Search results for: Soil erosion.
948 Application of GIS and Statistical Multivariate Techniques for Estimation of Soil Erosion and Sediment Yield
Authors: Masoud Nasri, Ali Gholami, Ali Najafi
Abstract:
In recent years, most of the regions in the world are exposed to degradation and erosion caused by increasing population and over use of land resources. The understanding of the most important factors on soil erosion and sediment yield are the main keys for decision making and planning. In this study, the sediment yield and soil erosion were estimated and the priority of different soil erosion factors used in the MPSIAC method of soil erosion estimation is evaluated in AliAbad watershed in southwest of Isfahan Province, Iran. Different information layers of the parameters were created using a GIS technique. Then, a multivariate procedure was applied to estimate sediment yield and to find the most important factors of soil erosion in the model. The results showed that land use, geology, land and soil cover are the most important factors describing the soil erosion estimated by MPSIAC model.Keywords: land degradation, Soil erosion, Sediment yield, Aliabad, GIS technique, Land use.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690947 The Automated Soil Erosion Monitoring System (ASEMS)
Authors: George N. Zaimes, Valasia Iakovoglou, Paschalis Koutalakis, Konstantinos Ioannou, Ioannis Kosmadakis, Panagiotis Tsardaklis, Theodoros Laopoulos
Abstract:
The advancements in technology allow the development of a new system that can continuously measure surface soil erosion. Continuous soil erosion measurements are required in order to comprehend the erosional processes and propose effective and efficient conservation measures to mitigate surface erosion. Mitigating soil erosion, especially in Mediterranean countries such as Greece, is essential in order to maintain environmental and agricultural sustainability. In this paper, we present the Automated Soil Erosion Monitoring System (ASEMS) that measures surface soil erosion along with other factors that impact erosional process. Specifically, this system measures ground level changes (surface soil erosion), rainfall, air temperature, soil temperature, and soil moisture. Another important innovation is that the data will be collected by remote communication. In addition, stakeholder’s awareness is a key factor to help reduce any environmental problem. The different dissemination activities that were utilized are described. The overall outcomes were the development of a new innovative system that can measure erosion very accurately. These data from the system help study the process of erosion and find the best possible methods to reduce erosion. The dissemination activities enhance the stakeholders and public's awareness on surface soil erosion problems and will lead to the adoption of more effective soil erosion conservation practices in Greece.Keywords: Soil management, climate change, new technologies, conservation practices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2467946 The Effect of Raindrop Kinetic Energy on Soil Erodibility
Authors: A. Moussouni, L. Mouzai, M. Bouhadef
Abstract:
Soil erosion is a very complex phenomenon, resulting from detachment and transport of soil particles by erosion agents. The kinetic energy of raindrop is the energy available for detachment and transport by splashing rain. The soil erodibility is defined as the ability of soil to resist to erosion. For this purpose, an experimental study was conducted in the laboratory using rainfall simulator to study the effect of the kinetic energy of rain (Ec) on the soil erodibility (K). The soil used was a sandy agricultural soil of 62.08% coarse sand, 19.14% fine sand, 6.39% fine silt, 5.18% coarse silt and 7.21% clay. The obtained results show that the kinetic energy of raindrops evolves as a power law with soil erodibility.
Keywords: Erosion, runoff, raindrop kinetic energy, soil erodibility, rainfall intensity, raindrop fall velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4105945 Reviewing Soil Erosion in Greece
Authors: Paschalis Koutalakis, George N. Zaimes, Valasia Iakovoglou, Konstantinos Ioannou
Abstract:
Mitigating soil erosion, especially in Mediterranean countries such as Greece, is essential in order to maintain environmental and agricultural sustainability. In this paper, scientific publications related to soil erosion studies in Greece were reviewed and categorized. To accomplish this, the online search engine of Scopus was used. The key words were “soil”, “erosion” and “Greece.” An analysis of the published articles was conducted at three levels: i) type of publication, ii) chronologic and iii) thematic. A hundred and ten publications published in scientific journals were reviewed. The results showed that the awareness regarding the soil erosion in Greece has increased only in the last decades. The publications covered a wide range of thematic categories such as the type of studied areas, the physical phenomena that trigger and influence the soil erosion, the negative anthropogenic impacts on them, the assessment tools that were used in order to examine the threat and the proper management. The analysis of these articles was significant and necessary in order to find the scientific gaps of soil erosion studies in Greece and help enhance the sustainability of soil management in the future.Keywords: Climate change, agricultural sustainability, environmental sustainability, soil management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3403944 Assessments of Internal Erosion in a Landfill Due to Changes in Groundwater Level
Authors: Siamak Feizi, Gunvor Baardvik
Abstract:
Soil erosion has special consequences for landfills that are more serious than those found at conventional construction sites. Different potential heads between two sides of a landfill and the subsequent movement of water through pores within the soil body could trigger the soil erosion and construction instability. Such condition was encountered in a landfill project in the southern part of Norway. To check the risk of internal erosion due changes in the groundwater level (because of seasonal flooding in the river), a series of numerical simulations by means of Geo-Seep software were conducted. Output of this study provides a total picture of the landfill stability, possibilities of erosions and necessary measures to prevent or reduce the risk for the landfill operator.
