Search results for: Influence maximization
2269 Influence Maximization in Dynamic Social Networks and Graphs
Authors: Gkolfo I. Smani, Vasileios Megalooikonomou
Abstract:
Influence and influence diffusion have been studied extensively in social networks. However, most existing literature on this task are limited on static networks, ignoring the fact that the interactions between users change over time. In this paper, the problem of maximizing influence diffusion in dynamic social networks, i.e., the case of networks that change over time is studied. The DM algorithm is an extension of Matrix Influence (MATI) algorithm and solves the Influence Maximization (IM) problem in dynamic networks and is proposed under the Linear Threshold (LT) and Independent Cascade (IC) models. Experimental results show that our proposed algorithm achieves a diffusion performance better by 1.5 times than several state-of-the-art algorithms and comparable results in diffusion scale with the Greedy algorithm. Also, the proposed algorithm is 2.4 times faster than previous methods.
Keywords: Influence maximization, dynamic social networks, diffusion, social influence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4152268 Navigation Patterns Mining Approach based on Expectation Maximization Algorithm
Authors: Norwati Mustapha, Manijeh Jalali, Abolghasem Bozorgniya, Mehrdad Jalali
Abstract:
Web usage mining algorithms have been widely utilized for modeling user web navigation behavior. In this study we advance a model for mining of user-s navigation pattern. The model makes user model based on expectation-maximization (EM) algorithm.An EM algorithm is used in statistics for finding maximum likelihood estimates of parameters in probabilistic models, where the model depends on unobserved latent variables. The experimental results represent that by decreasing the number of clusters, the log likelihood converges toward lower values and probability of the largest cluster will be decreased while the number of the clusters increases in each treatment.Keywords: Web Usage Mining, Expectation maximization, navigation pattern mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15792267 Arabic Character Recognition Using Regression Curves with the Expectation Maximization Algorithm
Authors: Abdullah A. AlShaher
Abstract:
In this paper, we demonstrate how regression curves can be used to recognize 2D non-rigid handwritten shapes. Each shape is represented by a set of non-overlapping uniformly distributed landmarks. The underlying models utilize 2nd order of polynomials to model shapes within a training set. To estimate the regression models, we need to extract the required coefficients which describe the variations for a set of shape class. Hence, a least square method is used to estimate such modes. We then proceed by training these coefficients using the apparatus Expectation Maximization algorithm. Recognition is carried out by finding the least error landmarks displacement with respect to the model curves. Handwritten isolated Arabic characters are used to evaluate our approach.
Keywords: Shape recognition, Arabic handwritten characters, regression curves, expectation maximization algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7132266 Reconstruction of Binary Matrices Satisfying Neighborhood Constraints by Simulated Annealing
Authors: Divyesh Patel, Tanuja Srivastava
Abstract:
This paper considers the NP-hard problem of reconstructing binary matrices satisfying exactly-1-4-adjacency constraint from its row and column projections. This problem is formulated into a maximization problem. The objective function gives a measure of adjacency constraint for the binary matrices. The maximization problem is solved by the simulated annealing algorithm and experimental results are presented.
