Publications | Computer and Information Engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4345

World Academy of Science, Engineering and Technology

[Computer and Information Engineering]

Online ISSN : 1307-6892

4225 SNC Based Network Layer Design for Underwater Wireless Communication Used in Coral Farms

Authors: T. T. Manikandan, Rajeev Sukumaran

Abstract:

For maintaining the biodiversity of many ecosystems the existence of coral reefs play a vital role. But due to many factors such as pollution and coral mining, coral reefs are dying day by day. One way to protect the coral reefs is to farm them in a carefully monitored underwater environment and restore it in place of dead corals. For successful farming of corals in coral farms, different parameters of the water in the farming area need to be monitored and maintained at optimal level. Sensing underwater parameters using wireless sensor nodes is an effective way for precise and continuous monitoring in a highly dynamic environment like oceans. Here the sensed information is of varying importance and it needs to be provided with desired Quality of Service(QoS) guarantees in delivering the information to offshore monitoring centers. The main interest of this research is Stochastic Network Calculus (SNC) based modeling of network layer design for underwater wireless sensor communication. The model proposed in this research enforces differentiation of service in underwater wireless sensor communication with the help of buffer sizing and link scheduling. The delay and backlog bounds for such differentiated services are analytically derived using stochastic network calculus.

Keywords: Underwater Coral Farms, SNC, differentiated service, delay bound, backlog bound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 367
4224 Extending the Aspect Oriented Programming Joinpoint Model for Memory and Type Safety

Authors: Amjad Nusayr

Abstract:

Software security is a general term used to any type of software architecture or model in which security aspects are incorporated in this architecture. These aspects are not part of the main logic of the underlying program. Software security can be achieved using a combination of approaches including but not limited to secure software designs, third part component validation, and secure coding practices. Memory safety is one feature in software security where we ensure that any object in memory is have a valid pointer or a reference with a valid type. Aspect Oriented Programming (AOP) is a paradigm that is concerned with capturing the cross-cutting concerns in code development. AOP is generally used for common cross-cutting concerns like logging and Database transaction managing. In this paper we introduce the concepts that enable AOP to be used for the purpose of memory and type safety. We also present ideas for extending AOP in software security practices.

Keywords: Aspect oriented programming, programming languages, software security, memory and type safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 415
4223 Proposal of a Virtual Reality Dynamism Augmentation Method for Sports Spectating

Authors: Clara Hertzog, Sho Sakurai, Koichi Hirota, Takuya Nojima

Abstract:

It is common to see graphics appearing on television while watching a sports game to provide information, but it is less common to see graphics specifically aiming to boost spectators’ dynamism perception. It is even less common to see such graphics designed especially for virtual reality (VR). However, it appears that even with simple dynamic graphics, it would be possible to improve VR sports spectators’ experience. So, in this research, we explain how graphics can be used in VR to improve the dynamism of a broadcasted sports game and we provide a simple example. This example consists in a white halo displayed around the video and blinking according to the game speed. We hope to increase people’s awareness about VR sports spectating and the possibilities this display offers through dynamic graphics.

Keywords: Broadcasting, graphics, sports spectating, virtual reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 446
4222 A Multigranular Linguistic Additive Ratio Assessment Model in Group Decision Making

Authors: Wiem Daoud Ben Amor, Luis Martínez López, Jr., Hela Moalla Frikha

Abstract:

Most of the multi-criteria group decision making (MCGDM) problems dealing with qualitative criteria require consideration of the large background of expert information. It is common that experts have different degrees of knowledge for giving their alternative assessments according to criteria. So, it seems logical that they use different evaluation scales to express their judgment, i.e., multi granular linguistic scales. In this context, we propose the extension of the classical additive ratio assessment (ARAS) method to the case of a hierarchical linguistics term for managing multi granular linguistic scales in uncertain context where uncertainty is modeled by means in linguistic information. The proposed approach is called the extended hierarchical linguistics-ARAS method (ELH-ARAS). Within the ELH-ARAS approach, the decision maker (DMs) can diagnose the results (the ranking of the alternatives) in a decomposed style i.e., not only at one level of the hierarchy but also at the intermediate ones. Also, the developed approach allows a feedback transformation i.e., the collective final results of all experts are able to be transformed at any level of the extended linguistic hierarchy that each expert has previously used. Therefore, the ELH-ARAS technique makes it easier for decision-makers to understand the results. Finally, an MCGDM case study is given to illustrate the proposed approach.

