World Academy of Science, Engineering and Technology
[Civil and Environmental Engineering]
Online ISSN : 1307-6892
1327 Resistance to Sulfuric Acid Attacks of Self-Consolidating Concrete: Effect Metakaolin and Various Cements Types
Authors: Kianoosh Samimi, Farhad Estakhr, Mahdi Mahdikhani, Faramaz Moodi
Abstract:
Due to their fluidity and simplicity of use, self-compacting concretes (SCCs) have undeniable advantages. In recent years, the role of metakaolin as a one of pozzolanic materials in concrete has been considered by researchers. It can modify various properties of concrete, due to high pozzolanic reactions and also makes a denser microstructure. The objective of this paper is to examine the influence of three type of Portland cement and metakaolin on fresh state, compressive strength and sulfuric acid attacks in self- consolidating concrete at early age up to 90 days of curing in lime water. Six concrete mixtures were prepared with three types of different cement as Portland cement type II, Portland Slag Cement (PSC), Pozzolanic Portland Cement (PPC) and 15% substitution of metakaolin by every cement. The results show that the metakaolin admixture increases the viscosity and the demand amount of superplasticizer. According to the compressive strength results, the highest value of compressive strength was achieved for PSC and without any metakaolin at age of 90 days. Conversely, the lowest level of compressive strength at all ages of conservation was obtained for PPC and containing 15% metakaolin. According to this study, the total substitution of PSC and PPC by Portland cement type II is beneficial to the increasing in the chemical resistance of the SCC with respect to the sulfuric acid attack. On the other hand, this increase is more noticeable by the use of 15% of metakaolin. Therefore, it can be concluded that metakaolin has a positive effect on the chemical resistance of SCC containing of Portland cement type II, PSC, and PPC.
Keywords: SCC, metakaolin, cement type, durability, compressive strength, sulfuric acid attacks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9221326 Influence of Metakaolin and Cements Types on Compressive Strength and Transport Properties of Self-Consolidating Concrete
Authors: Kianoosh Samimi, Farhad Estakhr, Mahdi Mahdikhani, Faramaz Moodi
Abstract:
The self-consolidating concrete (SCC) performance over ordinary concrete is generally related to the ingredients used. The metakaolin can modify various properties of concrete, due to high pozzolanic reactions and also makes a denser microstructure. The objective of this paper is to examine the influence of three types of Portland cement and metakaolin on compressive strength and transport properties of SCC at early ages and up to 90 days. Six concrete mixtures were prepared with three types of different cements and substitution of 15% metakaolin. The results show that the highest value of compressive strength was achieved for Portland Slag Cement (PSC) and without any metakaolin at age of 90 days. Conversely, the lowest level of compressive strength at all ages of conservation was obtained for Pozzolanic Portland Cement (PPC) and containing 15% metakaolin. As can be seen in the results, compressive strength in SCC containing Portland cement type II with metakaolin is higher compared to that relative to SCC without metakaolin from 28 days of age. On the other hand, the samples containing PSC and PPC with metakaolin had a lower compressive strength than the plain samples. Therefore, it can be concluded that metakaolin has a negative effect on the compressive strength of SCC containing PSC and PPC. In addition, results show that metakaolin has enhanced chloride durability of SCCs and reduced capillary water absorption at 28, 90 days.
