Search results for: Auxiliary equation method.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8728

Search results for: Auxiliary equation method.

8458 Explicit Solution of an Investment Plan for a DC Pension Scheme with Voluntary Contributions and Return Clause under Logarithm Utility

Authors: Promise A. Azor, Avievie Igodo, Esabai M. Ase

Abstract:

The paper merged the return of premium clause and voluntary contributions to investigate retirees’ investment plan in a defined contributory (DC) pension scheme with a portfolio comprising of a risk-free asset and a risky asset whose price process is described by geometric Brownian motion (GBM). The paper considers additional voluntary contributions paid by members, charge on balance by pension fund administrators and the mortality risk of members of the scheme during the accumulation period by introducing return of premium clause. To achieve this, the Weilbull mortality force function is used to establish the mortality rate of members during accumulation phase. Furthermore, an optimization problem from the Hamilton Jacobi Bellman (HJB) equation is obtained using dynamic programming approach. Also, the Legendre transformation method is used to transform the HJB equation which is a nonlinear partial differential equation to a linear partial differential equation and solves the resultant equation for the value function and the optimal distribution plan under logarithm utility function. Finally, numerical simulations of the impact of some important parameters on the optimal distribution plan were obtained and it was observed that the optimal distribution plan is inversely proportional to the initial fund size, predetermined interest rate, additional voluntary contributions, charge on balance and instantaneous volatility.

Keywords: Legendre transform, logarithm utility, optimal distribution plan, return clause of premium, charge on balance, Weibull mortality function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 211
8457 Study of Natural Convection in a Triangular Cavity Filled with Water: Application of the Lattice Boltzmann Method

Authors: Imen Mejri, Ahmed Mahmoudi, Mohamed A. Abbassi, Ahmed Omri

Abstract:

The Lattice Boltzmann Method (LBM) with double populations is applied to solve the steady-state laminar natural convective heat transfer in a triangular cavity filled with water. The bottom wall is heated, the vertical wall is cooled, and the inclined wall is kept adiabatic. The buoyancy effect was modeled by applying the Boussinesq approximation to the momentum equation. The fluid velocity is determined by D2Q9 LBM and the energy equation is discritized by D2Q4 LBM to compute the temperature field. Comparisons with previously published work are performed and found to be in excellent agreement. Numerical results are obtained for a wide range of parameters: the Rayleigh number from  to  and the inclination angle from 0° to 360°. Flow and thermal fields were exhibited by means of streamlines and isotherms. It is observed that inclination angle can be used as a relevant parameter to control heat transfer in right-angled triangular enclosures.

 

Keywords: Heat transfer, inclination angle, Lattice Boltzmann Method, Nusselt number, Natural convection, Rayleigh number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757
8456 Unique Positive Solution of Nonlinear Fractional Differential Equation Boundary Value Problem

Authors: Fengxia Zheng

Abstract:

By using two new fixed point theorems for mixed monotone operators, the positive solution of nonlinear fractional differential equation boundary value problem is studied. Its existence and uniqueness is proved, and an iterative scheme is constructed to approximate it.

Keywords: Fractional differential equation, boundary value problem, positive solution, existence and uniqueness, fixed point theorem, mixed monotone operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
8455 A New Approximate Procedure Based On He’s Variational Iteration Method for Solving Nonlinear Hyperbolic Wave Equations

Authors: Jinfeng Wang, Yang Liu, Hong Li

Abstract:

In this article, we propose a new approximate procedure based on He’s variational iteration method for solving nonlinear hyperbolic equations. We introduce two transformations q = ut and σ = ux and formulate a first-order system of equations. We can obtain the approximation solution for the scalar unknown u, time derivative q = ut and space derivative σ = ux, simultaneously. Finally, some examples are provided to illustrate the effectiveness of our method.