Keywords: Additive ratio assessment, extended hierarchical linguistic, multi-criteria group decision making problems, multi granular linguistic contexts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 362
4221 Topic Modeling Using Latent Dirichlet Allocation and Latent Semantic Indexing on South African Telco Twitter Data

Authors: Phumelele P. Kubheka, Pius A. Owolawi, Gbolahan Aiyetoro

Abstract:

Twitter is one of the most popular social media platforms where users share their opinions on different subjects. Twitter can be considered a great source for mining text due to the high volumes of data generated through the platform daily. Many industries such as telecommunication companies can leverage the availability of Twitter data to better understand their markets and make an appropriate business decision. This study performs topic modeling on Twitter data using Latent Dirichlet Allocation (LDA). The obtained results are benchmarked with another topic modeling technique, Latent Semantic Indexing (LSI). The study aims to retrieve topics on a Twitter dataset containing user tweets on South African Telcos. Results from this study show that LSI is much faster than LDA. However, LDA yields better results with higher topic coherence by 8% for the best-performing model in this experiment. A higher topic coherence score indicates better performance of the model.

Keywords: Big data, latent Dirichlet allocation, latent semantic indexing, Telco, topic modeling, Twitter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 459
4220 A Multi-Feature Deep Learning Algorithm for Urban Traffic Classification with Limited Labeled Data

Authors: Rohan Putatunda, Aryya Gangopadhyay

Abstract:

Acoustic sensors, if embedded in smart street lights, can help in capturing the activities (car honking, sirens, events, traffic, etc.) in cities. Needless to say, the acoustic data from such scenarios are complex due to multiple audio streams originating from different events, and when decomposed to independent signals, the amount of retrieved data volume is small in quantity which is inadequate to train deep neural networks. So, in this paper, we address the two challenges: a) separating the mixed signals, and b) developing an efficient acoustic classifier under data paucity. So, to address these challenges, we propose an architecture with supervised deep learning, where the initial captured mixed acoustics data are analyzed with Fast Fourier Transformation (FFT), followed by filtering the noise from the signal, and then decomposed to independent signals by fast independent component analysis (Fast ICA). To address the challenge of data paucity, we propose a multi feature-based deep neural network with high performance that is reflected in our experiments when compared to the conventional convolutional neural network (CNN) and multi-layer perceptron (MLP).

Keywords: FFT, ICA, vehicle classification, multi-feature DNN, CNN, MLP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 431
4219 Multi-Sensor Image Fusion for Visible and Infrared Thermal Images

Authors: Amit Kr. Happy

Abstract:

This paper is motivated by the importance of multi-sensor image fusion with specific focus on Infrared (IR) and Visible image (VI) fusion for various applications including military reconnaissance. Image fusion can be defined as the process of combining two or more source images into a single composite image with extended information content that improves visual perception or feature extraction. These images can be from different modalities like Visible camera & IR Thermal Imager. While visible images are captured by reflected radiations in the visible spectrum, the thermal images are formed from thermal radiation (IR) that may be reflected or self-emitted. A digital color camera captures the visible source image and a thermal IR camera acquires the thermal source image. In this paper, some image fusion algorithms based upon Multi-Scale Transform (MST) and region-based selection rule with consistency verification have been proposed and presented. This research includes implementation of the proposed image fusion algorithm in MATLAB along with a comparative analysis to decide the optimum number of levels for MST and the coefficient fusion rule. The results are presented, and several commonly used evaluation metrics are used to assess the suggested method's validity. Experiments show that the proposed approach is capable of producing good fusion results. While deploying our image fusion algorithm approaches, we observe several challenges from the popular image fusion methods. While high computational cost and complex processing steps of image fusion algorithms provide accurate fused results, but they also make it hard to become deployed in system and applications that require real-time operation, high flexibility and low computation ability. So, the methods presented in this paper offer good results with minimum time complexity.