Keywords: SCC, metakaolin, cement type, compressive strength, chloride diffusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9201325 Resistance to Chloride Penetration of High Strength Self-Compacting Concretes: Pumice and Zeolite Effect
Authors: Kianoosh Samimi, Siham Kamali-Bernard, Ali Akbar Maghsoudi
Abstract:
This paper aims to contribute to the characterization and the understanding of fresh state, compressive strength and chloride penetration tendency of high strength self-compacting concretes (HSSCCs) where Portland cement type II is partially substituted by 10% and 15% of natural pumice and zeolite. First, five concrete mixtures with a control mixture without any pozzolan are prepared and tested in both fresh and hardened states. Then, resistance to chloride penetration for all formulation is investigated in non-steady state and steady state by measurement of chloride penetration and diffusion coefficient. In non-steady state, the correlation between initial current and chloride penetration with diffusion coefficient is studied. Moreover, the relationship between diffusion coefficient in non-steady state and electrical resistivity is determined. The concentration of free chloride ions is also measured in steady state. Finally, chloride penetration for all formulation is studied in immersion and tidal condition. The result shows that, the resistance to chloride penetration for HSSCC in immersion and tidal condition increases by incorporating pumice and zeolite. However, concrete with zeolite displays a better resistance. This paper shows that the HSSCC with 15% pumice and 10% zeolite is suitable in fresh, hardened, and durability characteristics.Keywords: Chloride penetration, immersion, pumice, HSSCC, tidal, zeolite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8351324 Bi-Directional Evolutionary Topology Optimization Based on Critical Fatigue Constraint
Authors: Khodamorad Nabaki, Jianhu Shen, Xiaodong Huang
Abstract:
This paper develops a method for considering the critical fatigue stress as a constraint in the Bi-directional Evolutionary Structural Optimization (BESO) method. Our aim is to reach an optimal design in which high cycle fatigue failure does not occur for a specific life time. The critical fatigue stress is calculated based on modified Goodman criteria and used as a stress constraint in our topology optimization problem. Since fatigue generally does not occur for compressive stresses, we use the p-norm approach of the stress measurement that considers the highest tensile principal stress in each point as stress measure to calculate the sensitivity numbers. The BESO method has been extended to minimize volume an object subjected to the critical fatigue stress constraint. The optimization results are compared with the results from the compliance minimization problem which shows clearly the merits of our newly developed approach.
Keywords: Topology optimization, BESO method, p-norm, fatigue constraint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11141323 Effect of Addition Rate of Expansive Additive on Autogenous Shrinkage and Delayed Expansion of Ultra-High Strength Mortar
Authors: Yulu Zhang, Atushi Teramoto, Taka-Aki Ohkubo
Abstract:
In this study, the effect of expansive additives on autogenous shrinkage and delayed expansion of ultra-high strength mortar was explored. The specimens made for the study were composed of ultra-high strength mortar, which was mixed with ettringite-lime composite type expansive additive. Two series of experiments were conducted with the specimens. The experimental results confirmed that the autogenous shrinkage of specimens was effectively decreased by increasing the proportion of the expansive additive. On the other hand, for the specimens, which had 7% expansive additive, and were cured for seven days at a constant temperature of 20°C, and then cured for a long time in either in an underwater, moist (Relative humidity: 100%) or dry air (Relative humidity: 60%) environment, excessively large expansion strain occurred. Specifically, typical turtle shell-like swelling expansion cracks were confirmed in the specimens that underwent long-term curing in an underwater and moist environment. According to the result of hydration analysis, the formation of expansive substances, calcium hydroxide and alumina, ferric oxide, tri-sulfate contribute to the occurrence of delayed expansion.
Keywords: Ultra-high strength mortar, expansive additive, autogenous shrinkage, delayed expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7811322 Forecasting of Scaffolding Work Comfort Parameters Based on Data from Meteorological Stations
Authors: I. Szer, J. Szer, M. Pieńko, A. Robak, P. Jamińska-Gadomska
Abstract:
Work at height, such as construction works on scaffoldings, is associated with a considerable risk. Scaffolding workers are usually exposed to changing weather conditions what can additionally increase the risk of dangerous situations. Therefore, it is very important to foresee the risk of adverse conditions to which the worker may be exposed. The data from meteorological stations may be used to asses this risk. However, the dependency between weather conditions on a scaffolding and in the vicinity of meteorological station, should be determined. The paper presents an analysis of two selected environmental parameters which have influence on the behavior of workers – air temperature and wind speed. Measurements of these parameters were made between April and November of 2016 on ten scaffoldings located in different parts of Poland. They were compared with the results taken from the meteorological stations located closest to the studied scaffolding. The results gathered from the construction sites and meteorological stations were not the same, but statistical analyses have shown that they were correlated.Keywords: Scaffoldings, health and safety at work, temperature, wind speed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11101321 Safety Conditions Analysis of Scaffolding on Construction Sites
Authors: M. Pieńko, A. Robak, E. Błazik-Borowa, J. Szer
Abstract:
This paper presents the results of analysis of 100 full-scale scaffolding structures in terms of compliance with legal acts and safety of use. In 2016 and 2017, authors examined scaffolds in Poland located at buildings which were at construction or renovation stage. The basic elements affecting the safety of scaffolding use such as anchors, supports, platforms, guardrails and toe-boards have been taken into account. All of these elements were checked in each of considered scaffolding. Based on the analyzed scaffoldings, the most common errors concerning assembly process and use of scaffolding were collected. Legal acts on the scaffoldings are not always clear, and this causes many issues. In practice, people realize how dangerous the use of incomplete scaffolds is only when the accident occurs. Despite the fact that the scaffolding should ensure the safety of its users, most accidents on construction sites are caused by fall from a height.
