Search results for: Mohammed A. Elhaj
273 Design and Analysis of Annular Combustion Chamber for a Micro Turbojet Engine
Authors: Rashid Slaheldinn Elhaj Mohammed
Abstract:
The design of high performance combustion chambers for turbojet engines is considered as one of the most challenges that face gas turbine designers, since the design approach depends on empirical correlations of data derived from the previous design experiences. The objective of this paper is to design a combustion chamber that suits the requirements of a micro-turbojet engine with 400 N output thrust and operates with kerosene as fuel. In this paper, only preliminary calculations related to the annular type of combustion chamber are explained in details. These calculations will cover the evaluation of reference quantities, calculation of required dimensions, calculation of air distribution and pressure drop, estimation of number and diameters for air admission holes, as well as aerodynamic considerations. The design process is then accompanied by analytical procedure using commercial CFD ANALYSIS tool; ANSYS 16 CFX software. After conducting CFD analysis, the design process will be then iterated in order to gain satisfactory results. It should be noted that the design of the fuel preparation and installation systems is beyond the scope of this work, and it will be discussed separately in another work.Keywords: Annular combustion chamber, micro-turbojet engine, CFD ANALYSIS, pressure drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092272 Exergy Analysis of a Solar Humidification- Dehumidification Desalination Unit
Authors: Mohammed A. Elhaj, Jamal S. Yassin
Abstract:
This paper presents the exergy analysis of a desalination unit using humidification-dehumidification process. Here, this unit is considered as a thermal system with three main components, which are the heating unit by using a solar collector, the evaporator or the humidifier, and the condenser or the dehumidifier. In these components the exergy is a measure of the quality or grade of energy and it can be destroyed in them. According to the second law of thermodynamics this destroyed part is due to irreversibilities which must be determined to obtain the exergetic efficiency of the system. In the current paper a computer program has been developed using visual basic to determine the exergy destruction and the exergetic efficiencies of the components of the desalination unit at variable operation conditions such as feed water temperature, outlet air temperature, air to feed water mass ratio and salinity, in addition to cooling water mass flow rate and inlet temperature, as well as quantity of solar irradiance. The results obtained indicate that the exergy efficiency of the humidifier increases by increasing the mass ratio and decreasing the outlet air temperature. In the other hand the exergy efficiency of the condenser increases with the increase of this ratio and also with the increase of the outlet air temperature.
Keywords: Exergy analysis, desalination, solar, humidifier, condenser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2470271 CFD Study for Normal and Rifled Tube with a Convergence Check
Authors: Sharfi Dirar, Shihab Elhaj, Ahmed El Fatih
Abstract:
Computational fluid dynamics were used to simulate and study the heated water boiler tube for both normal and rifled tube with a refinement of the mesh to check the convergence. The operation condition was taken from GARRI power station and used in a boundary condition accordingly. The result indicates the rifled tube has higher heat transfer efficiency than the normal tube.Keywords: Boiler tube, Convergence Check, Normal Tube, Rifled Tube.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462270 Performance Augmentation of a Combined Cycle Power Plant with Waste Heat Recovery and Solar Energy
Authors: Mohammed A. Elhaj, Jamal S. Yassin
Abstract:
In the present time, energy crises is considered a severe problem across the world. For the protection of global environment and maintain ecological balance, energy saving is considered one of the most vital issues from the view point of fuel consumption. As the industrial sectors everywhere continue efforts to improve their energy efficiency, recovering waste heat losses provides an attractive opportunity for an emission free and less costly energy resource. In the other hand the using of solar energy has become more insistent particularly after the high gross of prices and running off the conventional energy sources. Therefore, it is essential that we should endeavor for waste heat recovery as well as solar energy by making significant and concrete efforts. For these reasons this investigation is carried out to study and analyze the performance of a power plant working by a combined cycle in which heat recovery system generator (HRSG) gets its energy from the waste heat of a gas turbine unit. Evaluation of the performance of the plant is based on different thermal efficiencies of the main components in addition to the second law analysis considering the exergy destructions for the whole components. The contribution factors including the solar as well as the wasted energy are considered in the calculations. The final results have shown that there is significant exergy destruction in solar concentrator and the combustion chamber of the gas turbine unit. Other components such as compressor, gas turbine, steam turbine and heat exchangers having insignificant exergy destruction. Also, solar energy can contribute by about 27% of the input energy to the plant while the energy lost with exhaust gases can contribute by about 64% at maximum cases.
