Search results for: Fast lifting wavelet
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1197

Search results for: Fast lifting wavelet

1197 Feature Level Fusion of Multimodal Images Using Haar Lifting Wavelet Transform

Authors: Sudipta Majumdar, Jayant Bharadwaj

Abstract:

This paper presents feature level image fusion using Haar lifting wavelet transform. Feature fused is edge and boundary information, which is obtained using wavelet transform modulus maxima criteria. Simulation results show the superiority of the result as entropy, gradient, standard deviation are increased for fused image as compared to input images. The proposed methods have the advantages of simplicity of implementation, fast algorithm, perfect reconstruction, and reduced computational complexity. (Computational cost of Haar wavelet is very small as compared to other lifting wavelets.)

Keywords: Lifting wavelet transform, wavelet transform modulus maxima.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421
1196 Image Dehazing Using Dark Channel Prior and Fast Guided Filter in Daubechies Lifting Wavelet Transform Domain

Authors: Harpreet Kaur, Sudipta Majumdar

Abstract:

In this paper a method for image dehazing is proposed in lifting wavelet transform domain. Lifting Daubechies (D4) wavelet has been used to obtain the approximate image and detail images.  As the haze is contained in low frequency part, only the approximate image is used for further processing. This region is processed by dehazing algorithm based on dark channel prior (DCP). The dehazed approximate image is then recombined with the detail images using inverse lifting wavelet transform. Implementation of lifting wavelet transform has the advantage of auxiliary memory saving, fast implementation and simplicity. Also, the proposed method deals with near white scene problem, blue horizon issue and localized light sources in a way to enhance image quality and makes the algorithm robust. Simulation results present improvement in terms of visual quality, parameters such as root mean square (RMS) contrast, structural similarity index (SSIM), entropy and execution time.

Keywords: Dark channel prior, image dehazing, lifting wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1122
1195 Fast Wavelet Image Denoising Based on Local Variance and Edge Analysis

Authors: Gaoyong Luo

Abstract:

The approach based on the wavelet transform has been widely used for image denoising due to its multi-resolution nature, its ability to produce high levels of noise reduction and the low level of distortion introduced. However, by removing noise, high frequency components belonging to edges are also removed, which leads to blurring the signal features. This paper proposes a new method of image noise reduction based on local variance and edge analysis. The analysis is performed by dividing an image into 32 x 32 pixel blocks, and transforming the data into wavelet domain. Fast lifting wavelet spatial-frequency decomposition and reconstruction is developed with the advantages of being computationally efficient and boundary effects minimized. The adaptive thresholding by local variance estimation and edge strength measurement can effectively reduce image noise while preserve the features of the original image corresponding to the boundaries of the objects. Experimental results demonstrate that the method performs well for images contaminated by natural and artificial noise, and is suitable to be adapted for different class of images and type of noises. The proposed algorithm provides a potential solution with parallel computation for real time or embedded system application.

Keywords: Edge strength, Fast lifting wavelet, Image denoising, Local variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
1194 Modified Fast and Exact Algorithm for Fast Haar Transform

Authors: Phang Chang, Phang Piau

Abstract:

Wavelet transform or wavelet analysis is a recently developed mathematical tool in applied mathematics. In numerical analysis, wavelets also serve as a Galerkin basis to solve partial differential equations. Haar transform or Haar wavelet transform has been used as a simplest and earliest example for orthonormal wavelet transform. Since its popularity in wavelet analysis, there are several definitions and various generalizations or algorithms for calculating Haar transform. Fast Haar transform, FHT, is one of the algorithms which can reduce the tedious calculation works in Haar transform. In this paper, we present a modified fast and exact algorithm for FHT, namely Modified Fast Haar Transform, MFHT. The algorithm or procedure proposed allows certain calculation in the process decomposition be ignored without affecting the results.