Keywords: Façade scaffolds, load capacity, practice, safety of people.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15891320 Effect of Cladding Direction on Residual Stress Distribution in Laser Cladded Rails
Authors: Taposh Roy, Anna Paradowska, Ralph Abrahams, Quan Lai, Michael Law, Peter Mutton, Mehdi Soodi, Wenyi Yan
Abstract:
In this investigation, a laser cladding process with a powder feeding was used to deposit stainless steel 410L (high strength, excellent resistance to abrasion and corrosion, and great laser compatibility) onto railhead (higher strength, heat treated hypereutectoid rail grade manufactured in accordance with the requirements of European standard EN 13674 Part 1 for R400HT grade), to investigate the development and controllability of process-induced residual stress in the cladding, heat-affected zone (HAZ) and substrate and to analyse their correlation with hardness profile during two different laser cladding directions (across and along the track). Residual stresses were analysed by neutron diffraction at OPAL reactor, ANSTO. Neutron diffraction was carried out on the samples in longitudinal (parallel to the rail), transverse (perpendicular to the rail) and normal (through thickness) directions with high spatial resolution through the thickness. Due to the thick rail and thin cladding, 4 mm thick reference samples were prepared from every specimen by Electric Discharge Machining (EDM). Metallography across the laser claded sample revealed four distinct zones: The clad zone, the dilution zone, HAZ and the substrate. Compressive residual stresses were found in the clad zone and tensile residual stress in the dilution zone and HAZ. Laser cladding in longitudinally cladding induced higher tensile stress in the HAZ, whereas transversely cladding rail showed lower tensile behavior.
Keywords: Laser cladding, residual stress, neutron diffraction, HAZ.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10471319 Analysis and Prediction of the Behavior of the Landslide at Ain El Hammam, Algeria Based on the Second Order Work Criterion
Authors: Zerarka Hizia, Akchiche Mustapha, Prunier Florent
Abstract:
The landslide of Ain El Hammam (AEH) is characterized by a complex geology and a high hydrogeology hazard. AEH's perpetual reactivation compels us to look closely at its triggers and to better understand the mechanisms of its evolution in mass and in depth. This study builds a numerical model to simulate the influencing factors such as precipitation, non-saturation, and pore pressure fluctuations, using Plaxis software. For a finer analysis of instabilities, we use Hill's criterion, based on the sign of the second order work, which is the most appropriate material stability criterion for non-associated elastoplastic materials. The results of this type of calculation allow us, in theory, to predict the shape and position of the slip surface(s) which are liable to ground movements of the slope, before reaching the rupture given by the plastic limit of Mohr Coulomb. To validate the numerical model, an analysis of inclinometer measures is performed to confirm the direction of movement and kinematic of the sliding mechanism of AEH’s slope.Keywords: Landslide, second order work, precipitation, inclinometers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11461318 A Fuzzy Control System for Reducing Urban Stormwater Runoff by a Stormwater Storage Tank
Authors: Pingping Zhang, Yanpeng Cai, Jianlong Wang
Abstract:
Stormwater storage tank (SST) is a popular low impact development technology for reducing stormwater runoff in the construction of sponge city. At present, it is difficult to perform the automatic control of SST for reducing peak flow. In this paper, fuzzy control was introduced into the peak control of SST to improve the efficiency of reducing stormwater runoff. Firstly, the design of SST was investigated. A catchment area and a return period were assumed, a SST model was manufactured, and then the storage capacity of the SST was verified. Secondly, the control parameters of the SST based on reducing stormwater runoff were analyzed, and a schematic diagram of real-time control (RTC) system based on peak control SST was established. Finally, fuzzy control system of a double input (flow and water level) and double output (inlet and outlet valve) was designed. The results showed that 1) under the different return periods (one year, three years, five years), the SST had the effect of delayed peak control and storage by increasing the detention time, 2) rainfall, pipeline flow, the influent time and the water level in the SST could be used as RTC parameters, and 3) the response curves of flow velocity and water level fluctuated very little and reached equilibrium in a short time. The combination of online monitoring and fuzzy control was feasible to control the SST automatically. This paper provides a theoretical reference for reducing stormwater runoff and improving the operation efficiency of SST.
