Search results for: Ultrasound Images.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1253

Search results for: Ultrasound Images.

1253 Segmentation of Breast Lesions in Ultrasound Images Using Spatial Fuzzy Clustering and Structure Tensors

Authors: Yan Xu, Toshihiro Nishimura

Abstract:

Segmentation in ultrasound images is challenging due to the interference from speckle noise and fuzziness of boundaries. In this paper, a segmentation scheme using fuzzy c-means (FCM) clustering incorporating both intensity and texture information of images is proposed to extract breast lesions in ultrasound images. Firstly, the nonlinear structure tensor, which can facilitate to refine the edges detected by intensity, is used to extract speckle texture. And then, a spatial FCM clustering is applied on the image feature space for segmentation. In the experiments with simulated and clinical ultrasound images, the spatial FCM clustering with both intensity and texture information gets more accurate results than the conventional FCM or spatial FCM without texture information.

Keywords: fuzzy c-means, spatial information, structure tensor, ultrasound image segmentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
1252 Analysis of Sonographic Images of Breast

Authors: M. Bastanfard, S. Jafari, B.Jalaeian

Abstract:

Ultrasound images are very useful diagnostic tool to distinguish benignant from malignant masses of the breast. However, there is a considerable overlap between benignancy and malignancy in ultrasonic images which makes it difficult to interpret. In this paper, a new noise removal algorithm was used to improve the images and classification process. The masses are classified by wavelet transform's coefficients, morphological and textural features as a novel feature set for this goal. The Bayesian estimation theory is used to classify the tissues in three classes according to their features.

Keywords: Bayesian estimation theory, breast, ultrasound, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
1251 Segmenting Ultrasound B-Mode Images Using RiIG Distributions and Stochastic Optimization

Authors: N. Mpofu, M. Sears

Abstract:

In this paper, we propose a novel algorithm for delineating the endocardial wall from a human heart ultrasound scan. We assume that the gray levels in the ultrasound images are independent and identically distributed random variables with different Rician Inverse Gaussian (RiIG) distributions. Both synthetic and real clinical data will be used for testing the algorithm. Algorithm performance will be evaluated using the expert radiologist evaluation of a soft copy of an ultrasound scan during the scanning process and secondly, doctor’s conclusion after going through a printed copy of the same scan. Successful implementation of this algorithm should make it possible to differentiate normal from abnormal soft tissue and help disease identification, what stage the disease is in and how best to treat the patient. We hope that an automated system that uses this algorithm will be useful in public hospitals especially in Third World countries where problems such as shortage of skilled radiologists and shortage of ultrasound machines are common. These public hospitals are usually the first and last stop for most patients in these countries.

Keywords: Endorcardial Wall, Rician Inverse Distributions, Segmentation, Ultrasound Images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
1250 Detection of Ultrasonic Images in the Presence of a Random Number of Scatterers: A Statistical Learning Approach

Authors: J. P. Dubois, O. M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a statistical learning tool that was initially developed by Vapnik in 1979 and later developed to a more complex concept of structural risk minimization (SRM). SVM is playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM was applied to the detection of medical ultrasound images in the presence of partially developed speckle noise. The simulation was done for single look and multi-look speckle models to give a complete overlook and insight to the new proposed model of the SVM-based detector. The structure of the SVM was derived and applied to clinical ultrasound images and its performance in terms of the mean square error (MSE) metric was calculated. We showed that the SVM-detected ultrasound images have a very low MSE and are of good quality. The quality of the processed speckled images improved for the multi-look model. Furthermore, the contrast of the SVM detected images was higher than that of the original non-noisy images, indicating that the SVM approach increased the distance between the pixel reflectivity levels (detection hypotheses) in the original images.