Keywords: Image fusion, IR thermal imager, multi-sensor, Multi-Scale Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 430
4218 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-Time

Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl

Abstract:

In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method as a Web-App is developed for auto-generated data replication to provide a twin of the targeted data structure. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi", has been developed. A special login form has been developed with a special instance of the data validation; this verification process secures the web application from its early stages. The system has been tested and validated, and up to 99% of SQLi attacks have been prevented.

Keywords: SQL injection, attacks, web application, accuracy, database, WebAppShield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 443
4217 Controlled Vocabularies and Information Retrieval: 1918 Pandemic’s Scientific Literature as an Example

Authors: M. Garcia-Alsina, J. Cobarsí

Abstract:

The role of controlled vocabularies in information retrieval is broadly recognized as a relevant feature. Besides, there is a standing demand that editors and databases should consider the effective introduction of controlled vocabularies in their procedures to index scientific literature. That is especially important because information retrieval is pointed out as a significant point to drive systematic literature review. Hence, a first question emerges: Are the controlled vocabularies at this moment considered? On the other hand, subject searching in the catalogs is complex mainly due to the dichotomy between keywords from authors versus keywords based on controlled vocabularies. Finally, there is some demand to unify the terminology related to health to make easier the medical history exploitation and research. Considering these features, this paper focuses on controlled vocabularies related to the health field and their role for storing, classifying, and retrieving relevant literature. The objective is knowing which role plays the controlled vocabularies related to the health field to index and retrieve research literature in data bases such as Web of Science (WoS) and Scopus. So, this exploratory research is grounded over two research questions: 1) Which are the terms considered in specific controlled vocabularies of the health field; and 2) How papers are indexed in relevant databases to be easily retrieved, considering keywords vs specific health’ controlled vocabularies? This research takes as fieldwork the controlled vocabularies related to health and the scientific interest for 1918 flu pandemic, also known equivocally as ‘Spanish flu’. This interest has been fostered by the emergence in the early 21st of epidemics of pneumonic diseases caused by virus. Searches about and with controlled vocabularies on WoS and Scopus databases are conducted. First results of this work in progress are surprising. There are different controlled vocabularies for the health field, into which the terms collected and preferred related to ‘1918 pandemic’ are identified. To summarize, ‘Spanish influenza epidemic’ or ‘Spanish flu’ are collected as not preferred terms. The preferred terms are: ‘influenza’ or ‘influenza pandemic, 1918-1919’. Although the controlled vocabularies are clear in their election, most of the literature about ‘1918 pandemic’ is retrievable either by ‘Spanish’ or by ‘1918’ disjunct, and the dominant word to retrieve literature is ‘Spanish’ rather than ‘1918’. This is surprising considering the existence of suitable controlled vocabularies related to health topics, and the modern guidelines of World Health Organization concerning naming of diseases that point out to other preferred terms. A first conclusion is the failure of using controlled vocabularies for a field such as health, and in consequence for WoS and Scopus. This research opens further research questions about which is the role that controlled vocabularies play in the instructions to authors that journals deliver to documents’ authors.