Keywords: Erosion, seepage, landfill, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 449943 Soil Mass Loss Reduction during Rainfalls by Reinforcing the Slopes with the Surficial Confinement
Authors: Ramli Nazir, Hossein Moayedi
Abstract:
Soil confinement systems serve as effective solutions to any erosion control project. Various confinements systems, namely triangular, circular and rectangular with the size of 50, 100, and 150 mm, and with a depth of 10 mm, were embedded in soil samples at slope angle of 60°. The observed soil mass losses for the confined soil systems were much smaller than those from unconfined system. As a result, the size of confinement and rainfall intensity have a direct effect on the soil mass loss. The triangular and rectangular confinement systems showed the lowest and highest soil loss masses, respectively. The slopes also failed much faster in the unconfined system than in the confined slope.
Keywords: Erosion control, Soil confinement, Soil erosion, Slope stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862942 Modelling of Soil Erosion by Non Conventional Methods
Authors: Ganesh D. Kale, Sheela N. Vadsola
Abstract:
Soil erosion is the most serious problem faced at global and local level. So planning of soil conservation measures has become prominent agenda in the view of water basin managers. To plan for the soil conservation measures, the information on soil erosion is essential. Universal Soil Loss Equation (USLE), Revised Universal Soil Loss Equation 1 (RUSLE1or RUSLE) and Modified Universal Soil Loss Equation (MUSLE), RUSLE 1.06, RUSLE1.06c, RUSLE2 are most widely used conventional erosion estimation methods. The essential drawbacks of USLE, RUSLE1 equations are that they are based on average annual values of its parameters and so their applicability to small temporal scale is questionable. Also these equations do not estimate runoff generated soil erosion. So applicability of these equations to estimate runoff generated soil erosion is questionable. Data used in formation of USLE, RUSLE1 equations was plot data so its applicability at greater spatial scale needs some scale correction factors to be induced. On the other hand MUSLE is unsuitable for predicting sediment yield of small and large events. Although the new revised forms of USLE like RUSLE 1.06, RUSLE1.06c and RUSLE2 were land use independent and they have almost cleared all the drawbacks in earlier versions like USLE and RUSLE1, they are based on the regional data of specific area and their applicability to other areas having different climate, soil, land use is questionable. These conventional equations are applicable for sheet and rill erosion and unable to predict gully erosion and spatial pattern of rills. So the research was focused on development of nonconventional (other than conventional) methods of soil erosion estimation. When these non-conventional methods are combined with GIS and RS, gives spatial distribution of soil erosion. In the present paper the review of literature on non- conventional methods of soil erosion estimation supported by GIS and RS is presented.Keywords: Conventional methods, GIS, non-conventionalmethods, remote sensing, soil erosion modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4291941 Determination of Critical Source Areas for Sediment Loss: Sarrath River Basin, Tunisia
Authors: Manel Mosbahi
Abstract:
The risk of water erosion is one of the main environmental concerns in the southern Mediterranean regions. Thus, quantification of soil loss is an important issue for soil and water conservation managers. The objective of this paper is to examine the applicability of the Soil and Water Assessment Tool (SWAT) model in The Sarrath river catchment, North of Tunisia, and to identify the most vulnerable areas in order to help manager implement an effective management program. The spatial analysis of the results shows that 7 % of the catchment experiences very high erosion risk, in need for suitable conservation measures to be adopted on a priority basis. The spatial distribution of erosion risk classes estimated 3% high, 5,4% tolerable, and 84,6% low. Among the 27 delineated subcatchments only 4 sub-catchments are found to be under high and very high soil loss group, two sub-catchments fell under moderate soil loss group, whereas other sub-catchments are under low soil loss group.Keywords: Critical source areas, Erosion risk, SWAT model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464940 Measuring the Amount of Eroded Soil and Surface Runoff Water in the Field
Authors: Abdulfatah Faraj Aboufayed
Abstract:
Water erosion is the most important problems of the soil in the Jabel Nefusa area located in northwest of Libya; therefore, erosion station had been established in the Faculty of Veterinary and dryfarming research Station, University of the Al-japel Al-gharbi in Zentan. The length of the station is 72.6 feet, 6 feet width and the percentage of its slope is 3%. The station were established to measure the amount of soil eroded and amount of surface water produced during the seasons 95/96 and 96/97 from each rain storms. The monitoring shows that there was a difference between the two seasons in the number of rainstorms which made differences in the amount of surface runoff water and the amount of soil eroded between the two seasons. Although the slope is low (3%), the soil texture is sandy and the land ploughed twice during each season surface runoff and soil eroded were occurred. The average amount of eroded soil was 3792 grams (gr) per season and the average amount of surface runoff water was 410 liter (L) per season. The amount of surface runoff water would be much greater from Jebel Nefusa upland with steep slopes and collecting of them will save a valuable amount of water which lost as a runoff while this area is in desperate of this water. The regression analysis of variance show strong correlation between rainfall depth and the other two depended variable (the amount of surface runoff water and the amount of eroded soil. It shows also strong correlation between amount of surface runoff water and amount of eroded soil.