Keywords: Solar energy, environment, efficiency, waste heat, steam generator, performance, exergy destruction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130269 Thermal Performance of an Air Heating Storing System
Authors: Mohammed A. Elhaj, Jamal S. Yassin
Abstract:
Owing to the lack of synchronization between the solar energy availability and the heat demands in a specific application, the energy storing sub-system is necessary to maintain the continuity of thermal process. The present work is dealing with an active solar heating storing system in which an air solar collector is connected to storing unit where this energy is distributed and provided to the heated space in a controlled manner. The solar collector is a box type absorber where the air flows between a number of vanes attached between the collector absorber and the bottom plate. This design can improve the efficiency due to increasing the heat transfer area exposed to the flowing air, as well as the heat conduction through the metal vanes from the top absorbing surface. The storing unit is a packed bed type where the air is coming from the air collector and circulated through the bed in order to add/remove the energy through the charging / discharging processes, respectively. The major advantage of the packed bed storage is its high degree of thermal stratification. Numerical solution of the packed bed energy storage is considered through dividing the bed into a number of equal segments for the bed particles and solved the energy equation for each segment depending on the neighbor ones. The studied design and performance parameters in the developed simulation model including, particle size, void fraction, etc. The final results showed that the collector efficiency was fluctuated between 55%-61% in winter season (January) under the climatic conditions of Misurata in Libya. Maximum temperature of 52ºC is attained at the top of the bed while the lower one is 25ºC at the end of the charging process of hot air into the bed. This distribution can satisfy the required load for the most house heating in Libya.
Keywords: Solar energy, thermal process, performance, collector, packed bed, numerical analysis, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997268 Robust Semi-Blind Digital Image Watermarking Technique in DT-CWT Domain
Authors: Samira Mabtoul, Elhassan Ibn Elhaj, Driss Aboutajdine
Abstract:
In this paper a new robust digital image watermarking algorithm based on the Complex Wavelet Transform is proposed. This technique embeds different parts of a watermark into different blocks of an image under the complex wavelet domain. To increase security of the method, two chaotic maps are employed, one map is used to determine the blocks of the host image for watermark embedding, and another map is used to encrypt the watermark image. Simulation results are presented to demonstrate the effectiveness of the proposed algorithm.Keywords: Image watermarking, Chaotic map, DT-CWT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691267 The Effect of the Direct Contact Heat Exchanger on Steam Power Plant
Authors: Mohamed A. Elhaj, Salahedin A. Aljahime
Abstract:
An actual power plant, which is the power plant of Iron and Steel Factory at Misurata city in Libya , has been modeled using Matlab in order to compare its results to the actual results of the actual cycle. This paper concentrates on two factors: a- The comparison between exergy losses in the actual cycle and the modeled cycle. b- The effect of extracting pressure on temperature water at boiler inlet. Closed heat exchangers used in this plant have been substituted by open heat exchangers in the current study of the modeled power plant and the required changes in the pressure have been considered. In the following investigation the two points mentioned above are taken in consideration.Keywords: Steam Power Plant, Contact Heat exchanger, Exergy, Cycle Efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364266 Optimal and Generalized Multiple Descriptions Image Coding Transform in the Wavelet Domain
Authors: Bahi brahim, El hassane Ibn Elhaj, Driss Aboutajdine
Abstract:
In this paper we propose a Multiple Description Image Coding(MDIC) scheme to generate two compressed and balanced rates descriptions in the wavelet domain (Daubechies biorthogonal (9, 7) wavelet) using pairwise correlating transform optimal and application method for Generalized Multiple Description Coding (GMDC) to image coding in the wavelet domain. The GMDC produces statistically correlated streams such that lost streams can be estimated from the received data. Our performance test shown that the proposed method gives more improvement and good quality of the reconstructed image when the wavelet coefficients are normalized by Gaussian Scale Mixture (GSM) model then the Gaussian one ,.