Keywords: LS-SVM, medical ultrasound imaging, partially developed speckle, multi-look model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341
1249 Study on Discontinuity Properties of Phased-Array Ultrasound Transducer Affecting to Sound Pressure Fields Pattern

Authors: Tran Trong Thang, Nguyen Phan Kien, Trinh Quang Duc

Abstract:

The phased-array ultrasound transducer types are utilities for medical ultrasonography as well as optical imaging. However, their discontinuity characteristic limits the applications due to the artifacts contaminated into the reconstructed images. Because of the effects of the ultrasound pressure field pattern to the echo ultrasonic waves as well as the optical modulated signal, the side lobes of the focused ultrasound beam induced by discontinuity of the phased-array ultrasound transducer might the reason of the artifacts. In this paper, a simple method in approach of numerical simulation was used to investigate the limitation of discontinuity of the elements in phased-array ultrasound transducer and their effects to the ultrasound pressure field. Take into account the change of ultrasound pressure field patterns in the conditions of variation of the pitches between elements of the phased-array ultrasound transducer, the appropriated parameters for phased-array ultrasound transducer design were asserted quantitatively.

Keywords: Phased-array ultrasound transducer, sound pressure pattern, discontinuous sound field, numerical visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2596
1248 Speckle Reducing Contourlet Transform for Medical Ultrasound Images

Authors: P.S. Hiremath, Prema T. Akkasaligar, Sharan Badiger

Abstract:

Speckle noise affects all coherent imaging systems including medical ultrasound. In medical images, noise suppression is a particularly delicate and difficult task. A tradeoff between noise reduction and the preservation of actual image features has to be made in a way that enhances the diagnostically relevant image content. Even though wavelets have been extensively used for denoising speckle images, we have found that denoising using contourlets gives much better performance in terms of SNR, PSNR, MSE, variance and correlation coefficient. The objective of the paper is to determine the number of levels of Laplacian pyramidal decomposition, the number of directional decompositions to perform on each pyramidal level and thresholding schemes which yields optimal despeckling of medical ultrasound images, in particular. The proposed method consists of the log transformed original ultrasound image being subjected to contourlet transform, to obtain contourlet coefficients. The transformed image is denoised by applying thresholding techniques on individual band pass sub bands using a Bayes shrinkage rule. We quantify the achieved performance improvement.

Keywords: Contourlet transform, Despeckling, Pyramidal directionalfilter bank, Thresholding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2446
1247 Common Carotid Artery Intima Media Thickness Segmentation Survey

Authors: L. Ashok Kumar, C. Nagarajan

Abstract:

The ultrasound imaging is very popular to diagnosis the disease because of its non-invasive nature. The ultrasound imaging slowly produces low quality images due to the presence of spackle noise and wave interferences. There are several algorithms to be proposed for the segmentation of ultrasound carotid artery images but it requires a certain limit of user interaction. The pixel in an image is highly correlated so the spatial information of surrounding pixels may be considered in the process of image segmentation which improves the results further. When data is highly correlated, one pixel may belong to more than one cluster with different degree of membership. There is an important step to computerize the evaluation of arterial disease severity using segmentation of carotid artery lumen in 2D and 3D ultrasonography and in finding vulnerable atherosclerotic plaques susceptible to rupture which can cause stroke.

Keywords: IMT measurement, Image Segmentation, common carotid artery, internal and external carotid arteries, ultrasound imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998
1246 Scatterer Density in Edge and Coherence Enhancing Nonlinear Anisotropic Diffusion for Medical Ultrasound Speckle Reduction

Authors: Ahmed Badawi, J. Michael Johnson, Mohamed Mahfouz

Abstract:

This paper proposes new enhancement models to the methods of nonlinear anisotropic diffusion to greatly reduce speckle and preserve image features in medical ultrasound images. By incorporating local physical characteristics of the image, in this case scatterer density, in addition to the gradient, into existing tensorbased image diffusion methods, we were able to greatly improve the performance of the existing filtering methods, namely edge enhancing (EE) and coherence enhancing (CE) diffusion. The new enhancement methods were tested using various ultrasound images, including phantom and some clinical images, to determine the amount of speckle reduction, edge, and coherence enhancements. Scatterer density weighted nonlinear anisotropic diffusion (SDWNAD) for ultrasound images consistently outperformed its traditional tensor-based counterparts that use gradient only to weight the diffusivity function. SDWNAD is shown to greatly reduce speckle noise while preserving image features as edges, orientation coherence, and scatterer density. SDWNAD superior performances over nonlinear coherent diffusion (NCD), speckle reducing anisotropic diffusion (SRAD), adaptive weighted median filter (AWMF), wavelet shrinkage (WS), and wavelet shrinkage with contrast enhancement (WSCE), make these methods ideal preprocessing steps for automatic segmentation in ultrasound imaging.