Keywords: Stormwater runoff, stormwater storage tank, real-time control, fuzzy control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9941317 BIM Application and Construction Schedule Simulation for the Horizontal Work Area
Authors: Hyeon-Seong Kim, Sang-Mi Park, Seul-Gi Kim, Seon-Ju Han, Leen-Seok Kang
Abstract:
The use of BIM, including 4D CAD system, in a construction project is gradually increasing. Since the building construction works repeatedly in the vertical space, it is relatively easy to confirm the interference effect when applying the BIM, but the interference effect for the civil engineering project is relatively small because the civil works perform non-repetitive processes in the horizontal space. For this reason, it is desirable to apply BIM to the construction phase when applying BIM to the civil engineering project, and the most active BIM tool applied to the construction phase is the 4D CAD function for the schedule management. This paper proposes the application procedure of BIM by the construction phase of civil engineering project and a linear 4D CAD construction methodology suitable for the civil engineering project in which linear work is performed.
Keywords: BIM, 4D CAD, Horizontal work area, Linear simulation, VR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10631316 Studying the Behavior of Asphalt Mix and Their Properties in the Presence of Nano Materials
Authors: Aman Patidar, Dipankar Sarkar, Manish Pal
Abstract:
Due to rapid development, increase in the traffic load, higher traffic volume and seasonal variation in temperature, asphalt pavement shows distresses like rutting, fatigue and thermal cracking etc. because of this pavement fails during service life so that bitumen needs to be modified with some additive. In this study VG30 grade bitumen modify with addition of nanosilica with 1% to 5% (increment of 1%) by weight of bitumen. Hot mix asphalt (HMA) have higher mixing, laying and rolling temperatures which leads to higher consumption of fuel. To address this issue, a nano material named ZycoTherm which is chemical warm mix asphalt (WMA) additive is added to bitumen. Nanosilica modification (NSMB) results in the increase in stability compared to unmodified bitumen (UMB). WMA modified mix shows slightly higher stability than UMB and NSMB in a lower bitumen content. The Retained stability and tensile strength ratio (TSR) is more than 75% and 80% respectively for both mixes. Nanosilica with WMA has more resistant to temperature susceptibility, moisture susceptibility and short term aging than NSMB.
Keywords: HMA, nanosilica, NSMB, temperature, TSR, UMB, WMA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9321315 Sustainability Assessment of a Deconstructed Residential House
Authors: Atiq U. Zaman, Juliet Arnott
Abstract:
This paper analyses the various benefits and barriers of residential deconstruction in the context of environmental performance and circular economy based on a case study project in Christchurch, New Zealand. The case study project “Whole House Deconstruction” which aimed, firstly, to harvest materials from a residential house, secondly, to produce new products using the recovered materials, and thirdly, to organize an exhibition for the local public to promote awareness on resource conservation and sustainable deconstruction practices. Through a systematic deconstruction process, the project recovered around 12 tonnes of various construction materials, most of which would otherwise be disposed of to landfill in the traditional demolition approach. It is estimated that the deconstruction of a similar residential house could potentially prevent around 27,029 kg of carbon emission to the atmosphere by recovering and reusing the building materials. In addition, the project involved local designers to produce 400 artefacts using the recovered materials and to exhibit them to accelerate public awareness. The findings from this study suggest that the deconstruction project has significant environmental benefits, as well as social benefits by involving the local community and unemployed youth as a part of their professional skills development opportunities. However, the project faced a number of economic and institutional challenges. The study concludes that with proper economic models and appropriate institutional support a significant amount of construction and demolition waste can be reduced through a systematic deconstruction process. Traditionally, the greatest benefits from such projects are often ignored and remain unreported to wider audiences as most of the external and environmental costs have not been considered in the traditional linear economy.
Keywords: Circular economy, construction and demolition waste, resource recovery, systematic deconstruction, sustainable waste management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11451314 Effectiveness of Crystallization Coating Materials on Chloride Ions Ingress in Concrete
Authors: Mona Elsalamawy, Ashraf Ragab Mohamed, Abdellatif Elsayed Abosen
Abstract:
This paper aims to evaluate the effectiveness of different crystalline coating materials concerning of chloride ions penetration. The concrete ages at the coating installation and its moisture conditions were addressed; where, these two factors may play a dominant role for the effectiveness of the used materials. Rapid chloride ions penetration test (RCPT) was conducted at different ages and moisture conditions according to the relevant standard. In addition, the contaminated area and the penetration depth of the chloride ions were investigated immediately after the RCPT test using chemical identifier, 0.1 M silver nitrate AgNO3 solution. Results have shown that, the very low chloride ions penetrability, for the studied crystallization materials, were investigated only with the old age concrete (G1). The significant reduction in chloride ions’ penetrability was illustrated after 7 days of installing the crystalline coating layers. Using imageJ is more reliable to describe the contaminated area of chloride ions, where the distribution of aggregate and heterogeneous of cement mortar was considered in the images analysis.
