. Fujii, A. Takita, T. Kanai

Abstract:

To compute dynamic characteristics of nonlinear viscoelastic springs with elastic structures having huge degree-of-freedom, Yamaguchi proposed a new fast numerical method using finite element method [1]-[2]. In this method, restoring forces of the springs are expressed using power series of their elongation. In the expression, nonlinear hysteresis damping is introduced. In this expression, nonlinear complex spring constants are introduced. Finite element for the nonlinear spring having complex coefficients is expressed and is connected to the elastic structures modeled by linear solid finite element. Further, to save computational time, the discrete equations in physical coordinate are transformed into the nonlinear ordinary coupled equations using normal coordinate corresponding to linear natural modes. In this report, the proposed method is applied to simulation for impact responses of a viscoelastic shock absorber with an elastic structure (an S-shaped structure) by colliding with a concentrated mass. The concentrated mass has initial velocities and collides with the shock absorber. Accelerations of the elastic structure and the concentrated mass are measured using Levitation Mass Method proposed by Fujii [3]. The calculated accelerations from the proposed FEM, corresponds to the experimental ones. Moreover, using this method, we also investigate dynamic errors of the S-shaped force transducer due to elastic mode in the S-shaped structure.

Keywords: Transient response, Finite Element analysis, Numerical analysis, Viscoelastic shock absorber, Force transducer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
2802 Confidence Intervals for Double Exponential Distribution: A Simulation Approach

Authors: M. Alrasheedi

Abstract:

The double exponential model (DEM), or Laplace distribution, is used in various disciplines. However, there are issues related to the construction of confidence intervals (CI), when using the distribution.In this paper, the properties of DEM are considered with intention of constructing CI based on simulated data. The analysis of pivotal equations for the models here in comparisons with pivotal equations for normal distribution are performed, and the results obtained from simulation data are presented.

Keywords: Confidence intervals, double exponential model, pivotal equations, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3552
2801 Stature Prediction Model Based On Hand Anthropometry

Authors: Arunesh Chandra, Pankaj Chandna, Surinder Deswal, Rajesh Kumar Mishra, Rajender Kumar

Abstract:

The arm length, hand length, hand breadth and middle finger length of 1540 right-handed industrial workers of Haryana state was used to assess the relationship between the upper limb dimensions and stature. Initially, the data were analyzed using basic univariate analysis and independent t-tests; then simple and multiple linear regression models were used to estimate stature using SPSS (version 17). There was a positive correlation between upper limb measurements (hand length, hand breadth, arm length and middle finger length) and stature (p < 0.01), which was highest for hand length. The accuracy of stature prediction ranged from ± 54.897 mm to ± 58.307 mm. The use of multiple regression equations gave better results than simple regression equations. This study provides new forensic standards for stature estimation from the upper limb measurements of male industrial workers of Haryana (India). The results of this research indicate that stature can be determined using hand dimensions with accuracy, when only upper limb is available due to any reasons likewise explosions, train/plane crashes, mutilated bodies, etc. The regression formula derived in this study will be useful for anatomists, archaeologists, anthropologists, design engineers and forensic scientists for fairly prediction of stature using regression equations.

Keywords: Anthropometric dimensions, Forensic identification, Industrial workers, Stature prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2961
2800 BEM Formulations Based on Kirchhoffs Hypoyhesis to Perform Linear Bending Analysis of Plates Reinforced by Beams

Authors: Gabriela R. Fernandes, Renato F. Denadai, Guido J. Denipotti

Abstract:

In this work, are discussed two formulations of the boundary element method - BEM to perform linear bending analysis of plates reinforced by beams. Both formulations are based on the Kirchhoff's hypothesis and they are obtained from the reciprocity theorem applied to zoned plates, where each sub-region defines a beam or a slab. In the first model the problem values are defined along the interfaces and the external boundary. Then, in order to reduce the number of degrees of freedom kinematics hypothesis are assumed along the beam cross section, leading to a second formulation where the collocation points are defined along the beam skeleton, instead of being placed on interfaces. On these formulations no approximation of the generalized forces along the interface is required. Moreover, compatibility and equilibrium conditions along the interface are automatically imposed by the integral equation. Thus, these formulations require less approximation and the total number of the degree s of freedom is reduced. In the numerical examples are discussed the differences between these two BEM formulations, comparing as well the results to a well-known finite element code.