Keywords: Nonlinear anisotropic diffusion, ultrasound imaging, speckle reduction, scatterer density estimation, edge based enhancement, coherence enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
1245 A Local Statistics Based Region Growing Segmentation Method for Ultrasound Medical Images

Authors: Ashish Thakur, Radhey Shyam Anand

Abstract:

This paper presents the region based segmentation method for ultrasound images using local statistics. In this segmentation approach the homogeneous regions depends on the image granularity features, where the interested structures with dimensions comparable to the speckle size are to be extracted. This method uses a look up table comprising of the local statistics of every pixel, which are consisting of the homogeneity and similarity bounds according to the kernel size. The shape and size of the growing regions depend on this look up table entries. The algorithms are implemented by using connected seeded region growing procedure where each pixel is taken as seed point. The region merging after the region growing also suppresses the high frequency artifacts. The updated merged regions produce the output in formed of segmented image. This algorithm produces the results that are less sensitive to the pixel location and it also allows a segmentation of the accurate homogeneous regions.

Keywords: Local statistics, region growing, segmentation, ultrasound images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3110
1244 A General Segmentation Scheme for Contouring Kidney Region in Ultrasound Kidney Images using Improved Higher Order Spline Interpolation

Authors: K. Bommanna Raja, M.Madheswaran, K.Thyagarajah

Abstract:

A higher order spline interpolated contour obtained with up-sampling of homogenously distributed coordinates for segmentation of kidney region in different classes of ultrasound kidney images has been developed and presented in this paper. The performance of the proposed method is measured and compared with modified snake model contour, Markov random field contour and expert outlined contour. The validation of the method is made in correspondence with expert outlined contour using maximum coordinate distance, Hausdorff distance and mean radial distance metrics. The results obtained reveal that proposed scheme provides optimum contour that agrees well with expert outlined contour. Moreover this technique helps to preserve the pixels-of-interest which in specific defines the functional characteristic of kidney. This explores various possibilities in implementing computer-aided diagnosis system exclusively for US kidney images.

Keywords: Ultrasound Kidney Image – Kidney Segmentation –Active Contour – Markov Random Field – Higher Order SplineInterpolation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
1243 Scatterer Density in Nonlinear Diffusion for Speckle Reduction in Ultrasound Imaging: The Isotropic Case

Authors: Ahmed Badawi

Abstract:

This paper proposes a method for speckle reduction in medical ultrasound imaging while preserving the edges with the added advantages of adaptive noise filtering and speed. A nonlinear image diffusion method that incorporates local image parameter, namely, scatterer density in addition to gradient, to weight the nonlinear diffusion process, is proposed. The method was tested for the isotropic case with a contrast detail phantom and varieties of clinical ultrasound images, and then compared to linear and some other diffusion enhancement methods. Different diffusion parameters were tested and tuned to best reduce speckle noise and preserve edges. The method showed superior performance measured both quantitatively and qualitatively when incorporating scatterer density into the diffusivity function. The proposed filter can be used as a preprocessing step for ultrasound image enhancement before applying automatic segmentation, automatic volumetric calculations, or 3D ultrasound volume rendering.

Keywords: Ultrasound imaging, Nonlinear isotropic diffusion, Speckle noise, Scattering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
1242 Multi-Element Synthetic Transmit Aperture Method in Medical Ultrasound Imaging

Authors: Ihor Trots, Yuriy Tasinkevych, Andrzej Nowicki, Marcin Lewandowski

Abstract:

The paper presents the multi-element synthetic transmit aperture (MSTA) method with a small number of elements transmitting and all elements apertures in medical ultrasound imaging. As compared to the other methods MSTA allows to increase the system frame rate and provides the best compromise between penetration depth and lateral resolution. In the experiments a 128-element linear transducer array with 0.3 mm pitch excited by a burst pulse of 125 ns duration were used. The comparison of 2D ultrasound images of tissue mimicking phantom obtained using the STA and the MSTA methods is presented to demonstrate the benefits of the second approach. The results were obtained using SA algorithm with transmit and receive signals correction based on a single element directivity function.