Keywords: Chloride permeability, contaminated area, crystalline waterproofing materials, RCPT, XRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12111313 Development of a Value Evaluation Model of Highway Box-Girder Bridge
Authors: Hao Hsi Tseng
Abstract:
Taiwan’s infrastructure is gradually deteriorating, while resources for maintenance and replacement are increasingly limited, raising the urgent need for methods for maintaining existing infrastructure within constrained budgets. Infrastructure value evaluation is used to enhance the efficiency of infrastructure maintenance work, allowing administrators to quickly assess the maintenance needs and performance by observing variation in infrastructure value. This research establishes a value evaluation model for Taiwan’s highway box girder bridges. The operating mechanism and process of the model are illustrated in a practical case.Keywords: Box girder bridge, deterioration, infrastructure, maintenance, value evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12641312 Analysis of the Interference from Risk-Determining Factors of Cooperative and Conventional Construction Contracts
Authors: E. Harrer, M. Mauerhofer, T. Werginz
Abstract:
As a result of intensive competition, the building sector is suffering from a high degree of rivalry. Furthermore, there can be observed an unbalanced distribution of project risks. Clients are aimed to shift their own risks into the sphere of the constructors or planners. The consequence of this is that the number of conflicts between the involved parties is inordinately high or even increasing; an alternative approach to counter on that developments are cooperative project forms in the construction sector. This research compares conventional contract models and models with partnering agreements to examine the influence on project risks by an early integration of the involved parties. The goal is to show up deviations in different project stages from the design phase to the project transfer phase. These deviations are evaluated by a survey of experts from the three spheres: clients, contractors and planners. By rating the influence of the participants on specific risk factors it is possible to identify factors which are relevant for a smooth project execution.Keywords: Collaborative work, construction industry, contract-models, influence, partnering, project management, risk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9011311 Polymer Modification of Fine Grained Concretes Used in Textile Reinforced Cementitious Composites
Authors: Esma Gizem Daskiran, Mehmet Mustafa Daskiran, Mustafa Gencoglu
Abstract:
Textile reinforced cementitious composite (TRCC) is a development of a composite material where textile and fine-grained concrete (matrix) materials are used in combination. These matrices offer high performance properties in many aspects. To achieve high performance, polymer modified fine-grained concretes were used as matrix material which have high flexural strength. In this study, ten latex polymers and ten powder polymers were added to fine-grained concrete mixtures. These latex and powder polymers were added to the mixtures at different rates related to binder weight. Mechanical properties such as compressive and flexural strength were studied. Results showed that latex polymer and redispersible polymer modified fine-grained concretes showed different mechanical performance. A wide range of both latex and redispersible powder polymers were studied. As the addition rate increased compressive strength decreased for all mixtures. Flexural strength increased as the addition rate increased but significant enhancement was not observed through all mixtures.
Keywords: Textile reinforced composite, cement, fine grained concrete, latex, redispersible powder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9571310 Evaluation of the Mechanical Behavior of a Retaining Wall Structure on a Weathered Soil through Probabilistic Methods
Authors: P. V. S. Mascarenhas, B. C. P. Albuquerque, D. J. F. Campos, L. L. Almeida, V. R. Domingues, L. C. S. M. Ozelim
Abstract:
Retaining slope structures are increasingly considered in geotechnical engineering projects due to extensive urban cities growth. These kinds of engineering constructions may present instabilities over the time and may require reinforcement or even rebuilding of the structure. In this context, statistical analysis is an important tool for decision making regarding retaining structures. This study approaches the failure probability of the construction of a retaining wall over the debris of an old and collapsed one. The new solution’s extension length will be of approximately 350 m and will be located over the margins of the Lake Paranoá, Brasilia, in the capital of Brazil. The building process must also account for the utilization of the ruins as a caisson. A series of in situ and laboratory experiments defined local soil strength parameters. A Standard Penetration Test (SPT) defined the in situ soil stratigraphy. Also, the parameters obtained were verified using soil data from a collection of masters and doctoral works from the University of Brasília, which is similar to the local soil. Initial studies show that the concrete wall is the proper solution for this case, taking into account the technical, economic and deterministic analysis. On the other hand, in order to better analyze the statistical significance of the factor-of-safety factors obtained, a Monte Carlo analysis was performed for the concrete wall and two more initial solutions. A comparison between the statistical and risk results generated for the different solutions indicated that a Gabion solution would better fit the financial and technical feasibility of the project.