Keywords: Controlled vocabularies, indexing, 1918 influenza, information retrieval, keywords, 1918 pandemic, scientific databases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 427
4216 Unattended Crowdsensing Method to Monitor the Quality Condition of Dirt Roads

Authors: Matías Micheletto, Rodrigo Santos, Sergio F. Ochoa

Abstract:

In developing countries, most roads in rural areas are dirt road. They require frequent maintenance since they are affected by erosive events, such as rain or wind, and the transit of heavy-weight trucks and machinery. Early detection of damages on the road condition is a key aspect, since it allows to reduce the maintenance time and cost, and also the limitations for other vehicles to travel through. Most proposals that help address this problem require the explicit participation of drivers, a permanent internet connection, or important instrumentation in vehicles or roads. These constraints limit the suitability of these proposals when applied into developing regions, like Latin America. This paper proposes an alternative method, based on unattended crowdsensing, to determine the quality of dirt roads in rural areas. This method involves the use of a mobile application that complements the road condition surveys carried out by organizations in charge of the road network maintenance, giving them early warnings about road areas that could be requiring maintenance. Drivers can also take advantage of the early warnings while they move through these roads. The method was evaluated using information from a public dataset. Although they are preliminary, the results indicate the proposal is potentially suitable to provide awareness about dirt roads condition to drivers, transportation authority and road maintenance companies.

Keywords: Dirt roads automatic quality assessment, collaborative system, unattended crowdsensing method, roads quality awareness provision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 531
4215 A VR Cybersecurity Training Knowledge-Based Ontology

Authors: Shaila Rana, Wasim Alhamdani

Abstract:

Effective cybersecurity learning relies on an engaging, interactive, and entertaining activity that fosters positive learning outcomes. VR cybersecurity training may provide a training format that is engaging, interactive, and entertaining. A methodological approach and framework are needed to allow trainers and educators to employ VR cybersecurity training methods to promote positive learning outcomes. Thus, this paper aims to create an approach that cybersecurity trainers can follow to create a VR cybersecurity training module. This methodology utilizes concepts from other cybersecurity training frameworks, such as NICE and CyTrONE. Other cybersecurity training frameworks do not incorporate the use of VR. VR training proposes unique challenges that cannot be addressed in current cybersecurity training frameworks. Subsequently, this ontology utilizes concepts to develop VR training to create a relevant methodology for creating VR cybersecurity training modules.

Keywords: Virtual reality cybersecurity training, VR cybersecurity training, traditional cybersecurity training, ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 585
4214 Impact of Network Workload between Virtualization Solutions on a Testbed Environment for Cybersecurity Learning

Authors: K´evin Fernagut, Olivier Flauzac, Erick M. Gallegos R, Florent Nolot

Abstract:

The adoption of modern lightweight virtualization often comes with new threats and network vulnerabilities. This paper seeks to assess this with a different approach studying the behavior of a testbed built with tools such as Kernel-based Virtual Machine (KVM), LinuX Containers (LXC) and Docker, by performing stress tests within a platform where students experiment simultaneously with cyber-attacks, and thus observe the impact on the campus network and also find the best solution for cyber-security learning. Interesting outcomes can be found in the literature comparing these technologies. It is, however, difficult to find results of the effects on the global network where experiments are carried out. Our work shows that other physical hosts and the faculty network were impacted while performing these trials. The problems found are discussed, as well as security solutions and the adoption of new network policies.

Keywords: Containerization, containers, cyber-security, cyber-attacks, isolation, performance, security, virtualization, virtual machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 565
4213 Automated Driving Deep Neural Network Model Accuracy and Performance Assessment in a Simulated Environment

Authors: David Tena-Gago, Jose M. Alcaraz Calero, Qi Wang

Abstract:

The evolution and integration of automated vehicles have become more and more tangible in recent years. State-of-the-art technological advances in the field of camera-based Artificial Intelligence (AI) and computer vision greatly favor the performance and reliability of Advanced Driver Assistance System (ADAS), leading to a greater knowledge of vehicular operation and resembling the human behaviour. However, the exclusive use of this technology still seems insufficient to control the vehicular operation at 100%. To reveal the degree of accuracy of the current camera-based automated driving AI modules, this paper studies the structure and behavior of one of the main solutions in a controlled testing environment. The results obtained clearly outline the lack of reliability when using exclusively the AI model in the perception stage, thereby entailing using additional complementary sensors to improve its safety and performance.