Keywords: Multiple description coding (MDC), gaussian scale mixture (GSM) model, joint source-channel coding, pairwise correlating transform, GMDCT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616265 Numerical Investigation on Damage Evolution of Piles inside Liquefied Soil Foundation - Dynamic-Loading Experiments -
Authors: Ahmed Mohammed Youssef Mohammed, Mohammad Reza Okhovat, Koichi Maekawa
Abstract:
The large and small-scale shaking table tests, which was conducted for investigating damage evolution of piles inside liquefied soil, are numerically simulated and experimental verified by the3D nonlinear finite element analysis. Damage evolution of elasto-plastic circular steel piles and reinforced concrete (RC) one with cracking and yield of reinforcement are focused on, and the failure patterns and residual damages are captured by the proposed constitutive models. The superstructure excitation behind quay wall is reproduced as well.Keywords: Soil-Structure Interaction, Piles, Soil Liquefaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1994264 Experimental and Numerical Study of A/C Outletsand Its Impact on Room Airflow Characteristics
Authors: Mohammed A. Aziz, Ibrahim A. M. Gad, El Shahat F. A. Mohammed, Ramy H. Mohammed
Abstract:
This paper investigates experimental and numerical study of the airflow characteristics for vortex, round and square ceiling diffusers and its effect on the thermal comfort in a ventilated room. Three different thermal comfort criteria namely; Mean Age of the Air (MAA), ventilation effectiveness (E), and Effective Draft Temperature (EDT) have been used to predict the thermal comfort zone inside the room. In experimental work, a sub-scale room is set-up to measure the temperature field in the room. In numerical analysis, unstructured grids have been used to discretize the numerical domain. Conservation equations are solved using FLUENT commercial flow solver. The code is validated by comparing the numerical results obtained from three different turbulence models with the available experimental data. The comparison between the various numerical models shows that the standard k-ε turbulence model can be used to simulate these cases successfully. After validation of the code, effect of supply air velocity on the flow and thermal field could be investigated and hence the thermal comfort. The results show that the pressure coefficient created by the square diffuser is 1.5 times greater than that created by the vortex diffuser. The velocity decay coefficient is nearly the same for square and round diffusers and is 2.6 times greater than that for the vortex diffuser.
Keywords: Ceiling diffuser, Thermal Comfort, MAA, EDT, Fluent, Turbulence model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141263 A Combined Practical Approach to Condition Monitoring of Reciprocating Compressors using IAS and Dynamic Pressure
Authors: M. Elhaj, M. Almrabet, M. Rgeai, I. Ehtiwesh
Abstract:
A Comparison and evaluation of the different condition monitoring (CM) techniques was applied experimentally on RC e.g. Dynamic cylinder pressure and crankshaft Instantaneous Angular Speed (IAS), for the detection and diagnosis of valve faults in a two - stage reciprocating compressor for a programme of condition monitoring which can successfully detect and diagnose a fault in machine. Leakage in the valve plate was introduced experimentally into a two-stage reciprocating compressor. The effect of the faults on compressor performance was monitored and the differences with the normal, healthy performance noted as a fault signature been used for the detection and diagnosis of faults. The paper concludes with what is considered to be a unique approach to condition monitoring. First, each of the two most useful techniques is used to produce a Truth Table which details the circumstances in which each method can be used to detect and diagnose a fault. The two Truth Tables are then combined into a single Decision Table to provide a unique and reliable method of detection and diagnosis of each of the individual faults introduced into the compressor. This gives accurate diagnosis of compressor faults.Keywords: Condition Monitoring, Dynamic Pressure, Instantaneous Angular Speed, Reciprocating Compressor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3302262 Design Neural Network Controller for Mechatronic System
Authors: Ismail Algelli Sassi Ehtiwesh, Mohamed Ali Elhaj
Abstract:
The main goal of the study is to analyze all relevant properties of the electro hydraulic systems and based on that to make a proper choice of the neural network control strategy that may be used for the control of the mechatronic system. A combination of electronic and hydraulic systems is widely used since it combines the advantages of both. Hydraulic systems are widely spread because of their properties as accuracy, flexibility, high horsepower-to-weight ratio, fast starting, stopping and reversal with smoothness and precision, and simplicity of operations. On the other hand, the modern control of hydraulic systems is based on control of the circuit fed to the inductive solenoid that controls the position of the hydraulic valve. Since this circuit may be easily handled by PWM (Pulse Width Modulation) signal with a proper frequency, the combination of electrical and hydraulic systems became very fruitful and usable in specific areas as airplane and military industry. The study shows and discusses the experimental results obtained by the control strategy of neural network control using MATLAB and SIMULINK [1]. Finally, the special attention was paid to the possibility of neuro-controller design and its application to control of electro-hydraulic systems and to make comparative with other kinds of control.