Keywords: Economical analysis, probability of failure, retaining walls, statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10651309 Reliability-Based Maintenance Management Methodology to Minimise Life Cycle Cost of Water Supply Networks
Authors: Mojtaba Mahmoodian, Joshua Phelan, Mehdi Shahparvari
Abstract:
With a large percentage of countries’ total infrastructure expenditure attributed to water network maintenance, it is essential to optimise maintenance strategies to rehabilitate or replace underground pipes before failure occurs. The aim of this paper is to provide water utility managers with a maintenance management approach for underground water pipes, subject to external loading and material corrosion, to give the lowest life cycle cost over a predetermined time period. This reliability-based maintenance management methodology details the optimal years for intervention, the ideal number of maintenance activities to perform before replacement and specifies feasible renewal options and intervention prioritisation to minimise the life cycle cost. The study was then extended to include feasible renewal methods by determining the structural condition index and potential for soil loss, then obtaining the failure impact rating to assist in prioritising pipe replacement. A case study on optimisation of maintenance plans for the Melbourne water pipe network is considered in this paper to evaluate the practicality of the proposed methodology. The results confirm that the suggested methodology can provide water utility managers with a reliable systematic approach to determining optimum maintenance plans for pipe networks.Keywords: Water pipe networks, maintenance management, reliability analysis, optimum maintenance plan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12901308 Modal Approach for Decoupling Damage Cost Dependencies in Building Stories
Authors: Haj Najafi Leila, Tehranizadeh Mohsen
Abstract:
Dependencies between diverse factors involved in probabilistic seismic loss evaluation are recognized to be an imperative issue in acquiring accurate loss estimates. Dependencies among component damage costs could be taken into account considering two partial distinct states of independent or perfectly-dependent for component damage states; however, in our best knowledge, there is no available procedure to take account of loss dependencies in story level. This paper attempts to present a method called "modal cost superposition method" for decoupling story damage costs subjected to earthquake ground motions dealt with closed form differential equations between damage cost and engineering demand parameters which should be solved in complex system considering all stories' cost equations by the means of the introduced "substituted matrixes of mass and stiffness". Costs are treated as probabilistic variables with definite statistic factors of median and standard deviation amounts and a presumed probability distribution. To supplement the proposed procedure and also to display straightforwardness of its application, one benchmark study has been conducted. Acceptable compatibility has been proven for the estimated damage costs evaluated by the new proposed modal and also frequently used stochastic approaches for entire building; however, in story level, insufficiency of employing modification factor for incorporating occurrence probability dependencies between stories has been revealed due to discrepant amounts of dependency between damage costs of different stories. Also, more dependency contribution in occurrence probability of loss could be concluded regarding more compatibility of loss results in higher stories than the lower ones, whereas reduction in incorporation portion of cost modes provides acceptable level of accuracy and gets away from time consuming calculations including some limited number of cost modes in high mode situation.
Keywords: Dependency, story-cost, cost modes, engineering demand parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10501307 Deterioration Assessment Models for Water Pipelines
Authors: L. Parvizsedghy, I. Gkountis, A. Senouci, T. Zayed, M. Alsharqawi, H. El Chanati, M. El-Abbasy, F. Mosleh
Abstract:
The aging and deterioration of water pipelines in cities worldwide result in more frequent water main breaks, water service disruptions, and flooding damage. Therefore, there is an urgent need for undertaking proper maintenance procedures to avoid breaks and disastrous failures. However, due to budget limitations, the maintenance of water pipeline networks needs to be prioritized through efficient deterioration assessment models. Previous studies focused on the development of structural or physical deterioration assessment models, which require expensive inspection data. But, this paper aims at developing deterioration assessment models for water pipelines using statistical techniques. Several deterioration models were developed based on pipeline size, material type, and soil type using linear regression analysis. The categorical nature of some variables affecting pipeline deterioration was considered through developing several categorical models. The developed models were validated with an average validity percentage greater than 95%. Moreover, sensitivity analysis was carried out against different classifications and it displayed higher importance of age of pipes compared to other factors. The developed models will be helpful for the water municipalities and asset managers to assess the condition of their pipes and prioritize them for maintenance and inspection purposes.