Keywords: Hyperbolic wave equation, Nonlinear, He’s variational iteration method, Transformations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139
8454 Group Similarity Transformation of a Time Dependent Chemical Convective Process

Authors: M. M. Kassem, A. S. Rashed

Abstract:

The time dependent progress of a chemical reaction over a flat horizontal plate is here considered. The problem is solved through the group similarity transformation method which reduces the number of independent by one and leads to a set of nonlinear ordinary differential equation. The problem shows a singularity at the chemical reaction order n=1 and is analytically solved through the perturbation method. The behavior of the process is then numerically investigated for n≠1 and different Schmidt numbers. Graphical results for the velocity and concentration of chemicals based on the analytical and numerical solutions are presented and discussed.

Keywords: Time dependent, chemical convection, grouptransformation method, perturbation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
8453 Assessment Tool for Social Responsibility Performance According to the ISO 26000

Authors: W. Fethallah, L. Chraibi, N. Sefiani

Abstract:

The present paper is concerned with a statistical approach involving latent and manifest variables applied in order to assess the organization's social responsibility performance. The main idea is to develop an assessment tool and a measurement of the Social Responsibility Performance, enabling the company to characterize her performance regarding to the ISO 26000 standard's seven core subjects. For this, we conceptualize a structural equation modeling (SEM) which describes various causal connections between the Social Responsibility’s components. The SEM’s resolution is based on the Partial Least squares (PLS) method and the implementation is running in the XLSTAT software.

Keywords: Corporate social responsibility, latent and manifest variable, partial least squares, structural equation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1226
8452 Hyers-Ulam Stability of Functional Equationf(3x) = 4f(3x − 3) + f(3x − 6)

Authors: Soon-Mo Jung

Abstract:

The functional equation f(3x) = 4f(3x-3)+f(3x- 6) will be solved and its Hyers-Ulam stability will be also investigated in the class of functions f : R → X, where X is a real Banach space.

Keywords: Functional equation, Lucas sequence of the first kind, Hyers-Ulam stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
8451 On the Evaluation of Critical Lateral-Torsional Buckling Loads of Monosymmetric Beam-Columns

Authors: T. Yilmaz, N. Kirac

Abstract:

Beam-column elements are defined as structural members subjected to a combination of axial and bending forces. Lateral torsional buckling is one of the major failure modes in which beam-columns that are bent about its strong axis may buckle out of the plane by deflecting laterally and twisting. This study presents a compact closed-form equation that it can be used for calculating critical lateral torsional-buckling load of beam-columns with monosymmetric sections in the presence of a known axial load. Lateral-torsional buckling behavior of beam-columns subjected to constant axial force and various transverse load cases are investigated by using Ritz method in order to establish proposed equation. Lateral-torsional buckling loads calculated by presented formula are compared to finite element model results. ABAQUS software is utilized to generate finite element models of beam-columns. It is found out that lateral-torsional buckling load of beam-columns with monosymmetric sections can be determined by proposed equation and can be safely used in design.

Keywords: Lateral-torsional buckling, stability, beam-column, monosymmetric section.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2803
8450 Ginzburg-Landau Model : an Amplitude Evolution Equation for Shallow Wake Flows

Authors: Imad Chaddad, Andrei A. Kolyshkin

Abstract:

Linear and weakly nonlinear analysis of shallow wake flows is presented in the present paper. The evolution of the most unstable linear mode is described by the complex Ginzburg-Landau equation (CGLE). The coefficients of the CGLE are calculated numerically from the solution of the corresponding linear stability problem for a one-parametric family of shallow wake flows. It is shown that the coefficients of the CGLE are not so sensitive to the variation of the base flow profile.

Keywords: Ginzburg-Landau equation, shallow wake flow, weakly nonlinear theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
8449 Influence of an External Magnetic Field on the Acoustomagnetoelectric Field in a Rectangular Quantum Wire with an Infinite Potential by Using a Quantum Kinetic Equation

Authors: N. Q. Bau, N. V. Nghia

Abstract:

The acoustomagnetoelectric (AME) field in a rectangular quantum wire with an infinite potential (RQWIP) is calculated in the presence of an external magnetic field (EMF) by using the quantum kinetic equation for the distribution function of electrons system interacting with external phonons and electrons scattering with internal acoustic phonon in a RQWIP. We obtained ananalytic expression for the AME field in the RQWIP in the presence of the EMF. The dependence of AME field on the frequency of external acoustic wave, the temperature T of system, the cyclotron frequency of the EMF and the intensity of the EMF is obtained. Theoretical results for the AME field are numerically evaluated, plotted and discussed for a specific RQWIP GaAs/GaAsAl. This result has shown that the dependence of the AME field on intensity of the EMF is nonlinearly and it is many distinct maxima in the quantized magnetic region. We also compared received fields with those for normal bulk semiconductors, quantum well and quantum wire to show the difference. The influence of an EMF on AME field in a RQWIP is newly developed.