Keywords: Fast Haar Transform, Haar transform, Wavelet analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3137
1193 Efficient Secured Lossless Coding of Medical Images– Using Modified Runlength Coding for Character Representation

Authors: S. Annadurai, P. Geetha

Abstract:

Lossless compression schemes with secure transmission play a key role in telemedicine applications that helps in accurate diagnosis and research. Traditional cryptographic algorithms for data security are not fast enough to process vast amount of data. Hence a novel Secured lossless compression approach proposed in this paper is based on reversible integer wavelet transform, EZW algorithm, new modified runlength coding for character representation and selective bit scrambling. The use of the lifting scheme allows generating truly lossless integer-to-integer wavelet transforms. Images are compressed/decompressed by well-known EZW algorithm. The proposed modified runlength coding greatly improves the compression performance and also increases the security level. This work employs scrambling method which is fast, simple to implement and it provides security. Lossless compression ratios and distortion performance of this proposed method are found to be better than other lossless techniques.

Keywords: EZW algorithm, lifting scheme, losslesscompression, reversible integer wavelet transform, securetransmission, selective bit scrambling, modified runlength coding .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
1192 Lifting Wavelet Transform and Singular Values Decomposition for Secure Image Watermarking

Authors: Siraa Ben Ftima, Mourad Talbi, Tahar Ezzedine

Abstract:

In this paper, we present a technique of secure watermarking of grayscale and color images. This technique consists in applying the Singular Value Decomposition (SVD) in LWT (Lifting Wavelet Transform) domain in order to insert the watermark image (grayscale) in the host image (grayscale or color image). It also uses signature in the embedding and extraction steps. The technique is applied on a number of grayscale and color images. The performance of this technique is proved by the PSNR (Pick Signal to Noise Ratio), the MSE (Mean Square Error) and the SSIM (structural similarity) computations.

Keywords: Color image, grayscale image, singular values decomposition, lifting wavelet transform, image watermarking, watermark, secure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1027
1191 A Wavelet Based Object Watermarking System for Image and Video

Authors: Abdessamad Essaouabi, Ibnelhaj Elhassane

Abstract:

Efficient storage, transmission and use of video information are key requirements in many multimedia applications currently being addressed by MPEG-4. To fulfill these requirements, a new approach for representing video information which relies on an object-based representation, has been adopted. Therefore, objectbased watermarking schemes are needed for copyright protection. This paper proposes a novel blind object watermarking scheme for images and video using the in place lifting shape adaptive-discrete wavelet transform (SA-DWT). In order to make the watermark robust and transparent, the watermark is embedded in the average of wavelet blocks using the visual model based on the human visual system. Wavelet coefficients n least significant bits (LSBs) are adjusted in concert with the average. Simulation results shows that the proposed watermarking scheme is perceptually invisible and robust against many attacks such as lossy image/video compression (e.g. JPEG, JPEG2000 and MPEG-4), scaling, adding noise, filtering, etc.

Keywords: Watermark, visual model, robustness, in place lifting shape adaptive-discrete wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
1190 Image Haze Removal Using Scene Depth Based Spatially Varying Atmospheric Light in Haar Lifting Wavelet Domain

Authors: Prabh Preet Singh, Harpreet Kaur

Abstract:

This paper presents a method for single image dehazing based on dark channel prior (DCP). The property that the intensity of the dark channel gives an approximate thickness of the haze is used to estimate the transmission and atmospheric light. Instead of constant atmospheric light, the proposed method employs scene depth to estimate spatially varying atmospheric light as it truly occurs in nature. Haze imaging model together with the soft matting method has been used in this work to produce high quality haze free image. Experimental results demonstrate that the proposed approach produces better results than the classic DCP approach as color fidelity and contrast of haze free image are improved and no over-saturation in the sky region is observed. Further, lifting Haar wavelet transform is employed to reduce overall execution time by a factor of two to three as compared to the conventional approach.

Keywords: Depth based atmospheric light, dark channel prior, lifting wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 552
1189 Image Compression Using Hybrid Vector Quantization

Authors: S.Esakkirajan, T. Veerakumar, V. Senthil Murugan, P.Navaneethan

Abstract:

In this paper, image compression using hybrid vector quantization scheme such as Multistage Vector Quantization (MSVQ) and Pyramid Vector Quantization (PVQ) are introduced. A combined MSVQ and PVQ are utilized to take advantages provided by both of them. In the wavelet decomposition of the image, most of the information often resides in the lowest frequency subband. MSVQ is applied to significant low frequency coefficients. PVQ is utilized to quantize the coefficients of other high frequency subbands. The wavelet coefficients are derived using lifting scheme. The main aim of the proposed scheme is to achieve high compression ratio without much compromise in the image quality. The results are compared with the existing image compression scheme using MSVQ.