Keywords: Boundary elements, Building floor structures, Platebending.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
2799 New Laguerre-s Type Method for Solving of a Polynomial Equations Systems

Authors: Oleksandr Poliakov, Yevgen Pashkov, Marina Kolesova, Olena Chepenyuk, Mykhaylo Kalinin, Vadym Kramar

Abstract:

In this paper we present a substantiation of a new Laguerre-s type iterative method for solving of a nonlinear polynomial equations systems with real coefficients. The problems of its implementation, including relating to the structural choice of initial approximations, were considered. Test examples demonstrate the effectiveness of the method at the solving of many practical problems solving.

Keywords: Iterative method, Laguerre's method, Newton's method, polynomial equation, system of equations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
2798 Verification and Application of Finite Element Model Developed for Flood Routing in Rivers

Authors: A. L. Qureshi, A. A. Mahessar, A. Baloch

Abstract:

Flood wave propagation in river channel flow can be enunciated by nonlinear equations of motion for unsteady flow. It is difficult to find analytical solution of these non-linear equations. Hence, in this paper verification of the finite element model has been carried out against available numerical predictions and field data. The results of the model indicate a good matching with both Preissmann scheme and HEC-RAS model for a river reach of 29km at both sites (15km from upstream and at downstream end) for discharge hydrographs. It also has an agreeable comparison with the Preissemann scheme for the flow depth (stage) hydrographs. The proposed model has also been applying to forecast daily discharges at 400km downstream in the Indus River from Sukkur barrage of Sindh, Pakistan, which demonstrates accurate model predictions with observed the daily discharges. Hence, this model may be utilized for flood warnings in advance.

Keywords: Finite Element Method, Flood Forecasting, HEC-RAS, Indus river.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2685
2797 Numerical Modeling of Temperature Fields in Aviation Gas Turbine Elements

Authors: A. M. Pashaev, R. A. Sadihov, A. S. Samedov, C. Ardil

Abstract:

A mathematical model and a numerical method for computing the temperature field of the profile part of convectionally cooled blades are developed. The theoretical substantiation of the method is proved by corresponding theorems. To this end, convergent quadrature processes were developed and error estimates were obtained in terms of the Zygmund continuity moduli. The boundary conditions for heat exchange are determined from the solution of the corresponding integral equations and empirical relations. The reliability of the developed methods is confirmed by calculation and experimental studies of the thermohydraulic characteristics of the nozzle apparatus of the first stage of the gas turbine.

Keywords: Aviation gas turbine, temperature field, cooled blades, numerical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 750
2796 Using Finite Element Method for Determination of Poles Number in Optimal Design of Linear Motor

Authors: Abdolamir Nekoubin

Abstract:

One of Effective parameters on the performance of linear induction motors is number of poles which must be selected and optimized to increase power efficiency and motor performance significantly. In this paper a double-sided linear induction motor with different poles number by using MAXWELL3D software is designed and with finite element method is analyzed electromagnetically. Then for dynamic simulation, linear motor by using MATLAB software is simulated. The results show that by adding poles number, system time response is increased and motor after more time reaches to steady state. Also propulsion force of motor is increased.

Keywords: Linear motor, poles number, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
2795 Solving a System of Nonlinear Functional Equations Using Revised New Iterative Method

Authors: Sachin Bhalekar, Varsha Daftardar-Gejji

Abstract:

In the present paper, we present a modification of the New Iterative Method (NIM) proposed by Daftardar-Gejji and Jafari [J. Math. Anal. Appl. 2006;316:753–763] and use it for solving systems of nonlinear functional equations. This modification yields a series with faster convergence. Illustrative examples are presented to demonstrate the method.

Keywords: Caputo fractional derivative, System of nonlinear functional equations, Revised new iterative method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2337
2794 Two Spherical Three Degrees of Freedom Parallel Robots 3-RCC and 3-RRS Static Analysis

Authors: Alireza Abbasi Moshaii, Mehdi Tale Masouleh, Esmail Zarezadeh, Kamran Farajzadeh

Abstract:

The main purpose of this study is static analysis of two three-degree of freedom parallel mechanisms: 3-RCC and 3- RRS. Geometry of these mechanisms is expressed and static equilibrium equations are derived for the whole chains. For these mechanisms due to the equal number of equations and unknowns, the solution is as same as 3-RCC mechanism. A mathematical software is used to solve the equations. In order to prove the results obtained from solving the equations of mechanisms, the CAD model of these robots has been simulated and their static is analysed in ADAMS software. Due to symmetrical geometry of the mechanisms, the force and external torque acting on the end-effecter have been considered asymmetric to prove the generality of the solution method. Finally, the results of both softwares, for both mechanisms are extracted and compared as graphs. The good achieved comparison between the results indicates the accuracy of the analysis.

Keywords: Robotic, Static analysis, 3-RCC, 3-RRS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966