Keywords: Rectangular quantum wire, acoustomagnetoelectric field, electron-phonon interaction, kinetic equation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
8448 On Modified Numerical Schemes in Vortex Element Method for 2D Flow Simulation Around Airfoils

Authors: Ilia Marchevsky, Victoriya Moreva

Abstract:

The problem of incompressible steady flow simulation around an airfoil is discussed. For some simplest airfoils (circular, elliptical, Zhukovsky airfoils) the exact solution is known from complex analysis. It allows to compute the intensity of vortex layer which simulates the airfoil. Some modifications of the vortex element method are proposed and test computations are carried out. It-s shown that the these approaches are much more effective in comparison with the classical numerical scheme.

Keywords: Vortex element method, vortex layer, integral equation, ill-conditioned matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
8447 A Sliding Mesh Technique and Compressibility Correction Effects of Two-equation Turbulence Models for a Pintle-Perturbed Flow Analysis

Authors: J. Y. Heo, H. G. Sung

Abstract:

Numerical simulations have been performed for assessment of compressibility correction of two-equation turbulence models suitable for large scale separation flows perturbed by pintle strokes. In order to take into account pintle movement, a sliding mesh method was applied. The chamber pressure, mass flow rate, and thrust have been analyzed, and the response lag and sensitivity at the chamber and nozzle were estimated for a movable pintle. The nozzle performance for pintle reciprocating as its insertion and extraction processes, were analyzed to better understand the dynamic performance of the pintle nozzle.

Keywords: Pintle, sliding mesh, turbulent model, compressibility correction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265
8446 The Martingale Options Price Valuation for European Puts Using Stochastic Differential Equation Models

Authors: H. C. Chinwenyi, H. D. Ibrahim, F. A. Ahmed

Abstract:

In modern financial mathematics, valuing derivatives such as options is often a tedious task. This is simply because their fair and correct prices in the future are often probabilistic. This paper examines three different Stochastic Differential Equation (SDE) models in finance; the Constant Elasticity of Variance (CEV) model, the Balck-Karasinski model, and the Heston model. The various Martingales option price valuation formulas for these three models were obtained using the replicating portfolio method. Also, the numerical solution of the derived Martingales options price valuation equations for the SDEs models was carried out using the Monte Carlo method which was implemented using MATLAB. Furthermore, results from the numerical examples using published data from the Nigeria Stock Exchange (NSE), all share index data show the effect of increase in the underlying asset value (stock price) on the value of the European Put Option for these models. From the results obtained, we see that an increase in the stock price yields a decrease in the value of the European put option price. Hence, this guides the option holder in making a quality decision by not exercising his right on the option.

Keywords: Equivalent Martingale Measure, European Put Option, Girsanov Theorem, Martingales, Monte Carlo method, option price valuation, option price valuation formula.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 735
8445 Using Structural Equation Modeling in Causal Relationship Design for Balanced-Scorecards' Strategic Map

Authors: A. Saghaei, R. Ghasemi

Abstract:

Through 1980s, management accounting researchers described the increasing irrelevance of traditional control and performance measurement systems. The Balanced Scorecard (BSC) is a critical business tool for a lot of organizations. It is a performance measurement system which translates mission and strategy into objectives. Strategy map approach is a development variant of BSC in which some necessary causal relations must be established. To recognize these relations, experts usually use experience. It is also possible to utilize regression for the same purpose. Structural Equation Modeling (SEM), which is one of the most powerful methods of multivariate data analysis, obtains more appropriate results than traditional methods such as regression. In the present paper, we propose SEM for the first time to identify the relations between objectives in the strategy map, and a test to measure the importance of relations. In SEM, factor analysis and test of hypotheses are done in the same analysis. SEM is known to be better than other techniques at supporting analysis and reporting. Our approach provides a framework which permits the experts to design the strategy map by applying a comprehensive and scientific method together with their experience. Therefore this scheme is a more reliable method in comparison with the previously established methods.