Keywords: Rain, Surface runoff water, Soil, Water erosion, Soil erosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997939 Appraisal of Methods for Identifying, Mapping, and Modelling of Fluvial Erosion in a Mining Environment
Authors: F. F. Howard, I. Yakubu, C. B. Boye, J. S. Y. Kuma
Abstract:
Natural and human activities, such as mining operations, expose the natural soil to adverse environmental conditions, leading to contamination of soil, groundwater, and surface water, which has negative effects on humans, flora, and fauna. Bare or partly exposed soil is most liable to fluvial erosion. This paper enumerates various methods used to identify, map, and model fluvial erosion in a mining environment. Classical, Artificial Intelligence (AI), and GIS methods have been reviewed. One of the many classical methods used to estimate river erosion is the Revised Universal Soil Loss Equation (RUSLE) model. The RUSLE model is easy to use. Its reliance on empirical relationships that may not always be applicable to specific circumstances or locations is a flaw. Other classical models for estimating fluvial erosion are the Soil and Water Assessment Tool (SWAT) and the Universal Soil Loss Equation (USLE). These models offer a more complete understanding of the underlying physical processes and encompass a wider range of situations. Although more difficult to utilise, they depend on the availability and dependability of input data for correctness. AI can help deal with multivariate and complex difficulties and predict soil loss with higher accuracy than traditional methods, and also be used to build unique models for identifying degraded areas. AI techniques have become popular as an alternative predictor for degraded environments. However, this research proposed a hybrid of classical, AI, and GIS methods for efficient and effective modelling of fluvial erosion.
Keywords: Fluvial erosion, classical methods, Artificial Intelligence, Geographic Information System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185938 Determination of Soil Loss by Erosion in Different Land Covers Categories and Slope Classes in Bovilla Watershed, Tirana, Albania
Authors: Valmir Baloshi, Fran Gjoka, Nehat Çollaku, Elvin Toromani
Abstract:
As a sediment production mechanism, soil erosion is the main environmental threat to the Bovilla watershed, including the decline of water quality of the Bovilla reservoir that provides drinking water to Tirana city (the capital of Albania). Therefore, an experiment with 25 erosion plots for soil erosion monitoring has been set up since June 2017. The aim was to determine the soil loss on plot and watershed scale in Bovilla watershed (Tirana region) for implementation of soil and water protection measures or payments for ecosystem services (PES) programs. The results of erosion monitoring for the period June 2017 - May 2018 showed that the highest values of surface runoff were noted in bare land of 38829.91 liters on slope of 74% and the lowest values in forest land of 12840.6 liters on slope of 64% while the highest values of soil loss were found in bare land of 595.15 t/ha on slope of 62% and lowest values in forest land of 18.99 t/ha on slope of 64%. These values are much higher than the average rate of soil loss in the European Union (2.46 ton/ha/year). In the same sloping class, the soil loss was reduced from orchard or bare land to the forest land, and in the same category of land use, the soil loss increased with increasing land slope. It is necessary to conduct chemical analyses of sediments to determine the amount of chemical elements leached out of the soil and end up in the reservoir of Bovilla. It is concluded that PES programs should be implemented for rehabilitation of sub-watersheds Ranxe, Vilez and Zall-Bastar of the Bovilla watershed with valuable conservation practices.
Keywords: ANOVA, Bovilla, land cover, slope, soil loss, watershed management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 885937 On the Fixed Rainfall Intensity: Effects on Overland Flow Resistance, Shear Velocity and on Soil Erosion
Authors: L. Mouzai, M. Bouhadef
Abstract:
Raindrops and overland flow both are erosive parameters but they do not act by the same way. The overland flow alone tends to shear the soil horizontally and concentrates into rills. In the presence of rain, the soil particles are removed from the soil surface in the form of a uniform sheet layer. In addition to this, raindrops falling on the flow roughen the water and soil surface depending on the flow depth, and retard the velocity, therefore influence shear velocity and Manning’s factor. To investigate this part, agricultural sandy soil, rainfall simulator and a laboratory soil tray of 0.2x1x3 m were the base of this work. Five overland flow depths of 0; 3.28; 4.28; 5.16; 5.60; 5.80 mm were generated under a rainfall intensity of 217.2 mm/h. Sediment concentration control is based on the proportionality of depth/microtopography. The soil loose is directly related to the presence of rain splash on thin sheet flow. The effect of shear velocity on sediment concentration is limited by the value of 5.28 cm/s. In addition to this, the rain splash reduces the soil roughness by breaking the soil crests. The rainfall intensity is the major factor influencing depth and soil erosion. In the presence of rainfall, the shear velocity of the flow is due to two simultaneous effects. The first, which is horizontal, comes from the flow and the second, vertical, is due to the raindrops.