Keywords: Lifting Scheme, Multistage Vector Quantization and Pyramid Vector Quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
1188 Data Hiding in Images in Discrete Wavelet Domain Using PMM

Authors: Souvik Bhattacharyya, Gautam Sanyal

Abstract:

Over last two decades, due to hostilities of environment over the internet the concerns about confidentiality of information have increased at phenomenal rate. Therefore to safeguard the information from attacks, number of data/information hiding methods have evolved mostly in spatial and transformation domain.In spatial domain data hiding techniques,the information is embedded directly on the image plane itself. In transform domain data hiding techniques the image is first changed from spatial domain to some other domain and then the secret information is embedded so that the secret information remains more secure from any attack. Information hiding algorithms in time domain or spatial domain have high capacity and relatively lower robustness. In contrast, the algorithms in transform domain, such as DCT, DWT have certain robustness against some multimedia processing.In this work the authors propose a novel steganographic method for hiding information in the transform domain of the gray scale image.The proposed approach works by converting the gray level image in transform domain using discrete integer wavelet technique through lifting scheme.This approach performs a 2-D lifting wavelet decomposition through Haar lifted wavelet of the cover image and computes the approximation coefficients matrix CA and detail coefficients matrices CH, CV, and CD.Next step is to apply the PMM technique in those coefficients to form the stego image. The aim of this paper is to propose a high-capacity image steganography technique that uses pixel mapping method in integer wavelet domain with acceptable levels of imperceptibility and distortion in the cover image and high level of overall security. This solution is independent of the nature of the data to be hidden and produces a stego image with minimum degradation.

Keywords: Cover Image, Pixel Mapping Method (PMM), StegoImage, Integer Wavelet Tranform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2851
1187 Statistical Computational of Volatility in Financial Time Series Data

Authors: S. Al Wadi, Mohd Tahir Ismail, Samsul Ariffin Abdul Karim

Abstract:

It is well known that during the developments in the economic sector and through the financial crises occur everywhere in the whole world, volatility measurement is the most important concept in financial time series. Therefore in this paper we discuss the volatility for Amman stocks market (Jordan) for certain period of time. Since wavelet transform is one of the most famous filtering methods and grows up very quickly in the last decade, we compare this method with the traditional technique, Fast Fourier transform to decide the best method for analyzing the volatility. The comparison will be done on some of the statistical properties by using Matlab program.

Keywords: Fast Fourier transforms, Haar wavelet transform, Matlab (Wavelet tools), stocks market, Volatility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2315
1186 VLSI Design of 2-D Discrete Wavelet Transform for Area-Efficient and High-Speed Image Computing

Authors: Mountassar Maamoun, Mehdi Neggazi, Abdelhamid Meraghni, Daoud Berkani

Abstract:

This paper presents a VLSI design approach of a highspeed and real-time 2-D Discrete Wavelet Transform computing. The proposed architecture, based on new and fast convolution approach, reduces the hardware complexity in addition to reduce the critical path to the multiplier delay. Furthermore, an advanced twodimensional (2-D) discrete wavelet transform (DWT) implementation, with an efficient memory area, is designed to produce one output in every clock cycle. As a result, a very highspeed is attained. The system is verified, using JPEG2000 coefficients filters, on Xilinx Virtex-II Field Programmable Gate Array (FPGA) device without accessing any external memory. The resulting computing rate is up to 270 M samples/s and the (9,7) 2-D wavelet filter uses only 18 kb of memory (16 kb of first-in-first-out memory) with 256×256 image size. In this way, the developed design requests reduced memory and provide very high-speed processing as well as high PSNR quality.

Keywords: Discrete Wavelet Transform (DWT), Fast Convolution, FPGA, VLSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
1185 Numerical Simulation and Experiment of a Lifting Body with Leading-Edge Rotating Cylinder

Authors: A. Badarudin, C. S. Oon, S. N. Kazi, N. Nik-Ghazali, Y. J. Lee, W. T. Chong

Abstract:

An experimental and simulation flight test has been carried out to evaluate the longitudinal gliding characteristics of a lifting body with blunted half-cone geometry. The novelty here is the lifting body's pitch control mechanism, which consists of a pair of leading-edge rotating cylinders. Flight simulation uses aerodynamic data from computational fluid dynamics supported by wind-tunnel test. Flight test consists of releasing an aluminum lifting body model from a moving vehicle at the appropriate wind speed while measuring the lifting body's variation of altitude against time of flight. Results show that leading-edge rotating cylinder is able to give small amounts of improvement to the longitudinal stability and pitch control to the lifting body.