Keywords: Discrete Tomography, exactly-1-4-adjacency, simulated annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24572265 Chemical Reaction Algorithm for Expectation Maximization Clustering
Authors: Li Ni, Pen ManMan, Li KenLi
Abstract:
Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.Keywords: Chemical reaction optimization, expectation maximization, initial, objective function clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12932264 Lifetime Maximization in Wireless Ad Hoc Networks with Network Coding and Matrix Game
Authors: Jain-Shing Liu
Abstract:
In this paper, we present a matrix game-theoretic cross-layer optimization formulation to maximize the network lifetime in wireless ad hoc networks with network coding. To this end, we introduce a cross-layer formulation of general NUM (network utility maximization) that accommodates routing, scheduling, and stream control from different layers in the coded networks. Specifically, for the scheduling problem and then the objective function involved, we develop a matrix game with the strategy sets of the players corresponding to hyperlinks and transmission modes, and design the payoffs specific to the lifetime. In particular, with the inherit merit that matrix game can be solved with linear programming, our cross-layer programming formulation can benefit from both game-based and NUM-based approaches at the same time by cooperating the programming model for the matrix game with that for the other layers in a consistent framework. Finally, our numerical example demonstrates its performance results on a well-known wireless butterfly network to verify the cross-layer optimization scheme.Keywords: Cross-layer design, Lifetime maximization, Matrix game, Network coding
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16942263 Probability Density Estimation Using Advanced Support Vector Machines and the Expectation Maximization Algorithm
Authors: Refaat M Mohamed, Ayman El-Baz, Aly A. Farag
Abstract:
This paper presents a new approach for the prob-ability density function estimation using the Support Vector Ma-chines (SVM) and the Expectation Maximization (EM) algorithms.In the proposed approach, an advanced algorithm for the SVM den-sity estimation which incorporates the Mean Field theory in the learning process is used. Instead of using ad-hoc values for the para-meters of the kernel function which is used by the SVM algorithm,the proposed approach uses the EM algorithm for an automatic optimization of the kernel. Experimental evaluation using simulated data set shows encouraging results.
Keywords: Density Estimation, SVM, Learning Algorithms, Parameters Estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25062262 Influence of Distributed Generation on Congestion and LMP in Competitive Electricity Market
Authors: Durga Gautam, Mithulananthan Nadarajah
Abstract:
This paper presents the influence of distributed generation (DG) on congestion and locational marginal price (LMP) in an optimal power flow (OPF) based wholesale electricity market. The problem of optimal placement to manage congestion and reduce LMP is formulated for the objective of social welfare maximization. From competitive electricity market standpoint, DGs have great value when they reduce load in particular locations and at particular times when feeders are heavily loaded. The paper lies on the groundwork that solution to optimal mix of generation and transmission resources can be achieved by addressing congestion and corresponding LMP. Obtained as lagrangian multiplier associated with active power flow equation for each node, LMP gives the short run marginal cost (SRMC) of electricity. Specific grid locations are examined to study the influence of DG penetration on congestion and corresponding shadow prices. The influence of DG on congestion and locational marginal prices has been demonstrated in a modified IEEE 14 bus test system.
Keywords: Congestion management, distributed generation, electricity market, locational marginal price, optimal power flow, social welfare.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29182261 The Optimal Public Debt Ceiling in Taiwan: A Simulation Approach
Authors: Ho Yuan-Hong, Hunag Chiung-Ju
Abstract:
This study conducts simulation analyses to find the optimal debt ceiling of Taiwan, while factoring in welfare maximization under a dynamic stochastic general equilibrium framework. The simulation is based on Taiwan's 2001 to 2011 economic data and shows that welfare is maximized at a debt/GDP ratio of 0.2, increases in the debt/GDP ratio leads to increases in both tax and interest rates and decreases in the consumption ratio and working hours. The study results indicate that the optimal debt ceiling of Taiwan is 20% of GDP, where if the debt/GDP ratio is greater than 40%, the welfare will be negative and result in welfare loss.Keywords: Debt sustainability, optimal debt ceiling, dynamic stochastic general equilibrium, welfare maximization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23902260 Increasing Performance of Autopilot Guided Small Unmanned Helicopter