Keywords: BSC, SEM, Strategy map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2705
8444 An Approximation Method for Exact Boundary Controllability of Euler-Bernoulli System

Authors: Abdelaziz Khernane, Naceur Khelil, Leila Djerou

Abstract:

The aim of this work is to study the numerical implementation of the Hilbert Uniqueness Method for the exact boundary controllability of Euler-Bernoulli beam equation. This study may be difficult. This will depend on the problem under consideration (geometry, control and dimension) and the numerical method used. Knowledge of the asymptotic behaviour of the control governing the system at time T may be useful for its calculation. This idea will be developed in this study. We have characterized as a first step, the solution by a minimization principle and proposed secondly a method for its resolution to approximate the control steering the considered system to rest at time T.

Keywords: Boundary control, exact controllability, finite difference methods, functional optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
8443 Development of Regression Equation for Surface Finish and Analysis of Surface Integrity in EDM

Authors: Md. Ashikur Rahman Khan, M. M. Rahman

Abstract:

Electrical discharge machining (EDM) is a relatively modern machining process having distinct advantages over other machining processes and can machine Ti-alloys effectively. The present study emphasizes the features of the development of regression equation based on response surface methodology (RSM) for correlating the interactive and higher-order influences of machining parameters on surface finish of Titanium alloy Ti-6Al-4V. The process parameters selected in this study are discharge current, pulse on time, pulse off time and servo voltage. Machining has been accomplished using negative polarity of Graphite electrode. Analysis of variance is employed to ascertain the adequacy of the developed regression model. Experiments based on central composite of response surface method are carried out. Scanning electron microscopy (SEM) analysis was performed to investigate the surface topography of the EDMed job. The results evidence that the proposed regression equation can predict the surface roughness effectively. The lower ampere and short pulse on time yield better surface finish.

Keywords: Graphite electrode, regression model, response surface methodology, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546
8442 Modeling of Nitrogen Solubility in Stainless Steel

Authors: Saeed Ghali, Hoda El-Faramawy, Mamdouh Eissa, Michael Mishreky

Abstract:

Scale-resistant austenitic stainless steel, X45CrNiW 18-9, has been developed, and modified steels produced through partial and total nickel replacement by nitrogen. These modified steels were produced in a 10 kg induction furnace under different nitrogen pressures and were cast into ingots. The produced modified stainless steels were forged, followed by air cooling. The phases of modified stainless steels have been investigated using the Schaeffler diagram, dilatometer, and microstructure observations. Both partial and total replacements of nickel using 0.33-0.50% nitrogen are effective in producing fully austenitic stainless steels. The nitrogen contents were determined and compared with those calculated using the Institute of Metal Science (IMS) equation. The results showed great deviations between the actual nitrogen contents and predicted values through IMS equation. So, an equation has been derived based on chemical composition, pressure, and temperature at 1600 oC: [N%] = 0.0078 + 0.0406*X, where X is a function of chemical composition and nitrogen pressure. The derived equation has been used to calculate the nitrogen content of different steels using published data. The results reveal the difficulty of deriving a general equation for the prediction of nitrogen content covering different steel compositions. So, it is necessary to use a narrow composition range.