Keywords: Neural-Network controller, Mechatronic, electrohydraulic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180261 Local Steerable Pyramid Binary Pattern Sequence LSPBPS for Face Recognition Method
Authors: Mohamed El Aroussi, Mohammed El Hassouni, Sanaa Ghouzali, Mohammed Rziza, Driss Aboutajdine
Abstract:
In this paper the problem of face recognition under variable illumination conditions is considered. Most of the works in the literature exhibit good performance under strictly controlled acquisition conditions, but the performance drastically drop when changes in pose and illumination occur, so that recently number of approaches have been proposed to deal with such variability. The aim of this work is to introduce an efficient local appearance feature extraction method based steerable pyramid (SP) for face recognition. Local information is extracted from SP sub-bands using LBP(Local binary Pattern). The underlying statistics allow us to reduce the required amount of data to be stored. The experiments carried out on different face databases confirm the effectiveness of the proposed approach.
Keywords: Face recognition (FR), Steerable pyramid (SP), localBinary Pattern (LBP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183260 Packing Theory for Natural and Crushed Aggregate to Obtain the Best Mix of Aggregate: Research and Development
Authors: Mohammed H. Mohammed, Mats Emborg, Roland Pusch, Sven Knutsson
Abstract:
Concrete performance is strongly affected by the particle packing degree since it determines the distribution of the cementitious component and the interaction of mineral particles. By using packing theory designers will be able to select optimal aggregate materials for preparing concrete with low cement content, which is beneficial from the point of cost. Optimum particle packing implies minimizing porosity and thereby reducing the amount of cement paste needed to fill the voids between the aggregate particles, taking also the rheology of the concrete into consideration. For reaching good fluidity superplasticizers are required. The results from pilot tests at LuleƄ University of Technology (LTU) show various forms of the proposed theoretical models, and the empirical approach taken in the study seems to provide a safer basis for developing new, improved packing models.Keywords: Aggregate mix, Computer program, Concrete mix design, Models of packing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3290259 Quantification of Methane Emissions from Solid Waste in Oman Using IPCC Default Methodology
Authors: Wajeeha A. Qazi, Mohammed-Hasham Azam, Umais A. Mehmood, Ghithaa A. Al-Mufragi, Noor-Alhuda Alrawahi, Mohammed F. M. Abushammala
Abstract:
Municipal Solid Waste (MSW) disposed in landfill sites decompose under anaerobic conditions and produce gases which mainly contain carbon dioxide (CO2) and methane (CH4). Methane has the potential of causing global warming 25 times more than CO2, and can potentially affect human life and environment. Thus, this research aims to determine MSW generation and the annual CH4 emissions from the generated waste in Oman over the years 1971-2030. The estimation of total waste generation was performed using existing models, while the CH4 emissions estimation was performed using the intergovernmental panel on climate change (IPCC) default method. It is found that total MSW generation in Oman might be reached 3,089 Gg in the year 2030, which approximately produced 85 Gg of CH4 emissions in the year 2030.