Keywords: Accuracy assessment, AI-Driven Mobility, Artificial Intelligence, automated vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 436
4212 Design and Analysis of Low-Power, High Speed and Area Efficient 2-Bit Digital Magnitude Comparator in 90nm CMOS Technology Using Gate Diffusion Input

Authors: Fasil Endalamaw

Abstract:

Digital magnitude comparators based on Gate Diffusion Input (GDI) implementation technique are high speed and area-efficient, and they consume less power as compared to other implementation techniques. However, they are less efficient for some logic gates and have no full voltage swing. In this paper, we made a performance comparison between the GDI implementation technique and other implementation methods, such as Static CMOS, Pass Transistor Logic (PTL), and Transmission Gate (TG) in 90 nm, 120 nm, and 180 nm CMOS technologies using BSIM4 MOS model. We proposed a methodology (hybrid implementation) of implementing digital magnitude comparators which significantly improved the power, speed, area, and voltage swing requirements. Simulation results revealed that the hybrid implementation of digital magnitude comparators show a 10.84% (power dissipation), 41.6% (propagation delay), 47.95% (power-delay product (PDP)) improvement compared to the usual GDI implementation method. We used Microwind & Dsch Version 3.5 as well as the Tanner EDA 16.0 tools for simulation purposes.

Keywords: Efficient, gate diffusion input, high speed, low power, CMOS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 443
4211 A Deep Learning Framework for Polarimetric SAR Change Detection Using Capsule Network

Authors: Sanae Attioui, Said Najah

Abstract:

The Earth's surface is constantly changing through forces of nature and human activities. Reliable, accurate, and timely change detection is critical to environmental monitoring, resource management, and planning activities. Recently, interest in deep learning algorithms, especially convolutional neural networks, has increased in the field of image change detection due to their powerful ability to extract multi-level image features automatically. However, these networks are prone to drawbacks that limit their applications, which reside in their inability to capture spatial relationships between image instances, as this necessitates a large amount of training data. As an alternative, Capsule Network has been proposed to overcome these shortcomings. Although its effectiveness in remote sensing image analysis has been experimentally verified, its application in change detection tasks remains very sparse. Motivated by its greater robustness towards improved hierarchical object representation, this study aims to apply a capsule network for PolSAR image Change Detection. The experimental results demonstrate that the proposed change detection method can yield a significantly higher detection rate compared to methods based on convolutional neural networks.

Keywords: Change detection, capsule network, deep network, Convolutional Neural Networks, polarimetric synthetic aperture radar images, PolSAR images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 498
4210 Quantifying the Second-Level Digital Divide on Sub-National Level

Authors: Vladimir Korovkin, Albert Park, Evgeny Kaganer

Abstract:

Digital divide, the gap in the access to the world of digital technologies and the socio-economic opportunities that they create is an important phenomenon of the XXI century. This gap may exist between countries, regions within a country or socio-demographic groups, creating the classes of “digital have and have nots”. While the 1st-level divide (the difference in opportunities to access the digital networks) was demonstrated to diminish with time, the issues of 2nd level divide (the difference in skills and usage of digital systems) and 3rd level divide (the difference in effects obtained from digital technology) may grow. The paper offers a systemic review of literature on the measurement of the digital divide, noting the certain conceptual stagnation due to the lack of effective instruments that would capture the complex nature of the phenomenon. As a result, many important concepts do not receive the empiric exploration they deserve. As a solution the paper suggests a composite Digital Life Index, that studies separately the digital supply and demand across seven independent dimensions providing for 14 subindices. The Index is based on Internet-borne data, a distinction from traditional research approaches that rely on official statistics or surveys. The application of the model to the study of the digital divide between Russian regions and between cities in China have brought promising results. The paper advances the existing methodological literature on the 2nd level digital divide and can also inform practical decision-making regarding the strategies of national and regional digital development.