Authors: Tugrul Oktay, Mehmet Konar, Mustafa Soylak, Firat Sal, Murat Onay, Orhan Kizilkaya
Abstract:
In this paper, autonomous performance of a small manufactured unmanned helicopter is tried to be increased. For this purpose, a small unmanned helicopter is manufactured in Erciyes University, Faculty of Aeronautics and Astronautics. It is called as ZANKA-Heli-I. For performance maximization, autopilot parameters are determined via minimizing a cost function consisting of flight performance parameters such as settling time, rise time, overshoot during trajectory tracking. For this purpose, a stochastic optimization method named as simultaneous perturbation stochastic approximation is benefited. Using this approach, considerable autonomous performance increase (around %23) is obtained.Keywords: Small helicopters, hierarchical control, stochastic optimization, autonomous performance maximization, autopilots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16362259 Color Image Segmentation and Multi-Level Thresholding by Maximization of Conditional Entropy
Authors: R.Sukesh Kumar, Abhisek Verma, Jasprit Singh
Abstract:
In this work a novel approach for color image segmentation using higher order entropy as a textural feature for determination of thresholds over a two dimensional image histogram is discussed. A similar approach is applied to achieve multi-level thresholding in both grayscale and color images. The paper discusses two methods of color image segmentation using RGB space as the standard processing space. The threshold for segmentation is decided by the maximization of conditional entropy in the two dimensional histogram of the color image separated into three grayscale images of R, G and B. The features are first developed independently for the three ( R, G, B ) spaces, and combined to get different color component segmentation. By considering local maxima instead of the maximum of conditional entropy yields multiple thresholds for the same image which forms the basis for multilevel thresholding.Keywords: conditional entropy, multi-level thresholding, segmentation, two dimensional image histogram
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29982258 Protein Graph Partitioning by Mutually Maximization of cycle-distributions
Authors: Frank Emmert Streib
Abstract:
The classification of the protein structure is commonly not performed for the whole protein but for structural domains, i.e., compact functional units preserved during evolution. Hence, a first step to a protein structure classification is the separation of the protein into its domains. We approach the problem of protein domain identification by proposing a novel graph theoretical algorithm. We represent the protein structure as an undirected, unweighted and unlabeled graph which nodes correspond the secondary structure elements of the protein. This graph is call the protein graph. The domains are then identified as partitions of the graph corresponding to vertices sets obtained by the maximization of an objective function, which mutually maximizes the cycle distributions found in the partitions of the graph. Our algorithm does not utilize any other kind of information besides the cycle-distribution to find the partitions. If a partition is found, the algorithm is iteratively applied to each of the resulting subgraphs. As stop criterion, we calculate numerically a significance level which indicates the stability of the predicted partition against a random rewiring of the protein graph. Hence, our algorithm terminates automatically its iterative application. We present results for one and two domain proteins and compare our results with the manually assigned domains by the SCOP database and differences are discussed.Keywords: Graph partitioning, unweighted graph, protein domains.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13562257 Logistic Model Tree and Expectation-Maximization for Pollen Recognition and Grouping
Authors: Endrick Barnacin, Jean-Luc Henry, Jack Molinié, Jimmy Nagau, Hélène Delatte, Gérard Lebreton
Abstract:
Palynology is a field of interest for many disciplines. It has multiple applications such as chronological dating, climatology, allergy treatment, and even honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time-consuming task that requires the intervention of experts in the field, which is becoming increasingly rare due to economic and social conditions. So, the automation of this task is a necessity. Pollen slides analysis is mainly a visual process as it is carried out with the naked eye. That is the reason why a primary method to automate palynology is the use of digital image processing. This method presents the lowest cost and has relatively good accuracy in pollen retrieval. In this work, we propose a system combining recognition and grouping of pollen. It consists of using a Logistic Model Tree to classify pollen already known by the proposed system while detecting any unknown species. Then, the unknown pollen species are divided using a cluster-based approach. Success rates for the recognition of known species have been achieved, and automated clustering seems to be a promising approach.