Keywords: Methane, emissions, landfills, solid waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127258 Improvement of Antibacterial Activity for Ceftazidime by Partially Purified Tannase from Penicillium expansum
Authors: Sahira N. Muslim, Alaa N. Mohammed, Saba Saadoon Khazaal, Batool Kadham Salman, Israa M. S. AL-Kadmy, Sraa N. Muslim, Ahmed S. Dwaish, Sawsan Mohammed Kareem, Sarah N. Aziz, Ruaa A. Jasim
Abstract:
Tannase has wide applications in food, beverage, brewing, cosmetics and chemical industries and one of the major applications of tannase is the production of gallic acid. Gallic acid is used for manufacturing of trimethoprim. In the present study, a local fungal strain of Penicillium expansum A4 isolated from spoilt apple samples gave the highest production level of tannase. Tannase was partially purified with a recovery yield of 92.52% and 6.32 fold of purification by precipitation using ammonium sulfate at 50% saturation. Tannase led to increased antimicrobial activity of ceftazidime against Pseudomonas aeruginosa and S. aureus and had a synergism effect at low concentrations of ceftazidime, and thus, tannase may be a useful adjuvant agent for the treatment of many bacterial infections in combination with ceftazidime.
Keywords: Ceftazidime, Penicillium expansum, tannase, antimicrobial activity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1024257 Damage Evolution of Underground Structural Reinforced Concrete Small-Scale Static-Loading Experiments
Authors: Ahmed Mohammed Youssef Mohammed, Mohammad Reza Okhovat, Koichi Maekawa
Abstract:
Small-scale RC models of both piles and tunnel ducts were produced as mockups of reality and loaded under soil confinement conditionsto investigate the damage evolution of structural RC interacting with soil. Experimental verifications usinga 3D nonlinear FE analysis program called COM3D, which was developed at the University of Tokyo, are introduced. This analysis has been used in practice for seismic performance assessment of underground ducts and in-ground LNG storage tanks in consideration of soil-structure interactionunder static and dynamic loading. Varying modes of failure of RCpilessubjected to different magnitudes of soil confinement were successfully reproduced in the proposed small-scale experiments and numerically simulated as well. Analytical simulation was applied to RC tunnel mockups under a wide variety of depth and soil confinement conditions, and reasonable matching was confirmed.Keywords: Soil-Structure Interaction, RC pile, RC Tunnel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284256 Optimizing Exposure Parameters in Digital Mammography: A Study in Morocco
Authors: Talbi Mohammed, Oustous Aziz, Ben Messaoud Mounir, Sebihi Rajaa, Khalis Mohammed
Abstract:
Background: Breast cancer is the leading cause of death for women around the world. Screening mammography is the reference examination, due to its sensitivity for detecting small lesions and micro-calcifications. Therefore, it is essential to ensure quality mammographic examinations with the most optimal dose. These conditions depend on the choice of exposure parameters. Clinically, practices must be evaluated in order to determine the most appropriate exposure parameters. Material and Methods: We performed our measurements on a mobile mammography unit (PLANMED Sofie-classic.) in Morocco. A solid dosimeter (AGMS Radcal) and a MTM 100 phantom allow to quantify the delivered dose and the image quality. For image quality assessment, scores are defined by the rate of visible inserts (MTM 100 phantom), obtained and compared for each acquisition. Results: The results show that the parameters of the mammography unit on which we have made our measurements can be improved in order to offer a better compromise between image quality and breast dose. The last one can be reduced up from 13.27% to 22.16%, while preserving comparable image quality.
Keywords: Mammography, image quality, breast dose.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783255 Quick Sequential Search Algorithm Used to Decode High-Frequency Matrices
Authors: Mohammed M. Siddeq, Mohammed H. Rasheed, Omar M. Salih, Marcos A. Rodrigues
Abstract:
This research proposes a data encoding and decoding method based on the Matrix Minimization algorithm. This algorithm is applied to high-frequency coefficients for compression/encoding. The algorithm starts by converting every three coefficients to a single value; this is accomplished based on three different keys. The decoding/decompression uses a search method called QSS (Quick Sequential Search) Decoding Algorithm presented in this research based on the sequential search to recover the exact coefficients. In the next step, the decoded data are saved in an auxiliary array. The basic idea behind the auxiliary array is to save all possible decoded coefficients; this is because another algorithm, such as conventional sequential search, could retrieve encoded/compressed data independently from the proposed algorithm. The experimental results showed that our proposed decoding algorithm retrieves original data faster than conventional sequential search algorithms.