Keywords: Flow resistance, laboratory experiments, rainfall simulator, sediment concentration, shear velocity, soil erosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 621936 Development of Corn (Zea mays L.) Stalk Geotextile Net for Soil Erosion Mitigation
Authors: Cristina S. Decano, Vitaliana U. Malamug, Melissa E. Agulto, Helen F. Gavino
Abstract:
This study aimed to introduce new natural fiber to be used in the production of geotextile net for mitigation of soil erosion. Fiber extraction from the stalks was the main challenge faced during the processing of stalks to ropes. Thus, an investigation on the extraction procedures of corn (Zea mays L.) stalk under biological and chemical retting was undertaken. Results indicated significant differences among percent fiber yield as affected by the retting methods used with values of 15.07%, 12.97%, 11.60%, and 9.01%, for dew, water, chemical (1 day after harvest and15 days after harvest), respectively, with the corresponding average extracting duration of 70, 82, 89, and 94 minutes. Physical characterization of the developed corn stalk geotextile net resulted to average mass per unit area of 806.25 g/m2 and 241% water absorbing capacity. The effect of corn stalk geotextile net in mitigating soil erosion was evaluated in a laboratory experiment for 30o and 60o inclinations with three treatments: bare soil (A1), corn stalk geotextile net (A2) and combined cornstalk geotextile net and vegetation cover (A3). Results revealed that treatment A2 and A3 significantly decreased sediment yield and an increase in terms of soil loss reduction efficiency. The cost of corn stalk geotextile net is Php 62.41 per square meter.
Keywords: Corn stalk, natural geotextile, retting, soil erosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723935 Backward Erosion Piping through Vertically Layered Sands
Authors: K. Vandenboer, L. Dolphen, A. Bezuijen
Abstract:
Backward erosion piping is an important failure mechanism for water-retaining structures, a phenomenon that results in the formation of shallow pipes at the interface of a sandy or silty foundation and a cohesive cover layer. This paper studies the effect of two soil types on backward erosion piping; both in case of a homogeneous sand layer, and in a vertically layered sand sample, where the pipe is forced to subsequently grow through the different layers. Two configurations with vertical sand layers are tested; they both result in wider pipes and higher critical gradients, thereby making this an interesting topic in research on measures to prevent backward erosion piping failures.Keywords: Backward erosion piping, embankments, physical modelling, sand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1045934 Relationship between Gully Development and Characteristics of Drainage Area in Semi-Arid Region, NW Iran
Authors: Ali Reza Vaezi, Ouldouz Bakhshi Rad
Abstract:
Gully erosion is a widespread and often dramatic form of soil erosion caused by water during and immediately after heavy rainfall. It occurs when flowing surface water is channelled across unprotected land and washes away the soil along the drainage lines. The formation of gully is influenced by various factors, including climate, drainage surface area, slope gradient, vegetation cover, land use, and soil properties. It is a very important problem in semi-arid regions, where soils have lower organic matter and are weakly aggregated. Intensive agriculture and tillage along the slope can accelerate soil erosion by water in the region. There is little information on the development of gully erosion in agricultural rainfed areas. Therefore, this study was carried out to investigate the relationship between gully erosion and morphometric characteristics of the drainage area and the effects of soil properties and soil management factors (land use and tillage method) on gully development. A field study was done in a 900 km2 agricultural area in Hshtroud township located in the south of East Azerbaijan province, NW Iran. Toward this, 222 gullies created in rainfed lands were found in the area. Some properties of gullies, consisting of length, width, depth, height difference, cross section area, and volume, were determined. Drainage areas for each or some gullies were determined, and their boundaries were drawn. Additionally, the surface area of each drainage, land use, tillage direction, and soil properties that may affect gully formation were determined. The soil erodibility factor (K) defined in the Universal Soil Loss Equation (USLE) was estimated based on five soil properties (silt and very fine sand, coarse sand, organic matter, soil structure code, and soil permeability). Gully development in each drainage area was quantified using its volume and soil loss. The dependency of gully development on drainage area characteristics (surface area, land use, tillage direction, and soil properties) was determined using correlation matrix analysis. Based on the results, gully length was the most important morphometric characteristic indicating the development of gully erosion in the lands. Gully development in the area was related to slope gradient (r = -0.26), surface area (r = 0.71), the area of rainfed lands (r = 0.23), and the area of rainfed tilled along the slope (r = 0.24). Nevertheless, its correlation with the area of pasture and soil erodibility factor (K) was not significant. Among the characteristics of drainage area, surface area is the major factor controlling gully volume in the agricultural land. No significant correlation was found between gully erosion and soil erodibility factor (K) estimated by the USLE. It seems the estimated soil erodibility cannot describe the susceptibility of the study soils to the gully erosion process. In these soils, aggregate stability and soil permeability are the two soil physical properties that affect the actual soil erodibility and in consequence, these soil properties can control gully erosion in the rainfed lands.