Keywords: Pollen recognition, logistic model tree, expectation-maximization, local binary pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7702256 A Partially Accelerated Life Test Planning with Competing Risks and Linear Degradation Path under Tampered Failure Rate Model
Authors: Fariba Azizi, Firoozeh Haghighi, Viliam Makis
Abstract:
In this paper, we propose a method to model the relationship between failure time and degradation for a simple step stress test where underlying degradation path is linear and different causes of failure are possible. It is assumed that the intensity function depends only on the degradation value. No assumptions are made about the distribution of the failure times. A simple step-stress test is used to shorten failure time of products and a tampered failure rate (TFR) model is proposed to describe the effect of the changing stress on the intensities. We assume that some of the products that fail during the test have a cause of failure that is only known to belong to a certain subset of all possible failures. This case is known as masking. In the presence of masking, the maximum likelihood estimates (MLEs) of the model parameters are obtained through an expectation-maximization (EM) algorithm by treating the causes of failure as missing values. The effect of incomplete information on the estimation of parameters is studied through a Monte-Carlo simulation. Finally, a real example is analyzed to illustrate the application of the proposed methods.Keywords: Expectation-maximization (EM) algorithm, cause of failure, intensity, linear degradation path, masked data, reliability function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10732255 Multi-Objective Optimization Contingent on Subcarrier-Wise Beamforming for Multiuser MIMO-OFDM Interference Channels
Authors: R. Vedhapriya Vadhana, Ruba Soundar, K. G. Jothi Shalini
Abstract:
We address the problem of interference over all the channels in multiuser MIMO-OFDM systems. This paper contributes three beamforming strategies designed for multiuser multiple-input and multiple-output by way of orthogonal frequency division multiplexing, in which the transmit and receive beamformers are acquired repetitious by secure-form stages. In the principal case, the transmit (TX) beamformers remain fixed then the receive (RX) beamformers are computed. This eradicates one interference span for every user by means of extruding the transmit beamformers into a null space of relevant channels. Formerly, by gratifying the orthogonality condition to exclude the residual interferences in RX beamformer for every user is done by maximizing the signal-to-noise ratio (SNR). The second case comprises mutually optimizing the TX and RX beamformers from controlled SNR maximization. The outcomes of first case is used here. The third case also includes combined optimization of TX-RX beamformers; however, uses the both controlled SNR and signal-to-interference-plus-noise ratio maximization (SINR). By the standardized channel model for IEEE 802.11n, the proposed simulation experiments offer rapid beamforming and enhanced error performance.Keywords: Beamforming, interference channels, MIMO-OFDM, multi-objective optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11262254 Image Clustering Framework for BAVM Segmentation in 3DRA Images: Performance Analysis
Authors: FH. Sarieddeen, R. El Berbari, S. Imad, J. Abdel Baki, M. Hamad, R. Blanc, A. Nakib, Y.Chenoune
Abstract:
Brain ArterioVenous Malformation (BAVM) is an abnormal tangle of brain blood vessels where arteries shunt directly into veins with no intervening capillary bed which causes high pressure and hemorrhage risk. The success of treatment by embolization in interventional neuroradiology is highly dependent on the accuracy of the vessels visualization. In this paper the performance of clustering techniques on vessel segmentation from 3- D rotational angiography (3DRA) images is investigated and a new technique of segmentation is proposed. This method consists in: preprocessing step of image enhancement, then K-Means (KM), Fuzzy C-Means (FCM) and Expectation Maximization (EM) clustering are used to separate vessel pixels from background and artery pixels from vein pixels when possible. A post processing step of removing false-alarm components is applied before constructing a three-dimensional volume of the vessels. The proposed method was tested on six datasets along with a medical assessment of an expert. Obtained results showed encouraging segmentations.