Keywords: Matrix Minimization Algorithm, Decoding Sequential Search Algorithm, image compression, Discrete Cosine Transform, Discrete Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 246254 Local Curvelet Based Classification Using Linear Discriminant Analysis for Face Recognition
Authors: Mohammed Rziza, Mohamed El Aroussi, Mohammed El Hassouni, Sanaa Ghouzali, Driss Aboutajdine
Abstract:
In this paper, an efficient local appearance feature extraction method based the multi-resolution Curvelet transform is proposed in order to further enhance the performance of the well known Linear Discriminant Analysis(LDA) method when applied to face recognition. Each face is described by a subset of band filtered images containing block-based Curvelet coefficients. These coefficients characterize the face texture and a set of simple statistical measures allows us to form compact and meaningful feature vectors. The proposed method is compared with some related feature extraction methods such as Principal component analysis (PCA), as well as Linear Discriminant Analysis LDA, and independent component Analysis (ICA). Two different muti-resolution transforms, Wavelet (DWT) and Contourlet, were also compared against the Block Based Curvelet-LDA algorithm. Experimental results on ORL, YALE and FERET face databases convince us that the proposed method provides a better representation of the class information and obtains much higher recognition accuracies.Keywords: Curvelet, Linear Discriminant Analysis (LDA) , Contourlet, Discreet Wavelet Transform, DWT, Block-based analysis, face recognition (FR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807253 Application of the Piloting Law Based on Adaptive Differentiators via Second Order Sliding Mode for a Fixed Wing Aircraft
Authors: Zaouche Mohammed, Amini Mohammed, Foughali Khaled, Hamissi Aicha, Aktouf Mohand Arezki, Boureghda Ilyes
Abstract:
In this paper, we present a piloting law based on the adaptive differentiators via high order sliding mode controller, by using an aircraft in virtual simulated environment. To deal with the design of an autopilot controller, we propose a framework based on Software in the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. The aircraft dynamic model is nonlinear, Multi-Input Multi-Output (MIMO) and tightly coupled. The nonlinearity resides in the dynamic equations and also in the aerodynamic coefficients' variability. In our case, two (02) aircrafts are used in the flight tests, the Zlin-142 and MQ-1 Predator. For both aircrafts and in a very low altitude flight, we send the piloting control inputs to the aircraft which has stalled due to a command disconnection. Then, we present the aircraft’s dynamic behavior analysis while reestablishing the command transmission. Finally, a comparative study between the two aircraft’s dynamic behaviors is presented.
Keywords: Adaptive differentiators, Microsoft Flight Simulator, MQ-1 predator, second order sliding modes, Zlin-142.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1216252 Acoustic Detection of the Red Date Palm Weevil
Authors: Mohammed A. Al-Manie, Mohammed I. Alkanhal
Abstract:
In this paper, acoustic techniques are used to detect hidden insect infestations of date palm tress (Phoenix dactylifera L.). In particular, we use an acoustic instrument for early discovery of the presence of a destructive insect pest commonly known as the Red Date Palm Weevil (RDPW) and scientifically as Rhynchophorus ferrugineus (Olivier). This type of insect attacks date palm tress and causes irreversible damages at late stages. As a result, the infected trees must be destroyed. Therefore, early presence detection is a major part in controlling the spread and economic damage caused by this type of infestation. Furthermore monitoring and early detection of the disease can asses in taking appropriate measures such as isolating or treating the infected trees. The acoustic system is evaluated in terms of its ability for early discovery of hidden bests inside the tested tree. When signal acquisitions is completed for a number of date palms, a signal processing technique known as time-frequency analysis is evaluated in terms of providing an estimate that can be visually used to recognize the acoustic signature of the RDPW. The testing instrument was tested in the laboratory first then; it was used on suspected or infested tress in the field. The final results indicate that the acoustic monitoring approach along with signal processing techniques are very promising for the early detection of presence of the larva as well as the adult pest in the date palms.