Keywords: Digital transformation, second-level digital divide, composite index, digital policy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 462
4209 Efficient Alias-free Level Crossing Sampling

Authors: Negar Riazifar, Nigel G. Stocks

Abstract:

This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide alias-free high-fidelity signal reconstruction for speech signals without exponentially increasing sample number with increasing bit-depth. We introduce methods in LC sampling that reduce the sampling rate close to the Nyquist frequency even for large bit-depth. The results indicate that larger variation in the sampling intervals leads to alias-free sampling scheme; this is achieved by either reducing the bit-depth or adding a jitter to the system for high bit-depths. In conjunction with windowing, the signal is reconstructed from the LC samples using an efficient Toeplitz reconstruction algorithm.

Keywords: Alias-free, level crossing sampling, spectrum, trigonometric polynomial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 315
4208 Efficient High Fidelity Signal Reconstruction Based on Level Crossing Sampling

Authors: Negar Riazifar, Nigel G. Stocks

Abstract:

This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide high fidelity signal reconstruction for speech signals; these strategies circumvent the problem of exponentially increasing number of samples as the bit-depth is increased and hence are highly efficient. Specifically, the results indicate that the distribution of the intervals between samples is one of the key factors in the quality of signal reconstruction; including samples with short intervals does not improve the accuracy of the signal reconstruction, whilst samples with large intervals lead to numerical instability. The proposed sampling method, termed reduced conventional level crossing (RCLC) sampling, exploits redundancy between samples to improve the efficiency of the sampling without compromising performance. A reconstruction technique is also proposed that enhances the numerical stability through linear interpolation of samples separated by large intervals. Interpolation is demonstrated to improve the accuracy of the signal reconstruction in addition to the numerical stability. We further demonstrate that the RCLC and interpolation methods can give useful levels of signal recovery even if the average sampling rate is less than the Nyquist rate.

Keywords: Level crossing sampling, numerical stability, speech processing, trigonometric polynomial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 430
4207 Experimental Testbed to Compare 4G and 5G Industrial IoT Connections in Simulated Based Control System

Authors: Andrea Gelmini

Abstract:

This paper considers the advent of 5G and the use of it in a Based Control System (BCS), posing as a basic concept the question of what the real differences and practical improvements are compared to 4G. To this purpose, a testbed hardware simulator has been designed and built where identical machines with the same sensors and management systems will communicate with different radio access network connections. This allows an objective statistical comparison of performance on the real functioning and improvement of the infrastructure with the Industrial Internet of Things (IIoT) connected to it.

Keywords: 4G, 5G, BCS, eSIM, IIoT, SCADA, Testbed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 340
4206 Cyber Security Enhancement via Software-Defined Pseudo-Random Private IP Address Hopping

Authors: Andre Slonopas, Warren Thompson, Zona Kostic

Abstract:

Obfuscation is one of the most useful tools to prevent network compromise. Previous research focused on the obfuscation of the network communications between external-facing edge devices. This work proposes the use of two edge devices, external and internal facing, which communicates via private IPv4 addresses in a software-defined pseudo-random IP hopping. This methodology does not require additional IP addresses and/or resources to implement. Statistical analyses demonstrate that the hopping surface must be at least 1e3 IP addresses in size with a broad standard deviation to minimize the possibility of coincidence of monitored and communication IPs. The probability of breaking the hopping algorithm requires a collection of at least 1e6 samples, which for large hopping surfaces will take years to collect. The probability of dropped packets is controlled via memory buffers and the frequency of hops and can be reduced to levels acceptable for video streaming. This methodology provides an impenetrable layer of security ideal for information and supervisory control and data acquisition systems.