Keywords: Agricultural area, gully properties, soil structure, USLE, Universal Soil Loss Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 98933 Temporal Variation of Surface Runoff and Inter-Rill Erosion in Different Soil Textures of a Semi-Arid Region, Iran
Authors: Ali Reza Vaezi, Naser Fakori Ivand, Fereshteh Azarifam
Abstract:
Inter-rill erosion is the detachment and transfer of soil particles between the rills which occurs due to the impact of raindrops and the shear stress of shallow surface runoff. This erosion can be affected by some soil properties such as texture, amount of organic matter and stability of soil aggregates. Information on the temporal variation of inter-rill erosion during a rainfall event and the effect of soil properties on it can help develop better methods to soil conservation in the hillslopes. The importance of this study is especially grate in semi-arid regions, where the soil is weakly aggregated and vegetation cover is mostly poor. Therefore, this research was conducted to investigate the temporal variation of surface flow and inter-rill erosion and the effect of soil properties on it in some semi-arid soils. A field experiment was done in eight different soil textures under simulated rainfalls with uniform intensity. A total of twenty four plots were installed for eight study soils with three replicates in the form of a random complete block design along the land. The plots were 1.2 m (length) × 1 m (width) in dimensions which designed with a distance of 3 m from each other across the slope. Then, soil samples were purred into the plots. Rainfall simulation experiments were done using a designed portable simulator with an intensity of 60 mm per hour for 60 minutes. Runoff production and soil loss were measured during 1 hour time with 5-min intervals. Soil properties including particle size distribution, aggregate stability, bulk density, exchangeable sodium percentages (ESP) and hydraulic conductivity (Ks) were determined in the soil samples. Correlation and regression analysis was done to determine the effect of soil properties on runoff and inter-rill erosion. Results indicated that the study soils have lower both organic matter content and aggregate stability. The soils, except for coarse textured textures, are calcareous and with relatively higher ESP. Runoff production and soil loss did not occur in sand texture, which was associated with higher infiltration and drainage rates. A strong relationship was found between inter-rill erosion and surface runoff (R2 = 0.75, p < 0.01). The correlation analysis showed that surface runoff was significantly affected by some soil properties consisting of sand, silt, clay, bulk density, gravel, Ks, lime (calcium carbonate), and ESP. The soils with lower Ks such as fine-textured soils, produced higher surface runoff and more inter-rill erosion. In the soils, surface runoff production temporally increased during rainfall and finally reached a peak after about 25-35 min. Time to peak was very short (30 min) in fine-textured soils, especially clay, which was related to their lower infiltration rate.
Keywords: Erosion plot, rainfall simulator, soil properties, surface flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 64932 The Effects of Rain and Overland Flow Powers on Agricultural Soil Erodibility
Authors: A. Moussouni, L. Mouzai, M. Bouhadef
Abstract:
The purpose of this investigation is to relate the rain power and the overland flow power to soil erodibility to assess the effects of both parameters on soil erosion using variable rainfall intensity on remoulded agricultural soil. Six rainfall intensities were used to simulate the natural rainfall and are as follows: 12.4mm/h, 20.3mm/h, 28.6mm/h, 52mm/h, 73.5mm/h and 103mm/h. The results have shown that the relationship between overland flow power and rain power is best represented by a linear function (R2=0.99). As regards the relationships between soil erodibility factor and rain and overland flow powers, the evolution of both parameters with the erodibility factor follow a polynomial function with high coefficient of determination. From their coefficients of determination (R2=0.95) for rain power and (R2=0.96) for overland flow power, we can conclude that the flow has more power to detach particles than rain. This could be explained by the fact that the presence of particles, already detached by rain and transported by the flow, give the flow more weight and then contribute to the detachment of particles by collision.Keywords: Laboratory experiments, soil erosion, flow power, erodibility, rainfall intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062931 Ecosystem Post-Wildfire Effects of Thasos Island
Authors: George D. Ranis, Valasia Iakovoglou, George N. Zaimes
Abstract:
Fires is one of the main types of disturbances that shape ecosystems in the Mediterranean region. However nowadays, climate alterations towards higher temperatures result on increased levels of fire intensity, frequency and spread as well as difficulties for natural regeneration to occur. Thasos Island is one of the Greek islands that has experienced those problems. Since 1984, a series of wildfires led to the reduction of forest cover from 61.6% to almost 20%. The negative impacts were devastating in many different aspects for the island. The absence of plant cover, post-wildfire precipitation and steep slopes were the major factors that induced severe soil erosion and intense floods. That also resulted to serious economic problems to the local communities and the inability of the burnt areas to regenerate naturally. Despite the substantial amount of published work regarding Thasos wildfires, there is no information related to post-wildfire effects on factors such as soil erosion. More research related to post-fire effects should help to an overall assessment of the negative impacts of wildfires on land degradation through processes such as soil erosion and flooding.Keywords: Erosion, land degradation, Mediterranean islands, regeneration, Thasos, wildfires.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262930 Investigation of the Possibility to Prepare Supervised Classification Map of Gully Erosion by RS and GIS