Keywords: Solubility, nitrogen, stainless steel, Schaeffler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 65
8441 Thermodynamic Analysis of a Vapor Absorption System Using Modified Gouy-Stodola Equation

Authors: Gulshan Sachdeva, Ram Bilash

Abstract:

In this paper, the exergy analysis of vapor absorption refrigeration system using LiBr-H2O as working fluid is carried out with the modified Gouy-Stodola approach rather than the classical Gouy-Stodola equation and effect of varying input parameters is also studied on the performance of the system. As the modified approach uses the concept of effective temperature, the mathematical expressions for effective temperature have been formulated and calculated for each component of the system. Various constraints and equations are used to develop program in EES to solve these equations. The main aim of this analysis is to determine the performance of the system and the components having major irreversible loss. Results show that exergy destruction rate is considerable in absorber and generator followed by evaporator and condenser. There is an increase in exergy destruction in generator, absorber and condenser and decrease in the evaporator by the modified approach as compared to the conventional approach. The value of exergy determined by the modified Gouy-Stodola equation deviates maximum i.e. 26% in the generator as compared to the exergy calculated by the classical Gouy-Stodola method.

Keywords: Exergy analysis, Gouy-Stodola, refrigeration, vapor absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3677
8440 Existence of Solutions for a Nonlinear Fractional Differential Equation with Integral Boundary Condition

Authors: Meng Hu, Lili Wang

Abstract:

This paper deals with a nonlinear fractional differential equation with integral boundary condition of the following form:  Dαt x(t) = f(t, x(t),Dβ t x(t)), t ∈ (0, 1), x(0) = 0, x(1) = 1 0 g(s)x(s)ds, where 1 < α ≤ 2, 0 < β < 1. Our results are based on the Schauder fixed point theorem and the Banach contraction principle.

Keywords: Fractional differential equation, Integral boundary condition, Schauder fixed point theorem, Banach contraction principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
8439 Implicit Two Step Continuous Hybrid Block Methods with Four Off-Steps Points for Solving Stiff Ordinary Differential Equation

Authors: O. A. Akinfenwa, N.M. Yao, S. N. Jator

Abstract:

In this paper, a self starting two step continuous block hybrid formulae (CBHF) with four Off-step points is developed using collocation and interpolation procedures. The CBHF is then used to produce multiple numerical integrators which are of uniform order and are assembled into a single block matrix equation. These equations are simultaneously applied to provide the approximate solution for the stiff ordinary differential equations. The order of accuracy and stability of the block method is discussed and its accuracy is established numerically.

Keywords: Collocation and Interpolation, Continuous HybridBlock Formulae, Off-Step Points, Stability, Stiff ODEs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
8438 On the Exact Solution of Non-Uniform Torsion for Beams with Asymmetric Cross-Section

Authors: A.Campanile, M. Mandarino, V. Piscopo

Abstract:

This paper deals with the problem of non-uniform torsion in thin-walled elastic beams with asymmetric cross-section, removing the basic concept of a fixed center of twist, necessary in the Vlasov-s and Benscoter-s theories to obtain a warping stress field equivalent to zero. In this new torsion/flexure theory, despite of the classical ones, the warping function will punctually satisfy the first indefinite equilibrium equation along the beam axis and it wont- be necessary to introduce the classical congruence condition, to take into account the effect of the beam restraints. The solution, based on the Fourier development of the displacement field, is obtained assuming that the applied external torque is constant along the beam axis and on both beam ends the unit twist angle and the warping axial displacement functions are totally restrained. Finally, in order to verify the feasibility of the proposed method and to compare it with the classical theories, two applications are carried out. The first one, relative to an open profile, is necessary to test the numerical method adopted to find the solution; the second one, instead, is relative to a simplified containership section, considered as full restrained in correspondence of two adjacent transverse bulkheads.

Keywords: Non-uniform torsion, Asymmetric cross-section, Fourier series, Helmholtz equation, FE method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
8437 Perfect Plastic Deformation of a Circular Thin Bronze Plate due to the Growth and Collapse of a Vapour Bubble

Authors: M.T. Shervani-Tabar, M. Rezaee, E. Madadi Kandjani

Abstract:

Dynamics of a vapour bubble generated due to a high local energy input near a circular thin bronze plate in the absence of the buoyancy forces is numerically investigated in this paper. The bubble is generated near a thin bronze plate and during the growth and collapse of the bubble, it deforms the nearby plate. The Boundary Integral Equation Method is employed for numerical simulation of the problem. The fluid is assumed to be incompressible, irrotational and inviscid and the surface tension on the bubble boundary is neglected. Therefore the fluid flow around the vapour bubble can be assumed as a potential flow. Furthermore, the thin bronze plate is assumed to have perfectly plastic behaviour. Results show that the displacement of the circular thin bronze plate has considerable effect on the dynamics of its nearby vapour bubble. It is found that by decreasing the thickness of the thin bronze plate, the growth and collapse rate of the bubble becomes higher and consequently the lifetime of the bubble becomes shorter.