Keywords: Lifting body, pitch control, aerodynamic, rotating cylinder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
1184 Evaluation of Wavelet Filters for Image Compression

Authors: G. Sadashivappa, K. V. S. AnandaBabu

Abstract:

The aim of this paper to characterize a larger set of wavelet functions for implementation in a still image compression system using SPIHT algorithm. This paper discusses important features of wavelet functions and filters used in sub band coding to convert image into wavelet coefficients in MATLAB. Image quality is measured objectively using peak signal to noise ratio (PSNR) and its variation with bit rate (bpp). The effect of different parameters is studied on different wavelet functions. Our results provide a good reference for application designers of wavelet based coder.

Keywords: Wavelet, image compression, sub band, SPIHT, PSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224
1183 Haar Wavelet Method for Solving Fitz Hugh-Nagumo Equation

Authors: G.Hariharan, K.Kannan

Abstract:

In this paper, we develop an accurate and efficient Haar wavelet method for well-known FitzHugh-Nagumo equation. The proposed scheme can be used to a wide class of nonlinear reaction-diffusion equations. The power of this manageable method is confirmed. Moreover the use of Haar wavelets is found to be accurate, simple, fast, flexible, convenient, small computation costs and computationally attractive.

Keywords: FitzHugh-Nagumo equation, Haar wavelet method, adomain decomposition method, computationally attractive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2779
1182 3D Object Model Reconstruction Based on Polywogs Wavelet Network Parametrization

Authors: Mohamed Othmani, Yassine Khlifi

Abstract:

This paper presents a technique for compact three dimensional (3D) object model reconstruction using wavelet networks. It consists to transform an input surface vertices into signals,and uses wavelet network parameters for signal approximations. To prove this, we use a wavelet network architecture founded on several mother wavelet families. POLYnomials WindOwed with Gaussians (POLYWOG) wavelet families are used to maximize the probability to select the best wavelets which ensure the good generalization of the network. To achieve a better reconstruction, the network is trained several iterations to optimize the wavelet network parameters until the error criterion is small enough. Experimental results will shown that our proposed technique can effectively reconstruct an irregular 3D object models when using the optimized wavelet network parameters. We will prove that an accurateness reconstruction depends on the best choice of the mother wavelets.

Keywords: 3D object, optimization, parametrization, Polywog wavelets, reconstruction, wavelet networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
1181 Analysis of Chatter in Ball End Milling by Wavelet Transform

Authors: S. Tangjitsitcharoen

Abstract:

The chatter is one of the major limitations of the productivity in the ball end milling process. It affects the surface roughness, the dimensional accuracy and the tool life. The aim of this research is to propose the new system to detect the chatter during the ball end milling process by using the wavelet transform. The proposed method is implemented on the 5-axis CNC machining center and the new three parameters are introduced from three dynamic cutting forces, which are calculated by taking the ratio of the average variances of dynamic cutting forces to the absolute variances of themselves. It had been proved that the chatter can be easier to detect during the in-process cutting by using the new parameters which are proposed in this research. The experimentally obtained results showed that the wavelet transform can provide the reliable results to detect the chatter under various cutting conditions.

Keywords: Ball end milling, wavelet transform, fast fourier transform, chatter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
1180 The Utility of Wavelet Transform in Surface Electromyography Feature Extraction -A Comparative Study of Different Mother Wavelets

Authors: Farzaneh Akhavan Mahdavi, Siti Anom Ahmad, Mohd Hamiruce Marhaban, Mohammad-R. Akbarzadeh-T

Abstract:

Electromyography (EMG) signal processing has been investigated remarkably regarding various applications such as in rehabilitation systems. Specifically, wavelet transform has served as a powerful technique to scrutinize EMG signals since wavelet transform is consistent with the nature of EMG as a non-stationary signal. In this paper, the efficiency of wavelet transform in surface EMG feature extraction is investigated from four levels of wavelet decomposition and a comparative study between different mother wavelets had been done. To recognize the best function and level of wavelet analysis, two evaluation criteria, scatter plot and RES index are recruited. Hereupon, four wavelet families, namely, Daubechies, Coiflets, Symlets and Biorthogonal are studied in wavelet decomposition stage. Consequently, the results show that only features from first and second level of wavelet decomposition yields good performance and some functions of various wavelet families can lead to an improvement in separability class of different hand movements.