Authors: Ali Mohammadi Torkashvand, Hamid Reza Alipour
Abstract:
This study investigates the possibility providing gully erosion map by the supervised classification of satellite images (ETM+) in two mountainous and plain land types. These land types were the part of Varamin plain, Tehran province, and Roodbar subbasin, Guilan province, as plain and mountain land types, respectively. The position of 652 and 124 ground control points were recorded by GPS respectively in mountain and plain land types. Soil gully erosion, land uses or plant covers were investigated in these points. Regarding ground control points and auxiliary points, training points of gully erosion and other surface features were introduced to software (Ilwis 3.3 Academic). The supervised classified map of gully erosion was prepared by maximum likelihood method and then, overall accuracy of this map was computed. Results showed that the possibility supervised classification of gully erosion isn-t possible, although it need more studies for results generalization to other mountainous regions. Also, with increasing land uses and other surface features in plain physiography, it decreases the classification of accuracy.Keywords: Supervised classification, Gully erosion, Map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826929 A Four Method Framework for Fighting Software Architecture Erosion
Authors: Sundus Ayyaz, Saad Rehman, Usman Qamar
Abstract:
Software Architecture is the basic structure of software that states the development and advancement of a software system. Software architecture is also considered as a significant tool for the construction of high quality software systems. A clean design leads to the control, value and beauty of software resulting in its longer life while a bad design is the cause of architectural erosion where a software evolution completely fails. This paper discusses the occurrence of software architecture erosion and presents a set of methods for the detection, declaration and prevention of architecture erosion. The causes and symptoms of architecture erosion are observed with the examples of prescriptive and descriptive architectures and the practices used to stop this erosion are also discussed by considering different types of software erosion and their affects. Consequently finding and devising the most suitable approach for fighting software architecture erosion and in some way reducing its affect is evaluated and tested on different scenarios.
Keywords: Software Architecture, Architecture Erosion, Prescriptive Architecture, Descriptive Architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152928 Using Field Indices of Rill and Gully in order to Erosion Estimating and Sediment Analysis (Case Study: Menderjan Watershed in Isfahan Province, Iran)
Authors: Masoud Nasri, Sadat Feiznia, Mohammad Jafari, Hasan Ahmadi
Abstract:
Today, incorrect use of lands and land use changes, excessive grazing, no suitable using of agricultural farms, plowing on steep slopes, road construct, building construct, mine excavation etc have been caused increasing of soil erosion and sediment yield. For erosion and sediment estimation one can use statistical and empirical methods. This needs to identify land unit map and the map of effective factors. However, these empirical methods are usually time consuming and do not give accurate estimation of erosion. In this study, we applied GIS techniques to estimate erosion and sediment of Menderjan watershed at upstream Zayandehrud river in center of Iran. Erosion faces at each land unit were defined on the basis of land use, geology and land unit map using GIS. The UTM coordinates of each erosion type that showed more erosion amounts such as rills and gullies were inserted in GIS using GPS data. The frequency of erosion indicators at each land unit, land use and their sediment yield of these indices were calculated. Also using tendency analysis of sediment yield changes in watershed outlet (Menderjan hydrometric gauge station), was calculated related parameters and estimation errors. The results of this study according to implemented watershed management projects can be used for more rapid and more accurate estimation of erosion than traditional methods. These results can also be used for regional erosion assessment and can be used for remote sensing image processing.Keywords: Erosion and sedimentation, Gully, Rill, GIS, GPS, Menderjan Watershed
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906927 Plants Cover Effects on Overland Flow and on Soil Erosion under Simulated Rainfall Intensity
Authors: H. Madi, L. Mouzai, M. Bouhadef
Abstract:
The purpose of this article is to study the effects of plants cover on overland flow and, therefore, its influences on the amount of eroded and transported soil. In this investigation, all the experiments were conducted in the LEGHYD laboratory using a rainfall simulator and a soil tray. The experiments were conducted using an experimental plot (soil tray) which is 2m long, 0.5 m wide and 0.15 m deep. The soil used is an agricultural sandy soil (62,08% coarse sand, 19,14% fine sand, 11,57% silt and 7,21% clay). Plastic rods (4 mm in diameter) were used to simulate the plants at different densities: 0 stem/m2 (bared soil), 126 stems/m², 203 stems/m², 461 stems/m² and 2500 stems/m²). The used rainfall intensity is 73mm/h and the soil tray slope is fixed to 3°. The results have shown that the overland flow velocities decreased with increasing stems density, and the density cover has a great effect on sediment concentration. Darcy–Weisbach and Manning friction coefficients of overland flow increased when the stems density increased. Froude and Reynolds numbers decreased with increasing stems density and, consequently, the flow regime of all treatments was laminar and subcritical. From these findings, we conclude that increasing the plants cover can efficiently reduce soil loss and avoid denuding the roots plants.