Keywords: Water pipelines, deterioration assessment models, regression analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12441306 Evaluation of Hybrid Viscoelastic Damper for Passive Energy Dissipation
Authors: S. S. Ghodsi, M. H. Mehrabi, Zainah Ibrahim, Meldi Suhatril
Abstract:
This research examines the performance of a hybrid passive control device for enhancing the seismic response of steel frame structures. The device design comprises a damper which employs a viscoelastic material to control both shear and axial strain. In the design, energy is dissipated through the shear strain of a two-layer system of viscoelastic pads which are located between steel plates. In addition, viscoelastic blocks have been included on either side of the main shear damper which obtains compressive strains in the viscoelastic blocks. These dampers not only dissipate energy but also increase the stiffness of the steel frame structure, and the degree to which they increase the stiffness may be controlled by the size and shape. In this research, the cyclical behavior of the damper was examined both experimentally and numerically with finite element modeling. Cyclic loading results of the finite element modeling reveal fundamental characteristics of this hybrid viscoelastic damper. The results indicate that incorporating a damper of the design can significantly improve the seismic performance of steel frame structures.
Keywords: Cyclic loading, energy dissipation, hybrid damper, passive control system, viscoelastic damper.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8841305 Characteristic on Compressive Strength of Blast Slag and Fly Ash Hybrid Geopolymer Mortar
Authors: G. S. Ryu, K. T. Koh, H. Y. Kim, G. H. An, D. W. Seo
Abstract:
Geopolymer mortar is produced by alkaline activation of pozzolanic materials such as fly ground granulated blast-furnace slag (GGBFS) and fly ash (FA). Its unique reaction pathway facilitates rapid strength development in comparison with hydration of ordinary Portland cement (OPC). Geopolymer can be fabricated using various types and dosages of alkali-activator, which effectively gives a wider control over the performance of the final product. The present study investigates the effect of types of precursors and curing conditions on the fresh state and strength development characteristics of geopolymers, thereby comparatively exploring the effect of precursors from various sources of origin. The obtained result showed that the setting time and strength development of the specimens with the identical mix proportion but different precursors displayed significant variations.
Keywords: Alkali-activated material, blast furnace slag, fly ash, Flowability, strength development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12971304 Wind Fragility for Soundproof Wall with the Variation of Section Shape of Frame
Authors: Seong Do Kim, Woo Young Jung
Abstract:
Recently, damages due to typhoons and strong wind are on the rise. Considering this issue, we evaluated the performance of soundproofing walls based on the strong wind fragility by means of numerical analysis. Among the components of the soundproof wall, aluminum frame was the most vulnerable member, thus we have considered different section of aluminum frame in the determination of wind fragility. Wind load was randomly generated using Monte Carlo Simulation method. Moreover, limit state was based on the test standard of road construction soundproofing wall. In this study, the strong wind fragility was determined by considering the influence factors of wind exposure category, soundproof wall’s installation position, and shape of aluminum frame section. Results of this study could be used to determine the section shape of the frame that has high resistance to the wind during construction of the soundproofing wall.
Keywords: Aluminum frame soundproofing wall, Monte Carlo Simulation, numerical simulation, wind fragility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9171303 Numerical Study for Compressive Strength of Basalt Composite Sandwich Infill Panel
Authors: Viriyavudh Sim, Jung Kyu Choi, Yong Ju Kwak, Oh Hyeon Jeon, Woo Young Jung
Abstract:
In this study, we investigated the buckling performance of basalt fiber reinforced polymer (BFRP) sandwich infill panels. Fiber Reinforced Polymer (FRP) is a major evolution for energy dissipation when used as infill material of frame structure, a basic Polymer Matrix Composite (PMC) infill wall system consists of two FRP laminates surrounding an infill of foam core. Furthermore, this type of component is for retrofitting and strengthening frame structure to withstand the seismic disaster. In-plane compression was considered in the numerical analysis with ABAQUS platform to determine the buckling failure load of BFRP infill panel system. The present result shows that the sandwich BFRP infill panel system has higher resistance to buckling failure than those of glass fiber reinforced polymer (GFRP) infill panel system, i.e. 16% increase in buckling resistance capacity.
Keywords: Basalt fiber reinforced polymer, buckling performance, FEM analysis, sandwich infill panel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14011302 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements
Authors: Yasmeen A. S. Essawy, Khaled Nassar
Abstract:
With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.