Keywords: Beamforming, frame rate, synthetic aperture, ultrasound imaging

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
1241 CFD Modeling of Mixing Enhancement in a Pitted Micromixer by High Frequency Ultrasound Waves

Authors: Faezeh Mohammadi, Ebrahim Ebrahimi, Neda Azimi

Abstract:

Use of ultrasound waves is one of the techniques for increasing the mixing and mass transfer in the microdevices. Ultrasound propagation into liquid medium leads to stimulation of the fluid, creates turbulence and so increases the mixing performance. In this study, CFD modeling of two-phase flow in a pitted micromixer equipped with a piezoelectric with frequency of 1.7 MHz has been studied. CFD modeling of micromixer at different velocity of fluid flow in the absence of ultrasound waves and with ultrasound application has been performed. The hydrodynamic of fluid flow and mixing efficiency for using ultrasound has been compared with the layout of no ultrasound application. The result of CFD modeling shows well agreements with the experimental results. The results showed that the flow pattern inside the micromixer in the absence of ultrasound waves is parallel, while when ultrasound has been applied, it is not parallel. In fact, propagation of ultrasound energy into the fluid flow in the studied micromixer changed the hydrodynamic and the forms of the flow pattern and caused to mixing enhancement. In general, from the CFD modeling results, it can be concluded that the applying ultrasound energy into the liquid medium causes an increase in the turbulences and mixing and consequently, improves the mass transfer rate within the micromixer.

Keywords: CFD modeling, ultrasound, mixing, mass transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 755
1240 Synthetic Transmit Aperture Method in Medical Ultrasonic Imaging

Authors: Ihor Trots, Andrzej Nowicki, Marcin Lewandowski

Abstract:

The work describes the use of a synthetic transmit aperture (STA) with a single element transmitting and all elements receiving in medical ultrasound imaging. STA technique is a novel approach to today-s commercial systems, where an image is acquired sequentially one image line at a time that puts a strict limit on the frame rate and the amount of data needed for high image quality. The STA imaging allows to acquire data simultaneously from all directions over a number of emissions, and the full image can be reconstructed. In experiments a 32-element linear transducer array with 0.48 mm inter-element spacing was used. Single element transmission aperture was used to generate a spherical wave covering the full image region. The 2D ultrasound images of wire phantom are presented obtained using the STA and commercial ultrasound scanner Antares to demonstrate the benefits of the SA imaging.

Keywords: Ultrasound imaging, synthetic aperture, frame rate, beamforming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
1239 Coded Transmission in Synthetic Transmit Aperture Ultrasound Imaging Method

Authors: Ihor Trots, Yuriy Tasinkevych, Andrzej Nowicki, Marcin Lewandowski

Abstract:

The paper presents the study of synthetic transmit aperture method applying the Golay coded transmission for medical ultrasound imaging. Longer coded excitation allows to increase the total energy of the transmitted signal without increasing the peak pressure. Signal-to-noise ratio and penetration depth are improved maintaining high ultrasound image resolution. In the work the 128-element linear transducer array with 0.3 mm inter-element spacing excited by one cycle and the 8 and 16-bit Golay coded sequences at nominal frequencies 4 MHz was used. Single element transmission aperture was used to generate a spherical wave covering the full image region and all the elements received the echo signals. The comparison of 2D ultrasound images of the wire phantom as well as of the tissue mimicking phantom is presented to demonstrate the benefits of the coded transmission. The results were obtained using the synthetic aperture algorithm with transmit and receive signals correction based on a single element directivity function.

Keywords: Golay coded sequences, radiation pattern, synthetic aperture, ultrasound imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
1238 Advanced Stochastic Models for Partially Developed Speckle

Authors: Jihad S. Daba (Jean-Pierre Dubois), Philip Jreije

Abstract:

Speckled images arise when coherent microwave, optical, and acoustic imaging techniques are used to image an object, surface or scene. Examples of coherent imaging systems include synthetic aperture radar, laser imaging systems, imaging sonar systems, and medical ultrasound systems. Speckle noise is a form of object or target induced noise that results when the surface of the object is Rayleigh rough compared to the wavelength of the illuminating radiation. Detection and estimation in images corrupted by speckle noise is complicated by the nature of the noise and is not as straightforward as detection and estimation in additive noise. In this work, we derive stochastic models for speckle noise, with an emphasis on speckle as it arises in medical ultrasound images. The motivation for this work is the problem of segmentation and tissue classification using ultrasound imaging. Modeling of speckle in this context involves partially developed speckle model where an underlying Poisson point process modulates a Gram-Charlier series of Laguerre weighted exponential functions, resulting in a doubly stochastic filtered Poisson point process. The statistical distribution of partially developed speckle is derived in a closed canonical form. It is observed that as the mean number of scatterers in a resolution cell is increased, the probability density function approaches an exponential distribution. This is consistent with fully developed speckle noise as demonstrated by the Central Limit theorem.