Keywords: Soil erosion, vegetation, stems density, overland flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3126926 Use of Vegetation and Geo-Jute in Erosion Control of Slopes in a Sub-Tropical Climate
Authors: Mohammad Shariful Islam, Shamima Nasrin, Md. Shahidul Islam, Farzana Rahman Moury
Abstract:
Protection of slope and embankment from erosion has become an important issue in Bangladesh. The constructions of strong structures require large capital, integrated designing, high maintenance cost. Strong structure methods have negative impact on the environment and sometimes not function for the design period. Plantation of vetiver system along the slopes is an alternative solution. Vetiver not only serves the purpose of slope protection but also adds green environment reducing pollution. Vetiver is available in almost all the districts of Bangladesh. This paper presents the application of vetiver system with geo-jute, for slope protection and erosion control of embankments and slopes. In-situ shear tests have been conducted on vetiver rooted soil system to find the shear strength. The shear strength and effective soil cohesion of vetiver rooted soil matrix are respectively 2.0 times and 2.1 times higher than that of the bared soil. Similar trends have been found in direct shear tests conducted on laboratory reconstituted samples. Field trials have been conducted in road embankment and slope protection with vetiver at different sites. During the time of vetiver root growth the soil protection has been accomplished by geo-jute. As the geo-jute degrades with time, vetiver roots grow and take over the function of geo-jutes. Slope stability analyses showed that vegetation increase the factor of safety significantly.Keywords: Erosion, geo-jute, green technology, vegetation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4163925 Experimental Study of Subsurface Erosion in River Banks
Authors: F. Imanshoar, M. R. M. Tabatabai, Y. Hassanzadeh, M. Rostamipoor
Abstract:
Subsurface erosion in river banks and its details, in spite of its occurrence in various parts of the world has rarely been paid attention by researchers. In this paper, quantitative concept of the subsurface bank erosion has been investigated for vertical banks. Vertical banks were simulated experimentally by considering a sandy erodible layer overlaid by clayey one under uniformly distributed constant overhead pressure. Results of the experiments are indicated that rate of sandy layer erosion is decreased by an increase in overburden; likewise, substituting 20% of coarse (3.5 mm) sand layer bed material by fine material (1.4 mm) may lead to a decrease in erosion rate by one-third. This signifies the importance of the bed material composition effect on sandy layers erosion due to subsurface erosion in river banks.Keywords: Subsurface Erosion, Vertical Banks, Bed Material Size
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070924 Solid Particle Erosion of Heat Treated TNB-V4 at Ambient and Elevated Temperatures
Authors: Muhammad Naveed, Richard Stechow, Sebastian Bolz, Katharina Hobusch, Sabine Weiß
Abstract:
Solid particle erosion has been identified as a critical wear phenomenon which takes place during operation of aeroengines in dusty environment. The present work discusses the erosion behavior of Ti-44.5Al-6.25Nb-0.8Mo-0.1B alloy (TNB-V4) which finds its application in low pressure gas turbines and can be used for high pressure compressors too. Prior to the erosion tests, the alloy was heat treated to improve the mechanical properties. Afterwards, specimens were eroded at impact angles of 30° and 90° at room and high temperatures (100 °C-400 °C). Volume loss and erosion behavior are studied through gravimetric analysis, whereas erosion mechanisms are characterized through scanning electron microscopy. The results indicate a clear difference in the erosion mechanism for different impact angles. The influence of the test temperature on the erosion behavior of the alloy is also discussed in the present contribution.
Keywords: Solid particle erosion, gamma TiAl, TNB-V4, high temperature erosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517923 Conservation Techniques for Soil Erosion Control in Tobacco-Based Farming System at Steep Land Areas of Progo Hulu Subwatershed, Central Java, Indonesia
Authors: Jaka Suyana, Komariah, Masateru Senge
Abstract:
This research was aimed at determining the impact of conservation techniques including bench terrace, stone terrace, mulching, grass strip and intercropping on soil erosion at tobacco-based farming system at Progo Hulu subwatershed, Central Java, Indonesia. Research was conducted from September 2007 to September 2009, located at Progo Hulu subwatershed, Central Java, Indonesia. Research site divided into 27 land units, and experimental fields were grouped based on the soil type and slope, ie: 30%, 45% and 70%, with the following treatments: 1) ST0= stone terrace (control); 2) ST1= stone terrace + Setaria spacelata grass strip on a 5 cm height dike at terrace lips + tobacco stem mulch with dose of 50% (7 ton/ ha); 3) ST2= stone terrace + Setaria spacelata grass strip on a 5 cm height dike at terrace lips + tobacco stem mulch with dose of 100% (14 ton/ ha); 4) ST3= stone terrace + tobacco and red bean intercropping + tobacco stem mulch with dose of 50% (7 ton/ ha). 5) BT0= bench terrace (control); 6) BT1= bench terrace + Setaria spacelata grass strip at terrace lips + tobacco stem mulch with dose of 50% (7 ton/ ha); 7) BT2= bench terrace + Setaria spacelata grass strip at terrace lips + tobacco stem mulch with dose of 100% (14 ton/ ha); 8) BT3= bench terrace + tobacco and red bean intercropping + tobacco stem mulch with dose of 50% (7 ton/ ha). The results showed that the actual erosion rates of research site were higher than that of tolerance erosion with mean value 89.08 ton/ha/year and 33.40 ton/ha/year, respectively. These resulted in 69% of total research site (5,119.15 ha) highly degraded. Conservation technique of ST2 was the most effective in suppressing soil erosion, by 42.87%, following with BT2 as much 30.63%. Others suppressed erosion only less than 21%.