Keywords: Moving Target Defense, cybersecurity, network security, hopping randomization, software defined network, network security theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 620
4205 Performance Evaluation of an Ontology-Based Arabic Sentiment Analysis

Authors: Salima Behdenna, Fatiha Barigou, Ghalem Belalem

Abstract:

Due to the quick increase in the volume of Arabic opinions posted on various social media, Arabic sentiment analysis has become one of the most important areas of research. Compared to English, there is very little works on Arabic sentiment analysis, in particular aspect-based sentiment analysis (ABSA). In ABSA, aspect extraction is the most important task. In this paper, we propose a semantic ABSA approach for standard Arabic reviews to extract explicit aspect terms and identify the polarity of the extracted aspects. The proposed approach was evaluated using HAAD datasets. Experiments showed that the proposed approach achieved a good level of performance compared with baseline results. The F-measure was improved by 19% for the aspect term extraction tasks and 55% aspect term polarity task.

Keywords: Sentiment analysis, opinion mining, Arabic, aspect level, opinion, polarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 463
4204 Sustainable Engineering Paradigm Shift in Digital Architecture, Engineering and Construction Ecology within Metaverse

Authors: Kwok Tak Kit

Abstract:

In the post COVID 19 pandemic, the demand for virtual world and digital economy accelerated and became more popular and the term Metaverse is now a hot topic in different sectors in the community and society. Digital technology development in augmented reality (AR), virtual reality (VR), and networks has become more mature in recent years, the racing of the application of Metaverse in different aspects is more vigorous. Metaverse in digital architectural, engineering and construction being one of the major players in future should not be overlooked. More understanding of Metaverse which includes the Architecture, Engineering and Construction (AEC) industry is crucial and this is important for stakeholders in the AEC industry to start early development to match with the quick development, expansion and global trend of Metaverse.

Keywords: Metaverse, internet of things, smart city, NFTs, digital economy, blockchain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 644
4203 Governance, Risk Management, and Compliance Factors Influencing the Adoption of Cloud Computing in Australia

Authors: Tim Nedyalkov

Abstract:

A business decision to move to the cloud brings fundamental changes in how an organization develops and delivers its Information Technology solutions. The accelerated pace of digital transformation across businesses and government agencies increases the reliance on cloud-based services. Collecting, managing, and retaining large amounts of data in cloud environments make information security and data privacy protection essential. It becomes even more important to understand what key factors drive successful cloud adoption following the commencement of the Privacy Amendment Notifiable Data Breaches (NDB) Act 2017 in Australia as the regulatory changes impact many organizations and industries. This quantitative correlational research investigated the governance, risk management, and compliance factors contributing to cloud security success. The factors influence the adoption of cloud computing within an organizational context after the commencement of the NDB scheme. The results and findings demonstrated that corporate information security policies, data storage location, management understanding of data governance responsibilities, and regular compliance assessments are the factors influencing cloud computing adoption. The research has implications for organizations, future researchers, practitioners, policymakers, and cloud computing providers to meet the rapidly changing regulatory and compliance requirements.

Keywords: Cloud compliance, cloud security, cloud security governance, data governance, privacy protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 911
4202 Stock Movement Prediction Using Price Factor and Deep Learning

Authors: Hy Dang, Bo Mei

Abstract:

The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.

Keywords: Classification, machine learning, time representation, stock prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1153
4201 Random Subspace Neural Classifier for Meteor Recognition in the Night Sky

Authors: Carlos Vera, Tetyana Baydyk, Ernst Kussul, Graciela Velasco, Miguel Aparicio

Abstract:

This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.

Keywords: Contour orientation histogram, meteors, night sky, RSC neural classifier, stars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 406
4200 Data Collection in Hospital Emergencies: A Questionnaire Survey

Authors: Nouha Mhimdi, Wahiba Ben Abdessalem Karaa, Henda Ben Ghezala

Abstract:

Many methods are used to collect data like questionnaires, surveys, focus group interviews. Or the collection of poor-quality data resulting, for example, from poorly designed questionnaires, the absence of good translators or interpreters, and the incorrect recording of data allow conclusions to be drawn that are not supported by the data or to focus only on the average effect of the program or policy. There are several solutions to avoid or minimize the most frequent errors, including obtaining expert advice on the design or adaptation of data collection instruments; or use technologies allowing better "anonymity" in the responses. In this context, and to overcome the aforementioned problems, we suggest in this paper an approach to achieve the collection of relevant data, by carrying out a large-scale questionnaire-based survey. We have been able to collect good quality, consistent and practical data on hospital emergencies to improve emergency services in hospitals, especially in the case of epidemics or pandemics.