Keywords: Brain arteriovenous malformation (BAVM), 3-D rotational angiography (3DRA), K-Means (KM) clustering, Fuzzy CMeans (FCM) clustering, Expectation Maximization (EM) clustering, volume rendering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19102253 Estimation of Time -Varying Linear Regression with Unknown Time -Volatility via Continuous Generalization of the Akaike Information Criterion
Authors: Elena Ezhova, Vadim Mottl, Olga Krasotkina
Abstract:
The problem of estimating time-varying regression is inevitably concerned with the necessity to choose the appropriate level of model volatility - ranging from the full stationarity of instant regression models to their absolute independence of each other. In the stationary case the number of regression coefficients to be estimated equals that of regressors, whereas the absence of any smoothness assumptions augments the dimension of the unknown vector by the factor of the time-series length. The Akaike Information Criterion is a commonly adopted means of adjusting a model to the given data set within a succession of nested parametric model classes, but its crucial restriction is that the classes are rigidly defined by the growing integer-valued dimension of the unknown vector. To make the Kullback information maximization principle underlying the classical AIC applicable to the problem of time-varying regression estimation, we extend it onto a wider class of data models in which the dimension of the parameter is fixed, but the freedom of its values is softly constrained by a family of continuously nested a priori probability distributions.Keywords: Time varying regression, time-volatility of regression coefficients, Akaike Information Criterion (AIC), Kullback information maximization principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15342252 Numerical Optimization within Vector of Parameters Estimation in Volatility Models
Authors: J. Arneric, A. Rozga
Abstract:
In this paper usefulness of quasi-Newton iteration procedure in parameters estimation of the conditional variance equation within BHHH algorithm is presented. Analytical solution of maximization of the likelihood function using first and second derivatives is too complex when the variance is time-varying. The advantage of BHHH algorithm in comparison to the other optimization algorithms is that requires no third derivatives with assured convergence. To simplify optimization procedure BHHH algorithm uses the approximation of the matrix of second derivatives according to information identity. However, parameters estimation in a/symmetric GARCH(1,1) model assuming normal distribution of returns is not that simple, i.e. it is difficult to solve it analytically. Maximum of the likelihood function can be founded by iteration procedure until no further increase can be found. Because the solutions of the numerical optimization are very sensitive to the initial values, GARCH(1,1) model starting parameters are defined. The number of iterations can be reduced using starting values close to the global maximum. Optimization procedure will be illustrated in framework of modeling volatility on daily basis of the most liquid stocks on Croatian capital market: Podravka stocks (food industry), Petrokemija stocks (fertilizer industry) and Ericsson Nikola Tesla stocks (information-s-communications industry).Keywords: Heteroscedasticity, Log-likelihood Maximization, Quasi-Newton iteration procedure, Volatility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26502251 Variational EM Inference Algorithm for Gaussian Process Classification Model with Multiclass and Its Application to Human Action Classification
Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park
Abstract:
In this paper, we propose the variational EM inference algorithm for the multi-class Gaussian process classification model that can be used in the field of human behavior recognition. This algorithm can drive simultaneously both a posterior distribution of a latent function and estimators of hyper-parameters in a Gaussian process classification model with multiclass. Our algorithm is based on the Laplace approximation (LA) technique and variational EM framework. This is performed in two steps: called expectation and maximization steps. First, in the expectation step, using the Bayesian formula and LA technique, we derive approximately the posterior distribution of the latent function indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. Second, in the maximization step, using a derived posterior distribution of latent function, we compute the maximum likelihood estimator for hyper-parameters of a covariance matrix necessary to define prior distribution for latent function. These two steps iteratively repeat until a convergence condition satisfies. Moreover, we apply the proposed algorithm with human action classification problem using a public database, namely, the KTH human action data set. Experimental results reveal that the proposed algorithm shows good performance on this data set.