Keywords: Steep land, subwatershed, conservation terrace, tolerance erosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2167922 NaCl Erosion-Corrosion of Mild Steel under Submerged Impingement Jet
Authors: M. Sadique, S. Ainane, Y. F. Yap, P. Rostron, E. Al Hajri
Abstract:
The presence of sand in production lines in the oil and gas industries causes material degradation due to erosion-corrosion. The material degradation caused by erosion-corrosion in pipelines can result in a high cost of monitoring and maintenance and in major accidents. The process of erosion-corrosion consists of erosion, corrosion, and their interactions. Investigating and understanding how the erosion-corrosion process affects the degradation process in certain materials will allow for a reduction in economic loss and help prevent accidents. In this study, material loss due to erosion-corrosion of mild steel under impingement of sand-laden water at 90˚ impingement angle is investigated using a submerged impingement jet (SIJ) test. In particular, effects of jet velocity and sand loading on TWL due to erosion-corrosion, weight loss due to pure erosion and erosion-corrosion interactions, at a temperature of 29-33 °C in sea water environment (3.5% NaCl), are analyzed. The results show that the velocity and sand loading have a great influence on the removal of materials, and erosion is more dominant under all conditions studied. Changes in the surface characteristics of the specimen after impingement test are also discussed.
Keywords: Erosion-corrosion, flow velocity, jet impingement, sand loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607921 Development of an Internet of Things System for Smart Crop Production
Authors: O. M. Olanrewaju, F. O. Echobu, A. G. Adesoji, E. D. Ajik, J. N. Ndabula, S. Luka
Abstract:
Nutrients are required for any soil with which plants thrive to improve efficient growth and productivity. Amongst these nutrients required for proper plant productivity are nitrogen, phosphorus and potassium (NPK). Due to factors like leaching, nutrient uptake by plants, soil erosion and evaporation, these elements tend to be in low quantity and the need to replenish them arises. However, this replenishment of soil nutrients cannot be done without a timely soil test to enable farmers to know the amount of each element in short quantity and evaluate the amount required to be added. Though wet soil analysis is good, it comes with a lot of challenges ranging from soil test gargets availability to the technical knowledge of how to conduct such soil tests by the common farmer. The Internet of Things test kit was developed to fill in the gaps created by wet soil analysis, as it can test for NPK, soil temperature and soil moisture in a given soil at the time of test. In this implementation, a sample test was carried out within 0.2 hectares of land divided into smaller plots. The kits performed adequately well, as the range of values obtained across the segments was within a very close range.
Keywords: Internet of things, soil nutrients, test kit, soil temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63920 Laboratory Experiments: Influence of Rainfall Characteristics on Runoff and Water Erosion
Authors: A. Moussouni, L. Mouzai, M. Bouhadef
Abstract:
The study concerns an experimental investigation in the laboratory of the water erosion using a rainfall simulator. We have focused our attention on the influence of rainfall intensity on some hydraulic characteristics. The results obtained allow us to conclude that there is a significant correlation between rainfall intensity and hydraulic characteristics of runoff (Reynolds number, Froude number) and sediment concentration.Keywords: Laboratory experiments, rainfall intensity, rainfall simulator, runoff, sediment concentration, soil erosion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2337919 Determination of Required Ion Exchange Solution for Stabilizing Clayey Soils with Various PI
Authors: R. Ziaie Moayed, F. Allahyari
Abstract:
Soil stabilization has been widely used to improve soil strength and durability or to prevent erosion and dust generation. Generally to reduce problems of clayey soils in engineering work and to stabilize these soils additional materials are used. The most common materials are lime, fly ash and cement. Using this materials, although improve soil property , but in some cases due to financial problems and the need to use special equipment are limited .One of the best methods for stabilization clayey soils is neutralization the clay particles. For this purpose we can use ion exchange materials. Ion exchange solution like CBR plus can be used for soil stabilization. One of the most important things in using CBR plus is determination the amount of this solution for various soils with different properties. In this study a laboratory experiment is conduct to evaluate the ion exchange capacity of three soils with various plasticity index (PI) to determine amount or required CBR plus solution for soil stabilization.Keywords: CBR plus, clayey soils, ion exchange, soil stabilization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450