Keywords: Acoustic emissions, acoustic sensors, nondestructivetests, Red Date Palm Weevil, signal processing..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2619251 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life due to the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or COVID-19 induced pneumonia. The early prediction and classification of such lung diseases help reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans are pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publicly available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.
Keywords: CT scans, COVID-19, deep learning, image processing, pneumonia, lung disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 608250 Computable Function Representations Using Effective Chebyshev Polynomial
Authors: Mohammed A. Abutheraa, David Lester
Abstract:
We show that Chebyshev Polynomials are a practical representation of computable functions on the computable reals. The paper presents error estimates for common operations and demonstrates that Chebyshev Polynomial methods would be more efficient than Taylor Series methods for evaluation of transcendental functions.
Keywords: Approximation Theory, Chebyshev Polynomial, Computable Functions, Computable Real Arithmetic, Integration, Numerical Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3086249 A Programming Solution for Moving Mobile Transaction
Authors: Osman Mohammed Hegazy, Ali Hamed El Bastawissy, Romani Farid Ibrahim
Abstract:
In this paper, our concern is the management of mobile transactions in the shared area among many servers, when the mobile user moves from one cell to another in online partiallyreplicated distributed mobile database environment. We defined the concept of transaction and classified the different types of transactions. Based on this analysis, we propose an algorithm that handles the disconnection due to moving among sites.
Keywords: Concurrency, mobile database, transaction processing, two phase locking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672248 Future of Electric Power Generation Technologies: Environmental and Economic Comparison
Authors: Abdulrahman A. Bahaddad, Mohammed Beshir
Abstract:
The objective of this paper is to demonstrate and describe eight different types of power generation technologies and to understand the history and future trends of each technology. In addition, a comparative analysis between these technologies will be presented with respect to their cost analysis and associated performance.
Keywords: Conventional power generation, economic analysis, environmental impact, renewable energy power generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250247 Microstructure Parameters of a Super-Ionic Sample (Csag2i3)
Authors: Samir Osman M., Mohammed Hassan S.
Abstract:
Sample of CsAg2I3 was prepared by solid state reaction. Then, microstructure parameters of this sample have been determined using wide angle X-ray scattering WAXS method. As well as, Cell parameters of crystal structure have been refined using CHEKCELL program. This analysis states that the lattice intrinsic strainof the sample is so small and the crystal size is on the order of 559Å.
Keywords: WAXS, Microstructure parameters, super-ionic conductor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1353246 Image Segmentation Using 2-D Histogram in RGB Color Space in Digital Libraries
Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed
Abstract:
This paper presents an unsupervised color image segmentation method. It is based on a hierarchical analysis of 2-D histogram in RGB color space. This histogram minimizes storage space of images and thus facilitates the operations between them. The improved segmentation approach shows a better identification of objects in a color image and, at the same time, the system is fast.Keywords: Image segmentation, hierarchical analysis, 2-D histogram, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625245 Study of the Azo Hydrazone Tautomerism in the 4-(9-Anthrylazo) Phenol
Authors: Ramadan Ali Bawa, Ebtisam Mohammed Alzaraide
Abstract:
The spectroscopic study on 4-(9-anthrylazo) phenol has revealed that the azo dye under study exists in two tautomeric forms which are azo phenol and hydrazo keto forms in ratio of almost (1:1). The azo hydrazone tautomerism was confirmed by the use of IR spectroscopy and HNMR in which the characteristic absorption bands and chemical shifts for both tautomers were assigned.
Keywords: Spectroscopic, tautomeric forms, azo hydrazone tautomerism, IR spectroscopy, HNMR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2842244 Services-Oriented Model for the Regulation of Learning
Authors: Mohamed Bendahmane, Brahim Elfalaki, Mohammed Benattou
Abstract:
One of the major sources of learners' professional difficulties is their heterogeneity. Whether on cognitive, social, cultural or emotional level, learners being part of the same group have many differences. These differences do not allow to apply the same learning process at all learners. Thus, an optimal learning path for one, is not necessarily the same for the other. We present in this paper a model-oriented service to offer to each learner a personalized learning path to acquire the targeted skills.
Keywords: Service-oriented architecture, learning path, web service, personalization, trace analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033