Keywords: Data collection, survey, database, data analysis, hospital emergencies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 666
4199 A Generic Middleware to Instantly Sync Intensive Writes of Heterogeneous Massive Data via Internet

Authors: Haitao Yang, Zhenjiang Ruan, Fei Xu, Lanting Xia

Abstract:

Industry data centers often need to sync data changes reliably and instantly from a large-scale of heterogeneous autonomous relational databases accessed via the not-so-reliable Internet, for which a practical generic sync middleware of low maintenance and operation costs is most wanted. To this demand, this paper presented a generic sync middleware system (GSMS), which has been developed, applied and optimized since 2006, holding the principles or advantages that it must be SyncML-compliant and transparent to data application layer logic without referring to implementation details of databases synced, does not rely on host computer operating systems deployed, and its construction is light weighted and hence of low cost. Regarding these hard commitments of developing GSMS, in this paper we stressed the significant optimization breakthrough of GSMS sync delay being well below a fraction of millisecond per record sync. A series of ultimate tests with GSMS sync performance were conducted for a persuasive example, in which the source relational database underwent a broad range of write loads (from one thousand to one million intensive writes within a few minutes). All these tests showed that the performance of GSMS is competent and smooth even under ultimate write loads.

Keywords: Heterogeneous massive data, instantly sync intensive writes, Internet generic middleware design, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 454
4198 Using Design Sprint for Software Engineering Undergraduate Student Projects: A Method Paper

Authors: Sobhani U. Pilapitiya, Tharanga Peiris

Abstract:

Software engineering curriculums generally consist of industry-based practices such as project-based learning (PBL) which mainly focuses on efficient and innovative product development. These approaches can be tailored and used in project-based modules in software engineering curriculums. However, there are very limited attempts in the area especially related to Sri Lankan context. This paper describes a tailored pedagogical approach and its results of using design sprint which can be used for project-based modules in software engineering (SE) curriculums. A controlled group of second year software engineering students was selected for the study. The study results indicate that all of the students agreed that the design sprint approach is effective in group-based projects and 83% of students stated that it minimized the re-work compared to traditional project approaches. The tailored process was effective, easy to implement and produced desired results at the end of the session while providing students an enjoyable experience.

Keywords: design sprint, project-based learning, software engineering, curriculum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
4197 Depth Estimation in DNN Using Stereo Thermal Image Pairs

Authors: Ahmet Faruk Akyuz, Hasan Sakir Bilge

Abstract:

Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.

Keywords: thermal stereo matching, depth estimation, deep neural networks, CNN

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694
4196 Affective Adaptation Design for Better Gaming Experiences

Authors: Ollie Hall, Salma ElSayed

Abstract:

Affective adaptation is a creative way for game designers to add an extra layer of engagement to their productions. When player’s emotions are an explicit factor in mechanics design, endless possibilities for imaginative gameplay emerge. Whilst gaining popularity, existing affective game research mostly runs controlled experiments in restrictive settings and rely on one or more specialist devices for measuring player’s emotional state. These conditions albeit effective, are not necessarily realistic. Moreover, the simplified narrative and intrusive wearables may not be suitable for players. This exploratory study investigates delivering an immersive affective experience in the wild with minimal requirements, in an attempt for the average developer to reach the average player. A puzzle game is created with rich narrative and creative mechanics. It employs both explicit and implicit adaptation and only requires a web camera. Participants played the game on their own machines in various settings. Whilst it was rated feasible, very engaging and enjoyable, it remains questionable whether a fully immersive experience was delivered due to the limited sample size.

Keywords: affective games, dynamic adaptation, emotion recognition, game design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 845