Keywords: Bayesian rule, Gaussian process classification model with multiclass, Gaussian process prior, human action classification, laplace approximation, variational EM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17582250 A New Decision Making Approach based on Possibilistic Influence Diagrams
Authors: Wided Guezguez, Nahla Ben Amor
Abstract:
This paper proposes a new decision making approch based on quantitative possibilistic influence diagrams which are extension of standard influence diagrams in the possibilistic framework. We will in particular treat the case where several expert opinions relative to value nodes are available. An initial expert assigns confidence degrees to other experts and fixes a similarity threshold that provided possibility distributions should respect. To illustrate our approach an evaluation algorithm for these multi-source possibilistic influence diagrams will also be proposed.Keywords: influnece diagram, decision making, graphical decision models, influence diagrams, possibility theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13012249 Understanding the Influence of Sensory Attributes on Wine Price: Case study of Pinot Noir Wines
Authors: Jingxian An, Wei Yu
Abstract:
The commercial value (retail price) of wine is mostly determined by the wine quality, ageing potential, and oak influence. This paper reveals that wine quality, ageing potential, and oak influence are favourably correlated, hence positively influencing the commercial value of Pinot noir wines. Oak influence is the most influential of these three sensory attributes on the price set by wine traders and estimated by experienced customers. In the meanwhile, this study gives winemakers with chemical instructions for raising total phenolics, which can improve wine quality, ageing potential, and oak influence, all of which can increase a wine’s economic worth.
Keywords: Retail price, ageing potential, wine quality, oak influence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4082248 Modeling Influence on Petty Corruption Attitudes
Authors: Nina Bijedic, Drazena Gaspar, Mirsad Hadzikadic
Abstract:
Corruption is an influential and widespread problem. One part of it is so-called petty corruption, related to large-scale bribe giving by ordinary citizens trying to influence the works of public administration or public services. As it is with all means of corruption, petty corruption is related to the level of democracy (or administration efficiency) in a society. The developed model captures some of the factors related to corruptive behavior, as well as people’s attitude towards petty corruption. It has four basic elements: user’s perception of corruption in the society of interest, the influence of social interactions, the influence of penalizing mechanism, and influence of campaigns against petty corruption. The model is agent-based, developed in NetLogo, with a lot of random settings that provide a wider scope of responses. Interactions of different settings for variables of elements provide insight into the influence of each element on attitude towards petty corruption, as well as petty corruptive behavior.
Keywords: Agent based model, attitude, influence, petty corruption, society.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13482247 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System
Authors: Cheima Ben Soltane, Ittansa Yonas Kelbesa
Abstract:
Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.Keywords: Feature Extraction, Speaker Modeling, Feature Matching, Mel Frequency Cepstrum Coefficient (MFCC), Gaussian mixture model (GMM), Vector Quantization (VQ), Linde-Buzo-Gray (LBG), Expectation Maximization (EM), pre-processing, Voice Activity Detection (VAD), Short Time Energy (STE), Background Noise Statistical Modeling, Closed-Set Tex-Independent Speaker Identification System (CISI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18862246 Feasible Traits of TV and Web as Media for Advertisements and Their Influences on Buying Behavior– A Comparative Study on Indian Perspective
Authors: K. Pongiannan
Abstract:
Advertising is one of the important marketing strategies and the choice of media is an important aspect of effectiveness of advertising media. The two most popular advertising media, TV and web media are highly effective in creating successful advertisements as they influence the purchase decision of the viewers. Although TV and web are electronic media, they are unique in their features and traits of advertising. Hence, the present study attempts to analyze the influence of these two media towards buying behavior of the viewers. The two media are analyzed separately to determine its level of influence towards buying behavior and finally a comparative analysis of these media is attempted to find the difference in their level of influence.Keywords: Buying Behavior, TV, web, media for advertisements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14262245 Issues in Travel Demand Forecasting
Authors: Huey-Kuo Chen
Abstract:
Travel demand forecasting including four travel choices, i.e., trip generation, trip distribution, modal split and traffic assignment constructs the core of transportation planning. In its current application, travel demand forecasting has associated with three important issues, i.e., interface inconsistencies among four travel choices, inefficiency of commonly used solution algorithms, and undesirable multiple path solutions. In this paper, each of the three issues is extensively elaborated. An ideal unified framework for the combined model consisting of the four travel choices and variable demand functions is also suggested. Then, a few remarks are provided in the end of the paper