Keywords: Electromyography signal, feature extraction, wavelettransform, means absolute value.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2837
1179 ECG Analysis using Nature Inspired Algorithm

Authors: A.Sankara Subramanian, G.Gurusamy, G.Selvakumar, P.Gnanasekar, A.Nagappan

Abstract:

This paper presents an algorithm based on the wavelet decomposition, for feature extraction from the ECG signal and recognition of three types of Ventricular Arrhythmias using neural networks. A set of Discrete Wavelet Transform (DWT) coefficients, which contain the maximum information about the arrhythmias, is selected from the wavelet decomposition. After that a novel clustering algorithm based on nature inspired algorithm (Ant Colony Optimization) is developed for classifying arrhythmia types. The algorithm is applied on the ECG registrations from the MIT-BIH arrhythmia and malignant ventricular arrhythmia databases. We applied Daubechies 4 wavelet in our algorithm. The wavelet decomposition enabled us to perform the task efficiently and produced reliable results.

Keywords: Daubechies 4 Wavelet, ECG, Nature inspired algorithm, Ventricular Arrhythmias, Wavelet Decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2307
1178 Wavelet based ANN Approach for Transformer Protection

Authors: Okan Özgönenel

Abstract:

This paper presents the development of a wavelet based algorithm, for distinguishing between magnetizing inrush currents and power system fault currents, which is quite adequate, reliable, fast and computationally efficient tool. The proposed technique consists of a preprocessing unit based on discrete wavelet transform (DWT) in combination with an artificial neural network (ANN) for detecting and classifying fault currents. The DWT acts as an extractor of distinctive features in the input signals at the relay location. This information is then fed into an ANN for classifying fault and magnetizing inrush conditions. A 220/55/55 V, 50Hz laboratory transformer connected to a 380 V power system were simulated using ATP-EMTP. The DWT was implemented by using Matlab and Coiflet mother wavelet was used to analyze primary currents and generate training data. The simulated results presented clearly show that the proposed technique can accurately discriminate between magnetizing inrush and fault currents in transformer protection.

Keywords: Artificial neural network, discrete wavelet transform, fault detection, magnetizing inrush current.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
1177 Effect of Ambient Oxygen Content and Lifting Frequency on the Participant’s Lifting Capabilities, Muscle Activities, and Perceived Exertion

Authors: Atef M. Ghaleb, Mohamed Z. Ramadan, Khalid Saad Aljaloud

Abstract:

The aim of this study is to assesses the lifting capabilities of persons experiencing hypoxia. It also examines the behavior of the physiological response induced through the lifting process related to changing in the hypoxia and lifting frequency variables. For this purpose, the study performed two consecutive tests by using; (1) training and acclimatization; and (2) an actual collection of data. A total of 10 male students from King Saud University, Kingdom of Saudi Arabia, were recruited in the study. A two-way repeated measures design, with two independent variables (ambient oxygen (15%, 18% and 21%)) and lifting frequency (1 lift/min and 4 lifts/min) and four dependent variables i.e., maximum acceptable weight of lift (MAWL), Electromyography (EMG) of four muscle groups (anterior deltoid, trapezius, biceps brachii, and erector spinae), rating of perceived exertion (RPE), and rating of oxygen feeling (ROF) were used in this study. The results show that lifting frequency has significantly impacted the MAWL and muscles’ activities. The oxygen content had a significant effect on the RPE and ROE. The study has revealed that acclimatization and training sessions significantly reduce the effect of the hypoxia on the human physiological parameters during the manual materials handling tasks.