Keywords: Building information modeling, elemental graph data model, geometric and topological data models, and graph theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12471301 Performance of Steel Frame with a Viscoelastic Damper Device under Earthquake Excitation
Authors: M. H. Mehrabi, S. S. Ghodsi, Zainah Ibrahim, Meldi Suhatril
Abstract:
Standard routes for upgrading existing buildings to improve their seismic response can be expensive in terms of both time and cost due to the modifications required to the foundations. As a result, interest has grown in the installation of viscoelastic dampers (VEDs) in mid and high-rise buildings. Details of a low-cost viscoelastic passive control device, the rotary rubber braced damper (RRBD), are presented in this paper. This design has the added benefits of being lightweight and simple to install. Experimental methods and finite element modeling were used to assess the performance of the proposed VED design and its effect on building response during earthquakes. The analyses took into account the behaviors of non-linear materials and large deformations. The results indicate that the proposed RRBD provides high levels of energy absorption, ensuring the stable cyclical response of buildings in all scenarios considered. In addition, time history analysis was employed in this study to evaluate the RRBD’s ability to control the displacements and accelerations experienced by steel frame structures. It was demonstrated that the device responds well even at low displacements, highlighting its suitability for use in seismic events of varying severity.
Keywords: Dynamic response, passive control, performance test, seismic protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9721300 Wind Fragility for Honeycomb Roof Cladding Panels Using Screw Pull-Out Capacity
Authors: Viriyavudh Sim, Woo Young Jung
Abstract:
The failure of roof cladding mostly occurs due to the failing of the connection between claddings and purlins, which is the pull-out of the screw connecting the two parts when the pull-out load, i.e. typhoon, is higher than the resistance of the connection screw. As typhoon disasters in Korea are constantly on the rise, probability risk assessment (PRA) has become a vital tool to evaluate the performance of civil structures. In this study, we attempted to determine the fragility of roof cladding with the screw connection. Experimental study was performed to evaluate the pull-out resistance of screw joints between honeycomb panels and back frames. Subsequently, by means of Monte Carlo Simulation method, probability of failure for these types of roof cladding was determined. The results that the failure of roof cladding was depends on their location on the roof, for example, the edge most panel has the highest probability of failure.Keywords: Monte Carlo Simulation, roof cladding, screw pull-out strength, wind fragility
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9871299 Stochastic Risk Analysis Framework for Building Construction Projects
Authors: Abdulkadir Abu Lawal
Abstract:
The study was carried out to establish the probability density function of some selected building construction projects of similar complexity delivered using Bill of Quantities (BQ) and Lump Sum (LS) forms of contract, and to draw a reliability scenario for each form of contract. 30 of such delivered projects are analyzed for each of the contract forms using Weibull Analysis, and their Weibull functions (α, and β) are determined based on their completion times. For the BQ form of contract delivered projects, α is calculated as 1.6737E20 and β as + 0.0115 and for the LS form, α is found to be 5.6556E03 and β is determined as + 0.4535. Using these values, respective probability density functions are calculated and plotted, as handy tool for risk analysis of future projects of similar characteristics. By input of variables from other projects, decision making processes can be made for a whole project or its components using EVM Analysis in project evaluation and review techniques. This framework, as a quantitative approach, depends on the assumption of normality in projects completion time, it can help greatly in determining the completion time probability for veritable projects using any of the contract forms under consideration. Projects aspects that are not amenable to measurement, on the other hand, can be analyzed using fuzzy sets and fuzzy logic. This scenario can be drawn for different types of building construction projects, and using different suitable forms of contract in projects delivery.
Keywords: Building construction, Projects, Forms of contract, Probability density function, Reliability scenario.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8181298 Simulation of Piezoelectric Laminated Smart Structure under Strong Electric Field
Authors: Shun-Qi Zhang, Shu-Yang Zhang, Min Chen
Abstract:
Applying strong electric field on piezoelectric actuators, on one hand very significant electroelastic material nonlinear effects will occur, on the other hand piezo plates and shells may undergo large displacements and rotations. In order to give a precise prediction of piezolaminated smart structures under large electric field, this paper develops a finite element (FE) model accounting for both electroelastic material nonlinearity and geometric nonlinearity with large rotations based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is applied to analyze a piezolaminated semicircular shell structure.Keywords: Smart structures, piezolamintes, material nonlinearity, geometric nonlinearity, strong electric field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1064