An Approximation Method for Exact Boundary Controllability of Euler-Bernoulli System
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
An Approximation Method for Exact Boundary Controllability of Euler-Bernoulli System

Authors: Abdelaziz Khernane, Naceur Khelil, Leila Djerou

Abstract:

The aim of this work is to study the numerical implementation of the Hilbert Uniqueness Method for the exact boundary controllability of Euler-Bernoulli beam equation. This study may be difficult. This will depend on the problem under consideration (geometry, control and dimension) and the numerical method used. Knowledge of the asymptotic behaviour of the control governing the system at time T may be useful for its calculation. This idea will be developed in this study. We have characterized as a first step, the solution by a minimization principle and proposed secondly a method for its resolution to approximate the control steering the considered system to rest at time T.

Keywords: Boundary control, exact controllability, finite difference methods, functional optimization.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1110672

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497

References:


[1] A. Bensoussan. On the general theory of exact controllability for skew symmetric operators. Acta Applicandae Mathematicae 20,197-229,1990.
[2] N. Cindea, S. Micu, and M. Tucsnak. An approximation for exact controls of vibrating systems. SIAM.J.Control Optim. 49(3):1283-1305, 2011.
[3] R. Courant and D. Hilbert. Methods of mathematical physical, VOL I, Interscience, New-york, 1953.
[4] P. Duchateau and D. W. Zachmann. Schaum’s of theory and problems for partial differential equations, Colorado State University, 1986.
[5] S. Ervedoza and E. Zuazua. On the numerical approximation of exact controls for waves, Monograph-October 12, 2012.
[6] P. Faurre. Analyse Num´erique-Notes d’Optimisation. Ecole Polytechnique, Paris, 1988.
[7] R. Glowinski, C. H. Li, and J. L. Lions. A numerical approach to the exact boundary controllability of the wave equation(I)Dirichlet controls: Description of the numerical methods.Research report UH/MD-22 University of Houston. Department of applied mathematics 7, 1-76, 1990.
[8] M. Gunzburger, L. S. Hou,and L. Ju. A numerical method of controllability problems for the wave equation. Hyperbolic Problems: Theory, Numerics, Applications 2003, pp 557-567. Springer-Verlag Berlin Heidelberg 2003.
[9] M. Gunzburger, L.S. Hou, and L. Ju. A numerical method for exact boundary controllability problems for the wave equation. An International Journal Computers and Mathematics with Applications 51(2006)721-750.
[10] A. El. Jai and J. Bouyaghroumni. Numerical approach for exact pointwise controllability of hyperbolic systems. IFAC. Control of distributed parameter systems, 465-471, Perpignan, France, 1989.
[11] J.L.Lions. Contrˆolabilit´e exacte des syst`emes distribu´es, C.R.Acad.sci.Paris, 302, 471-475, 1986.
[12] J.L.Lions. Exact controllability, stabilization and perturbations for distributed systems. Siam Review 30,1-68, 1988.
[13] J.L. Lions. Contrˆolabilit´e exacte des syst`emes distribu´es, volume 1, Masson, Paris, 1988.
[14] J.P. Nougier. M´ethodes de calcul num´erique, deuxi`eme edition, Masson, 1985
[15] D.L. Russell. Controllability and stabilizability theory for linear partial differential equations. Recent progress and open question. Siam Rev.20.pp.639-739, 1978.
[16] M. Sibony and J.C. Mardon. Analyse num´erique II. Approximations et equations diff´erentielles, Paris, 1982.
[17] G.D. Smith. Numerical solution of partial differntial equations: Finite difference methods. Third edition. Oxford applied mathematics and computing science series, 1985.
[18] S.L. Sobolev. Applications of functional analyzis in mathematics physics, 1963.
[19] E.Zuazua. Contrˆolabilit´e exacte d’un mod`ele de plaques vibrantes en un temps arbitrairement petit, C.R.Acad.Sci.Paris, Serie I, n7, 173-176, 1987.