Keywords: Vapour Bubble, Thin Bronze Plate, Boundary Integral Equation Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
8436 Control of Pendulum on a Cart with State Dependent Riccati Equations

Authors: N. M. Singh, Jayant Dubey, Ghanshyam Laddha

Abstract:

State Dependent Riccati Equation (SDRE) approach is a modification of the well studied LQR method. It has the capability of being applied to control nonlinear systems. In this paper the technique has been applied to control the single inverted pendulum (SIP) which represents a rich class of nonlinear underactuated systems. SIP modeling is based on Euler-Lagrange equations. A procedure is developed for judicious selection of weighting parameters and constraint handling. The controller designed by SDRE technique here gives better results than existing controllers designed by energy based techniques.

Keywords: State Dependent Riccati Equation (SDRE), Single Inverted Pendulum (SIP), Linear Quadratic Regulator (LQR)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3086
8435 Mathematical Modeling of the Influence of Hydrothermal Processes in the Water Reservoir

Authors: Alibek Issakhov

Abstract:

In this paper presents the mathematical model of hydrothermal processes in thermal power plant with different wind direction scenarios in the water reservoir, which is solved by the Navier - Stokes and temperature equations for an incompressible fluid in a stratified medium. Numerical algorithm based on the method of splitting by physical parameters. Three dimensional Poisson equation is solved with Fourier method by combination of tridiagonal matrix method (Thomas algorithm).

Keywords: thermal power plant, hydrothermal process, large eddy simulation, water reservoir

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
8434 Hybrid Function Method for Solving Nonlinear Fredholm Integral Equations of the Second Kind

Authors: jianhua Hou, Changqing Yang, and Beibo Qin

Abstract:

A numerical method for solving nonlinear Fredholm integral equations of second kind is proposed. The Fredholm type equations which have many applications in mathematical physics are then considered. The method is based on hybrid function  approximations. The properties of hybrid of block-pulse functions and Chebyshev polynomials are presented and are utilized to reduce the computation of nonlinear Fredholm integral equations to a system of nonlinear. Some numerical examples are selected to illustrate the effectiveness and simplicity of the method.

Keywords: Hybrid functions, Fredholm integral equation, Blockpulse, Chebyshev polynomials, product operational matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
8433 A Three Elements Vector Valued Structure’s Ultimate Strength-Strong Motion-Intensity Measure

Authors: A. Nicknam, N. Eftekhari, A. Mazarei, M. Ganjvar

Abstract:

This article presents an alternative collapse capacity intensity measure in the three elements form which is influenced by the spectral ordinates at periods longer than that of the first mode period at near and far source sites. A parameter, denoted by β, is defined by which the spectral ordinate effects, up to the effective period (2T1), on the intensity measure are taken into account. The methodology permits to meet the hazard-levelled target extreme event in the probabilistic and deterministic forms. A MATLAB code is developed involving OpenSees to calculate the collapse capacities of the 8 archetype RC structures having 2 to 20 stories for regression process. The incremental dynamic analysis (IDA) method is used to calculate the structure’s collapse values accounting for the element stiffness and strength deterioration. The general near field set presented by FEMA is used in a series of performing nonlinear analyses. 8 linear relationships are developed for the 8structutres leading to the correlation coefficient up to 0.93. A collapse capacity near field prediction equation is developed taking into account the results of regression processes obtained from the 8 structures. The proposed prediction equation is validated against a set of actual near field records leading to a good agreement. Implementation of the proposed equation to the four archetype RC structures demonstrated different collapse capacities at near field site compared to those of FEMA. The reasons of differences are believed to be due to accounting for the spectral shape effects.