Keywords: Lifting capabilities, muscle activities (sEMG), oxygen content, perceived exertion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 643
1176 A Comparative Study between Discrete Wavelet Transform and Maximal Overlap Discrete Wavelet Transform for Testing Stationarity

Authors: Amel Abdoullah Ahmed Dghais, Mohd Tahir Ismail

Abstract:

In this paper the core objective is to apply discrete wavelet transform and maximal overlap discrete wavelet transform functions namely Haar, Daubechies2, Symmlet4, Coiflet2 and discrete approximation of the Meyer wavelets in non stationary financial time series data from Dow Jones index (DJIA30) of US stock market. The data consists of 2048 daily data of closing index from December 17, 2004 to October 23, 2012. Unit root test affirms that the data is non stationary in the level. A comparison between the results to transform non stationary data to stationary data using aforesaid transforms is given which clearly shows that the decomposition stock market index by discrete wavelet transform is better than maximal overlap discrete wavelet transform for original data.

Keywords: Discrete wavelet transform, maximal overlap discrete wavelet transform, stationarity, autocorrelation function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4726
1175 Detection of Power Quality Disturbances using Wavelet Transform

Authors: Sudipta Nath, Arindam Dey, Abhijit Chakrabarti

Abstract:

This paper presents features that characterize power quality disturbances from recorded voltage waveforms using wavelet transform. The discrete wavelet transform has been used to detect and analyze power quality disturbances. The disturbances of interest include sag, swell, outage and transient. A power system network has been simulated by Electromagnetic Transients Program. Voltage waveforms at strategic points have been obtained for analysis, which includes different power quality disturbances. Then wavelet has been chosen to perform feature extraction. The outputs of the feature extraction are the wavelet coefficients representing the power quality disturbance signal. Wavelet coefficients at different levels reveal the time localizing information about the variation of the signal.

Keywords: Power quality, detection of disturbance, wavelet transform, multiresolution signal decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3423
1174 Wavelet Transform and Support Vector Machine Approach for Fault Location in Power Transmission Line

Authors: V. Malathi, N.S.Marimuthu

Abstract:

This paper presents a wavelet transform and Support Vector Machine (SVM) based algorithm for estimating fault location on transmission lines. The Discrete wavelet transform (DWT) is used for data pre-processing and this data are used for training and testing SVM. Five types of mother wavelet are used for signal processing to identify a suitable wavelet family that is more appropriate for use in estimating fault location. The results demonstrated the ability of SVM to generalize the situation from the provided patterns and to accurately estimate the location of faults with varying fault resistance.

Keywords: Fault location, support vector machine, supportvector regression, transmission lines, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
1173 Texture Feature-Based Language Identification Using Wavelet-Domain BDIP and BVLC Features and FFT Feature

Authors: Ick Hoon Jang, Hoon Jae Lee, Dae Hoon Kwon, Ui Young Pak

Abstract:

In this paper, we propose a texture feature-based language identification using wavelet-domain BDIP (block difference of inverse probabilities) and BVLC (block variance of local correlation coefficients) features and FFT (fast Fourier transform) feature. In the proposed method, wavelet subbands are first obtained by wavelet transform from a test image and denoised by Donoho-s soft-thresholding. BDIP and BVLC operators are next applied to the wavelet subbands. FFT blocks are also obtained by 2D (twodimensional) FFT from the blocks into which the test image is partitioned. Some significant FFT coefficients in each block are selected and magnitude operator is applied to them. Moments for each subband of BDIP and BVLC and for each magnitude of significant FFT coefficients are then computed and fused into a feature vector. In classification, a stabilized Bayesian classifier, which adopts variance thresholding, searches the training feature vector most similar to the test feature vector. Experimental results show that the proposed method with the three operations yields excellent language identification even with rather low feature dimension.

Keywords: BDIP, BVLC, FFT, language identification, texture feature, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2148
1172 Time-Frequency Modeling and Analysis of Faulty Rotor

Authors: B. X. Tchomeni, A. A. Alugongo, T. B. Tengen

Abstract:

In this paper, de Laval rotor system has been characterized by a hinge model and its transient response numerically treated for a dynamic solution. The effect of the ensuing non-linear disturbances namely rub and breathing crack is numerically simulated. Subsequently, three analysis methods: Orbit Analysis, Fast Fourier Transform (FFT), and Wavelet Transform (WT) are employed to extract features of the vibration signal of the faulty system. An analysis of the system response orbits clearly indicates the perturbations due to the rotor-to-stator contact. The sensitivities of WT to the variation in system speed have been investigated by Continuous Wavelet Transform (CWT). The analysis reveals that features of crack, rubs and unbalance in vibration response can be useful for condition monitoring. WT reveals its ability to detect nonlinear signal, and obtained results provide a useful tool method for detecting machinery faults.