Keywords: Doubly stochastic filtered process, Poisson point process, segmentation, speckle, ultrasound

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
1237 In Vitro Study of Coded Transmission in Synthetic Aperture Ultrasound Imaging Systems

Authors: Ihor Trots, Yuriy Tasinkevych, Andrzej Nowicki, Marcin Lewandowski

Abstract:

In the paper the study of synthetic transmit aperture method applying the Golay coded transmission for medical ultrasound imaging is presented. Longer coded excitation allows to increase the total energy of the transmitted signal without increasing the peak pressure. Moreover signal-to-noise ratio and penetration depth are improved while maintaining high ultrasound image resolution. In the work the 128-element linear transducer array with 0.3 mm inter-element spacing excited by one cycle and the 8 and 16- bit Golay coded sequences at nominal frequency 4 MHz was used. To generate a spherical wave covering the full image region a single element transmission aperture was used and all the elements received the echo signals. The comparison of 2D ultrasound images of the tissue mimicking phantom and in vitro measurements of the beef liver is presented to illustrate the benefits of the coded transmission. The results were obtained using the synthetic aperture algorithm with transmit and receive signals correction based on a single element directivity function.

Keywords: Golay coded sequences, radiation pattern, signal processing, synthetic aperture, ultrasound imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
1236 Comparison of Back-Projection with Non-Uniform Fast Fourier Transform for Real-Time Photoacoustic Tomography

Authors: Moung Young Lee, Chul Gyu Song

Abstract:

Photoacoustic imaging is the imaging technology that combines the optical imaging and ultrasound. This provides the high contrast and resolution due to optical imaging and ultrasound imaging, respectively. We developed the real-time photoacoustic tomography (PAT) system using linear-ultrasound transducer and digital acquisition (DAQ) board. There are two types of algorithm for reconstructing the photoacoustic signal. One is back-projection algorithm, the other is FFT algorithm. Especially, we used the non-uniform FFT algorithm. To evaluate the performance of our system and algorithms, we monitored two wires that stands at interval of 2.89 mm and 0.87 mm. Then, we compared the images reconstructed by algorithms. Finally, we monitored the two hairs crossed and compared between these algorithms.

Keywords: Back-projection, image comparison, non-uniform FFT, photoacoustic tomography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
1235 Scattering Operator and Spectral Clustering for Ultrasound Images: Application on Deep Venous Thrombi

Authors: Thibaud Berthomier, Ali Mansour, Luc Bressollette, Frédéric Le Roy, Dominique Mottier, Léo Fréchier, Barthélémy Hermenault

Abstract:

Deep Venous Thrombosis (DVT) occurs when a thrombus is formed within a deep vein (most often in the legs). This disease can be deadly if a part or the whole thrombus reaches the lung and causes a Pulmonary Embolism (PE). This disorder, often asymptomatic, has multifactorial causes: immobilization, surgery, pregnancy, age, cancers, and genetic variations. Our project aims to relate the thrombus epidemiology (origins, patient predispositions, PE) to its structure using ultrasound images. Ultrasonography and elastography were collected using Toshiba Aplio 500 at Brest Hospital. This manuscript compares two classification approaches: spectral clustering and scattering operator. The former is based on the graph and matrix theories while the latter cascades wavelet convolutions with nonlinear modulus and averaging operators.