Keywords: Travel choices, B algorithm, entropy maximization, dynamic traffic assignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23572244 The Influence of National Culture on Business Negotiations: An Exploratory Study of Venezuelan and British Managers
Authors: Mohamed Haffar, Loredana Perez
Abstract:
Significant attention has recently been paid to the cross-cultural negotiations due to the growth of international businesses. Despite the substantial body of literature examining the influence of National Culture (NC) dimensions on negotiations, there is a lack of studies comparing the influence of NC in Latin America with a Western European countries, In particular, an extensive review of the literature revealed that a contribution to knowledge would be derived from the comparison of the influence of NC dimensions on negotiations in UK and Venezuela. The primary data was collected through qualitative interviews, to obtain an insight about the perceptions and beliefs of Venezuelan and British business managers about their negotiating styles. The findings of this study indicated that NC has a great influence on the negotiating styles. In particular, Venezuelan and British managers demonstrated to have opposed negotiating styles, affecting the way they communicate, approach people and their willingness to take risks.Keywords: National culture, negotiation, international business, Venezula, UK.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28652243 Equilibrium Modeling of Cu and Ni Removal from Aqueous Solutions: Influence of Salinity
Authors: Tomáš Bakalár, Milan Búgel, Henrieta Pavolová
Abstract:
This study deals with evaluation of influence of salinity (NaCl) onto equilibrium of Cu and Ni removal from aqueous solutions by natural sorbent – zeolite. Equilibrium data were obtained by batch experiments. The salinity of the aqueous solution was influenced by dissolving NaCl in distilled water. It was studied in the range of NaCl concentrations from 1 g.l-1 to 100g.l-1. For Cu sorption there is a significant influence of salinity. The maximum capacity of zeolite for Cu was decreasing with growing concentration of NaCl. For Ni sorption there is not so significant influence of salinity as for Cu. The maximum capacity of zeolite for Ni was slightly decreasing with growing concentration of NaCl.
Keywords: Cu, Ni, sorption, zeolite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13022242 The Influence of User Involvement and Personal Innovativeness on User Behavior
Authors: Anne M. Sørebø, Øystein Sørebø, Maung K. Sein
Abstract:
The search for factors that influence user behavior has remained an important theme for both the academic and practitioner Information Systems Communities. In this paper we examine relevant user behaviors in the phase after adoption and investigate two factors that are expected to influence such behaviors, namely User Involvement (UI) and Personal Innovativeness in IT (PIIT). We conduct a field study to examine how these factors influence postadoption behavior and how they are interrelated. Building on theoretical premises and prior empirical findings, we propose and test two alternative models of the relationship between these factors. Our results reveal that the best explanation of post-adoption behavior is provided by the model where UI and PIIT independently influence post-adoption behavior. Our findings have important implications for research and practice. To that end, we offer directions for future research.
Keywords: User involvement, personal innovativeness in IT, use of systems, user support, post-adoption behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15552241 Qualitative Possibilistic Influence Diagrams
Authors: Wided GuezGuez, Nahla Ben Amor, Khaled Mellouli
Abstract:
Influence diagrams (IDs) are one of the most commonly used graphical decision models for reasoning under uncertainty. The quantification of IDs which consists in defining conditional probabilities for chance nodes and utility functions for value nodes is not always obvious. In fact, decision makers cannot always provide exact numerical values and in some cases, it is more easier for them to specify qualitative preference orders. This work proposes an adaptation of standard IDs to the qualitative framework based on possibility theory.
Keywords: decision making, influence diagrams, qualitative utility, possibility theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15302240 Analytical Camera Model Supplemented with Influence of Temperature Variations
Authors: Peter Podbreznik, Božidar Potocnik
Abstract:
A camera in the building site is exposed to different weather conditions. Differences between images of the same scene captured with the same camera arise also due to temperature variations. The influence of temperature changes on camera parameters were modelled and integrated into existing analytical camera model. Modified camera model enables quantitatively assessing the influence of temperature variations.Keywords: camera calibration, analytical model, intrinsic parameters, extrinsic parameters, temperature variations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507