Keywords: Continuous wavelet, crack, discrete wavelet, high acceleration, low acceleration, nonlinear, rotor-stator, rub.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
1171 Symbolic Analysis of Large Circuits Using Discrete Wavelet Transform

Authors: Ali Al-Ataby , Fawzi Al-Naima

Abstract:

Symbolic Circuit Analysis (SCA) is a technique used to generate the symbolic expression of a network. It has become a well-established technique in circuit analysis and design. The symbolic expression of networks offers excellent way to perform frequency response analysis, sensitivity computation, stability measurements, performance optimization, and fault diagnosis. Many approaches have been proposed in the area of SCA offering different features and capabilities. Numerical Interpolation methods are very common in this context, especially by using the Fast Fourier Transform (FFT). The aim of this paper is to present a method for SCA that depends on the use of Wavelet Transform (WT) as a mathematical tool to generate the symbolic expression for large circuits with minimizing the analysis time by reducing the number of computations.

Keywords: Numerical Interpolation, Sparse Matrices, SymbolicAnalysis, Wavelet Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
1170 Applying Wavelet Entropy Principle in Fault Classification

Authors: S. El Safty, A. El-Zonkoly

Abstract:

The ability to detect and classify the type of fault plays a great role in the protection of power system. This procedure is required to be precise with no time consumption. In this paper detection of fault type has been implemented using wavelet analysis together with wavelet entropy principle. The simulation of power system is carried out using PSCAD/EMTDC. Different types of faults were studied obtaining various current waveforms. These current waveforms were decomposed using wavelet analysis into different approximation and details. The wavelet entropy of such decompositions is analyzed reaching a successful methodology for fault classification. The suggested approach is tested using different fault types and proven successful identification for the type of fault.

Keywords: Fault classification, wavelet transform, waveletentropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
1169 The Wavelet-Based DFT: A New Interpretation, Extensions and Applications

Authors: Abdulnasir Hossen, Ulrich Heute

Abstract:

In 1990 [1] the subband-DFT (SB-DFT) technique was proposed. This technique used the Hadamard filters in the decomposition step to split the input sequence into low- and highpass sequences. In the next step, either two DFTs are needed on both bands to compute the full-band DFT or one DFT on one of the two bands to compute an approximate DFT. A combination network with correction factors was to be applied after the DFTs. Another approach was proposed in 1997 [2] for using a special discrete wavelet transform (DWT) to compute the discrete Fourier transform (DFT). In the first step of the algorithm, the input sequence is decomposed in a similar manner to the SB-DFT into two sequences using wavelet decomposition with Haar filters. The second step is to perform DFTs on both bands to obtain the full-band DFT or to obtain a fast approximate DFT by implementing pruning at both input and output sides. In this paper, the wavelet-based DFT (W-DFT) with Haar filters is interpreted as SB-DFT with Hadamard filters. The only difference is in a constant factor in the combination network. This result is very important to complete the analysis of the W-DFT, since all the results concerning the accuracy and approximation errors in the SB-DFT are applicable. An application example in spectral analysis is given for both SB-DFT and W-DFT (with different filters). The adaptive capability of the SB-DFT is included in the W-DFT algorithm to select the band of most energy as the band to be computed. Finally, the W-DFT is extended to the two-dimensional case. An application in image transformation is given using two different types of wavelet filters.

Keywords: Image Transform, Spectral Analysis, Sub-Band DFT, Wavelet DFT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
1168 EEG Waves Classifier using Wavelet Transform and Fourier Transform

Authors: Maan M. Shaker

Abstract:

The electroencephalograph (EEG) signal is one of the most widely signal used in the bioinformatics field due to its rich information about human tasks. In this work EEG waves classification is achieved using the Discrete Wavelet Transform DWT with Fast Fourier Transform (FFT) by adopting the normalized EEG data. The DWT is used as a classifier of the EEG wave's frequencies, while FFT is implemented to visualize the EEG waves in multi-resolution of DWT. Several real EEG data sets (real EEG data for both normal and abnormal persons) have been tested and the results improve the validity of the proposed technique.

Keywords: Bioinformatics, DWT, EEG waves, FFT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5556