Keywords: Deep venous thrombosis, ultrasonography, elastography, scattering operator, wavelet, spectral clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1178
1234 Indicator of Small Calcification Detection in Ultrasonography using Decorrelation of Forward Scattered Waves

Authors: Hirofumi Taki, Takuya Sakamoto, Makoto Yamakawa, Tsuyoshi Shiina, Toru Sato

Abstract:

For the improvement of the ability in detecting small calcifications using Ultrasonography (US) we propose a novel indicator of calcifications in an ultrasound B-mode image without decrease in frame rate. Since the waveform of an ultrasound pulse changes at a calcification position, the decorrelation of adjacent scan lines occurs behind a calcification. Therefore, we employ the decorrelation of adjacent scan lines as an indicator of a calcification. The proposed indicator depicted wires 0.05 mm in diameter at 2 cm depth with a sensitivity of 86.7% and a specificity of 100%, which were hardly detected in ultrasound B-mode images. This study shows the potential of the proposed indicator to approximate the detectable calcification size using an US device to that of an X-ray imager, implying the possibility that an US device will become a convenient, safe, and principal clinical tool for the screening of breast cancer.

Keywords: Ultrasonography, Calcification, Decorrelation, Forward scattered wave

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
1233 Transimpedance Amplifier for Integrated 3D Ultrasound Biomicroscope Applications

Authors: Xiwei Huang, Hyouk-Kyu Cha, Dongning Zhao, Bin Guo, Minkyu Je, Hao Yu

Abstract:

This paper presents the design and implementation of a fully integrated transimpedance amplifier (TIA) as the analog frontend receiver for Capacitive Micromachined Ultrasound Transducers (CMUTs) for ultrasound biomicroscope imaging application. The amplifier is designed to amplify the received signals from 17.5MHz to 52.5MHz with a center frequency of 35MHz. The TIA was fabricated in GF 0.18μm 1P6M 30V high voltage process. The measurement results show that the designed amplifier can reach a transimpedance gain of 61.08dBΩ and operating frequency from 17.5MHz to 100MHz with 1VP-P output voltage under 6V power supply.

Keywords: 3D ultrasound biomicroscope, analog front-end, transimpedance amplifier, CMUT

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2722
1232 Ultrasound-Assisted Pd Activation Process for Electroless Silver Plating

Authors: Chang-Myeon Lee, Min-Hyung Lee, Jin-Young Hur, Ho-Nyun Lee, Hong-Kee Lee

Abstract:

An ultrasound-assisted activation method for electroless silver plating is presented in this study. When the ultrasound was applied during the activation step, the amount of the Pd species adsorbed on substrate surfaces was higher than that of sample pretreated with a conventional activation process without ultrasound irradiation. With this activation method, it was also shown that the adsorbed Pd species with a size of about 5 nm were uniformly distributed on the surfaces, thus a smooth and uniform coating on the surfaces was obtained by subsequent electroless silver plating. The samples after each step were characterized by AFM, XPS, FIB, and SEM.

Keywords: Cavitation, Electroless silver, Pd activation, Ultrasonic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2385
1231 Comparison of Classical and Ultrasound-Assisted Extractions of Hyphaene thebaica Fruit and Evaluation of Its Extract as Antibacterial Activity in Reducing Severity of Erwinia carotovora

Authors: Hanan Moawad, Naglaa M. Abd EL-Rahman

Abstract:

Erwinia carotovora var. carotovora is the main cause of soft rot in potatoes. Hyphaene thebaica was studied for biocontrol of E. carotovora which inhibited growth of E. carotovora on solid medium, a comparative study of classical and ultrasound-assisted extractions of Hyphaene thebaica fruit. The use of ultrasound decreased significant the total time of treatment and increase the total amount of crude extract. The crude extract was subjected to determine the in vitro, by a bioassay technique revealed that the treatment of paper disks with ultrasound extraction of Hyphaene thebaica reduced the growth of pathogen and produced inhibition zones up to 38mm in diameter. The antioxidant activity of ultrasound-ethanolic extract of Doum fruits (Hyphaene thebaica) was determined. Data obtained showed that the extract contains the secondary metabolites such as Tannins, Saponin, Flavonoids, Phenols, Steroids, Terpenoids, Glycosides and Alkaloids.