Keywords: Collapse capacity, fragility analysis, spectral shape effects, IDA method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
8432 The Existence and Uniqueness of Positive Solution for Nonlinear Fractional Differential Equation Boundary Value Problem

Authors: Chuanyun Gu, Shouming Zhong

Abstract:

In this paper, the existence and uniqueness of positive solutions for nonlinear fractional differential equation boundary value problem is concerned by a fixed point theorem of a sum operator. Our results can not only guarantee the existence and uniqueness of positive solution, but also be applied to construct an iterative scheme for approximating it. Finally, the example is given to illustrate the main result.

Keywords: Fractional differential equation, Boundary value problem, Positive solution, Existence and uniqueness, Fixed point theorem of a sum operator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
8431 Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Partitioned Solution Approach and an Exponential Model

Authors: Nicolò Vaiana, Filip C. Filippou, Giorgio Serino

Abstract:

The solution of the nonlinear dynamic equilibrium equations of base-isolated structures adopting a conventional monolithic solution approach, i.e. an implicit single-step time integration method employed with an iteration procedure, and the use of existing nonlinear analytical models, such as differential equation models, to simulate the dynamic behavior of seismic isolators can require a significant computational effort. In order to reduce numerical computations, a partitioned solution method and a one dimensional nonlinear analytical model are presented in this paper. A partitioned solution approach can be easily applied to base-isolated structures in which the base isolation system is much more flexible than the superstructure. Thus, in this work, the explicit conditionally stable central difference method is used to evaluate the base isolation system nonlinear response and the implicit unconditionally stable Newmark’s constant average acceleration method is adopted to predict the superstructure linear response with the benefit in avoiding iterations in each time step of a nonlinear dynamic analysis. The proposed mathematical model is able to simulate the dynamic behavior of seismic isolators without requiring the solution of a nonlinear differential equation, as in the case of widely used differential equation model. The proposed mixed explicit-implicit time integration method and nonlinear exponential model are adopted to analyze a three dimensional seismically isolated structure with a lead rubber bearing system subjected to earthquake excitation. The numerical results show the good accuracy and the significant computational efficiency of the proposed solution approach and analytical model compared to the conventional solution method and mathematical model adopted in this work. Furthermore, the low stiffness value of the base isolation system with lead rubber bearings allows to have a critical time step considerably larger than the imposed ground acceleration time step, thus avoiding stability problems in the proposed mixed method.

Keywords: Base-isolated structures, earthquake engineering, mixed time integration, nonlinear exponential model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
8430 Numerical Evaluation of Turbulent Friction on Walls in the Penstock of the Trois-Gorges Dam by the Swamee-Jain Method

Authors: T. Tchawe Moukam, N. Ngongang François, D. Thomas, K. Bienvenu, T. -Toko Dénis

Abstract:

Since the expression of the coefficient of friction by Colebrook-White which turns out to be an implicit equation, equations have been developed to facilitate their applicability. In this work, this equation was applied to the penstock of the Three Gorges dam in order to observe the evolution of the turbulent boundary layer and the friction along the walls. Thus, the study is being carried out using a 3D digital approach in FLUENT in order to take into account the wall effects. It appears that according to the position of the portions, we have a variation in the evolutions of the turbulent friction and of the values of the boundary layer. We also observe that the inclination of the pipe has a significant influence on this turbulent friction; similarly, one could not make a fair evaluation of the latter without specifying the choice and location of the wall.

Keywords: Hydroelectric dam, penstock, turbulent friction, boundary layer, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 471
8429 Stability Analysis in a Fractional Order Delayed Predator-Prey Model

Authors: Changjin Xu, Peiluan Li

Abstract:

In this paper, we study the stability of a fractional order delayed predator-prey model. By using the Laplace transform, we introduce a characteristic equation for the above system. It is shown that if all roots of the characteristic equation have negative parts, then the equilibrium of the above fractional order predator-prey system is Lyapunov globally asymptotical stable. An example is given to show the effectiveness of the approach presented in this paper.

Keywords: Fractional predator-prey model, laplace transform, characteristic equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2498