Keywords: Ultrasound, classical extract, Biological control, Erwinia carotovora, Hyphaene thebaica.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2810
1230 Ultrasonic Evaluation of Bone Callus Growth in a Rabbit Tibial Distraction Model

Authors: H.K. Luk, Y.M. Lai, L. Qin, C.W. Chan, Z. Liu, Y.P. Huang, Y.P. Zheng

Abstract:

Ultrasound is useful in demonstrating bone mineral density of regenerating osseous tissue as well as structural alterations. A proposed ultrasound method, which included ultrasonography and acoustic parameters measurement, was employed to evaluate its efficacy in monitoring the bone callus changes in a rabbit tibial distraction osteogenesis (DO) model. The findings demonstrated that ultrasonographic images depicted characteristic changes of the bone callus, typical of histology findings, during the distraction phase. Follow-up acoustic parameters measurement of the bone callus, including speed of sound, reflection and attenuation, showed significant linear changes over time during the distraction phase. The acoustic parameters obtained during the distraction phase also showed moderate to strong correlation with consolidated bone callus density and micro-architecture measured by micro-computed tomography at the end of the consolidation phase. The results support the preferred use of ultrasound imaging in the early monitoring of bone callus changes during DO treatment.

Keywords: Bone Callus Growth, Rabbit Tibial DistractionOsteogenesis, Ultrasonography, Ultrasonometry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
1229 A Robust and Efficient Segmentation Method Applied for Cardiac Left Ventricle with Abnormal Shapes

Authors: Peifei Zhu, Zisheng Li, Yasuki Kakishita, Mayumi Suzuki, Tomoaki Chono

Abstract:

Segmentation of left ventricle (LV) from cardiac ultrasound images provides a quantitative functional analysis of the heart to diagnose disease. Active Shape Model (ASM) is widely used for LV segmentation, but it suffers from the drawback that initialization of the shape model is not sufficiently close to the target, especially when dealing with abnormal shapes in disease. In this work, a two-step framework is improved to achieve a fast and efficient LV segmentation. First, a robust and efficient detection based on Hough forest localizes cardiac feature points. Such feature points are used to predict the initial fitting of the LV shape model. Second, ASM is applied to further fit the LV shape model to the cardiac ultrasound image. With the robust initialization, ASM is able to achieve more accurate segmentation. The performance of the proposed method is evaluated on a dataset of 810 cardiac ultrasound images that are mostly abnormal shapes. This proposed method is compared with several combinations of ASM and existing initialization methods. Our experiment results demonstrate that accuracy of the proposed method for feature point detection for initialization was 40% higher than the existing methods. Moreover, the proposed method significantly reduces the number of necessary ASM fitting loops and thus speeds up the whole segmentation process. Therefore, the proposed method is able to achieve more accurate and efficient segmentation results and is applicable to unusual shapes of heart with cardiac diseases, such as left atrial enlargement.

Keywords: Hough forest, active shape model, segmentation, cardiac left ventricle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
1228 XML Integration of Data from CloudSat Satellite and GMS-6 Water Vapor Satellite

Authors: W. Srisang, K. Jaroensutasinee, M. Jaroensutasinee

Abstract:

This study aimed at developing visualization tools for integrating CloudSat images and Water Vapor Satellite images. KML was used for integrating data from CloudSat Satellite and GMS-6 Water Vapor Satellite. CloudSat 2D images were transformed into 3D polygons in order to achieve 3D images. Before overlaying the images on Google Earth, GMS-6 water vapor satellite images had to be rescaled into linear images. Web service was developed using webMathematica. Shoreline from GMS-6 images was compared with shoreline from LandSat images on Google Earth for evaluation. The results showed that shoreline from GMS-6 images was highly matched with the shoreline in LandSat images from Google Earth. For CloudSat images, the visualizations were compared with GMS-6 images on Google Earth. The results showed that CloudSat and GMS-6 images were highly correlated.

Keywords: CloudSat, Water vapor, Satellite images, GoogleEarth™.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
1227 Influence of the Low Frequency Ultrasound on the Cadmium (II) Biosorption by an Ecofriendly Biocomposite (Extraction Solid Waste of Ammi visnaga / Calcium Alginate): Kinetic Modeling

Authors: L. Nouri Taiba, Y. Bouhamidi, F. Kaouah, Z. Bendjama, M. Trari

Abstract:

In the present study, an ecofriendly biocomposite namely calcium alginate immobilized Ammi Visnaga (Khella) extraction waste (SWAV/CA) was prepared by electrostatic extrusion method and used on the cadmium biosorption from aqueous phase with and without the assistance of ultrasound in batch conditions. The influence of low frequency ultrasound (37 and 80 KHz) on the cadmium biosorption kinetics was studied. The obtained results show that the ultrasonic irradiation significantly enhances and improves the efficiency of the cadmium removal. The Pseudo first order, Pseudo-second-order, Intraparticle diffusion, and Elovich models were evaluated using the non-linear curve fitting analysis method. Modeling of kinetic results shows that biosorption process is best described by the pseudo-second order and Elovich, in both the absence and presence of ultrasound.

Keywords: Biocomposite, biosorption, cadmium, non-linear analysis, ultrasound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
1226 Beam Coding with Orthogonal Complementary Golay Codes for Signal to Noise Ratio Improvement in Ultrasound Mammography

Authors: Y. Kumru, K. Enhos, H. Köymen

Abstract:

In this paper, we report the experimental results on using complementary Golay coded signals at 7.5 MHz to detect breast microcalcifications of 50 µm size. Simulations using complementary Golay coded signals show perfect consistence with the experimental results, confirming the improved signal to noise ratio for complementary Golay coded signals. For improving the success on detecting the microcalcifications, orthogonal complementary Golay sequences having cross-correlation for minimum interference are used as coded signals and compared to tone burst pulse of equal energy in terms of resolution under weak signal conditions. The measurements are conducted using an experimental ultrasound research scanner, Digital Phased Array System (DiPhAS) having 256 channels, a phased array transducer with 7.5 MHz center frequency and the results obtained through experiments are validated by Field-II simulation software. In addition, to investigate the superiority of coded signals in terms of resolution, multipurpose tissue equivalent phantom containing series of monofilament nylon targets, 240 µm in diameter, and cyst-like objects with attenuation of 0.5 dB/[MHz x cm] is used in the experiments. We obtained ultrasound images of monofilament nylon targets for the evaluation of resolution. Simulation and experimental results show that it is possible to differentiate closely positioned small targets with increased success by using coded excitation in very weak signal conditions.

Keywords: Coded excitation, complementary Golay codes, DiPhAS, medical ultrasound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905
1225 Uniform Heating during Focused Ultrasound Thermal Therapy

Authors: To-Yuan Chen, Tzu-Ching Shih, Hao-Li Liu, Kuen-Cheng Ju

Abstract:

The focal spot of a high intensity focused ultrasound transducer is small. To heat a large target volume, multiple treatment spots are required. If the power of each treatment spot is fixed, it could results in insufficient heating of initial spots and over-heating of later ones, which is caused by the thermal diffusion. Hence, to produce a uniform heated volume, the delivered energy of each treatment spot should be properly adjusted. In this study, we proposed an iterative, extrapolation technique to adjust the required ultrasound energy of each treatment spot. Three different scanning pathways were used to evaluate the performance of this technique. Results indicate that by using the proposed technique, uniform heating volume could be obtained.

Keywords: focused ultrasound, thermal therapy, uniform heating, iteration, extrapolation, scan

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
1224 The Effect of Ultrasound on Permeation Flux and Changes in Blocking Mechanisms during Dead-End Microfiltration of Carrot Juice

Authors: A. Hemmati, H. Mirsaeedghazi, M. Aboonajmi

Abstract:

Carrot juice is one of the most nutritious foods that are consumed around the world. Large particles in carrot juice causing turbid appearance make some problems in the concentration process such as off-flavor due to the large particles burnt on the walls of evaporators. Microfiltration (MF) is a pressure driven membrane separation method that can clarify fruit juices without enzymatic treatment. Fouling is the main problem in the membrane process causing reduction of permeate flux. Ultrasound as a cleaning technique was applied at 20 kHz to reduce fouling in membrane clarification of carrot juice using dead-end MF system with polyvinylidene fluoride (PVDF) membrane. Results showed that application of ultrasound waves reduce diphasic characteristic of carrot juice and permeate flux increased. Evaluation of different membrane fouling mechanisms showed that application of ultrasound waves changed creation time of each fouling mechanism. Also, its behavior was changed with varying transmembrane pressure.

Keywords: Carrot juice, dead end, microfiltration, ultrasound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 930