Search results for: wood products
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4668

Search results for: wood products

4578 Synthesis and Properties of Oxidized Corn Starch Based Wood Adhesive

Authors: Salise Oktay, Nilgun Kizilcan, Basak Bengu

Abstract:

At present, formaldehyde-based adhesives such as urea-formaldehyde (UF), melamine-formaldehyde (MF), melamine – urea-formaldehyde (MUF), etc. are mostly used in wood-based panel industry because of their high reactivity, chemical versatility, and economic competitiveness. However, formaldehyde-based wood adhesives are produced from non- renewable resources and also formaldehyde is classified as a probable human carcinogen (Group B1) by the U.S. Environmental Protection Agency (EPA). Therefore, there has been a growing interest in the development of environment-friendly, economically competitive, bio-based wood adhesives to meet wood-based panel industry requirements. In this study, like a formaldehyde-free adhesive, oxidized starch – urea wood adhesives was synthesized. In this scope, firstly, acid hydrolysis of corn starch was conducted and then acid thinned corn starch was oxidized by using hydrogen peroxide and CuSO₄ as an oxidizer and catalyst, respectively. Secondly, the polycondensation reaction between oxidized starch and urea conducted. Finally, nano – TiO₂ was added to the reaction system to strengthen the adhesive network. Solid content, viscosity, and gel time analyses of the prepared adhesive were performed to evaluate the adhesive processability. FTIR, DSC, TGA, SEM characterization techniques were used to investigate chemical structures, thermal, and morphological properties of the adhesive, respectively. Rheological analysis of the adhesive was also performed. In order to evaluate the quality of oxidized corn starch – urea adhesives, particleboards were produced in laboratory scale and mechanical and physical properties of the boards were investigated such as an internal bond, modulus of rupture, modulus of elasticity, formaldehyde emission, etc. The obtained results revealed that oxidized starch – urea adhesives were synthesized successfully and it can be a good potential candidate to use the wood-based panel industry with some developments.

Keywords: nano-TiO₂, corn starch, formaldehyde emission, wood adhesives

Procedia PDF Downloads 118
4577 Monocoque Systems: The Reuniting of Divergent Agencies for Wood Construction

Authors: Bruce Wrightsman

Abstract:

Construction and design are inexorably linked. Traditional building methodologies, including those using wood, comprise a series of material layers differentiated and separated from each other. This results in the separation of two agencies of building envelope (skin) separate from the structure. However, from a material performance position reliant on additional materials, this is not an efficient strategy for the building. The merits of traditional platform framing are well known. However, its enormous effectiveness within wood-framed construction has seldom led to serious questioning and challenges in defining what it means to build. There are several downsides of using this method, which is less widely discussed. The first and perhaps biggest downside is waste. Second, its reliance on wood assemblies forming walls, floors and roofs conventionally nailed together through simple plate surfaces is structurally inefficient. It requires additional material through plates, blocking, nailers, etc., for stability that only adds to the material waste. In contrast, when we look back at the history of wood construction in airplane and boat manufacturing industries, we will see a significant transformation in the relationship of structure with skin. The history of boat construction transformed from indigenous wood practices of birch bark canoes to copper sheathing over wood to improve performance in the late 18th century and the evolution of merged assemblies that drives the industry today. In 1911, Swiss engineer Emile Ruchonnet designed the first wood monocoque structure for an airplane called the Cigare. The wing and tail assemblies consisted of thin, lightweight, and often fabric skin stretched tightly over a wood frame. This stressed skin has evolved into semi-monocoque construction, in which the skin merges with structural fins that take additional forces. It provides even greater strength with less material. The monocoque, which translates to ‘mono or single shell,’ is a structural system that supports loads and transfers them through an external enclosure system. They have largely existed outside the domain of architecture. However, this uniting of divergent systems has been demonstrated to be lighter, utilizing less material than traditional wood building practices. This paper will examine the role monocoque systems have played in the history of wood construction through lineage of boat and airplane building industries and its design potential for wood building systems in architecture through a case-study examination of a unique wood construction approach. The innovative approach uses a wood monocoque system comprised of interlocking small wood members to create thin shell assemblies for the walls, roof and floor, increasing structural efficiency and wasting less than 2% of the wood. The goal of the analysis is to expand the work of practice and the academy in order to foster deeper, more honest discourse regarding the limitations and impact of traditional wood framing.

Keywords: wood building systems, material histories, monocoque systems, construction waste

Procedia PDF Downloads 52
4576 Territorial Brand as a Means of Structuring the French Wood Industry

Authors: Laetitia Dari

Abstract:

The brand constitutes a source of differentiation between competitors. It highlights specific characteristics that create value for the enterprise. Today the concept of a brand is not just about the product but can concern territories. The competition between territories, due to tourism, research, jobs, etc., leads territories to develop territorial brands to bring out their identity and specificity. Some territorial brands are based on natural resources or products characteristic of a territory. In the French wood sector, we can observe the emergence of many territorial brands. Supported by the inter-professional organization, these brands have the main objective of showcasing wood as a source of solutions at the local level in terms of construction and energy. The implementation of these collective projects raises the question of the way in which relations between companies are structured and animated. The central question of our work is to understand how the territorial brand promotes the structuring of a sector and the construction of collective relations between actors. In other words, we are interested in the conditions for the emergence of the territorial brand and the way in which it will be a means of mobilizing the actors around a common project. The objectives of the research are (1) to understand in which context a territorial brand emerges, (2) to analyze the way in which the territorial brand structures the collective relations between actors, (3) to give entry keys to the actors to successfully develop this type of project. Thus, our research is based on a qualitative methodology with semi-structured interviews conducted with the main territorial brands in France. The research will answer various academic and empirical questions. From an academic point of view, it brings elements of understanding to the construction of a collective project and to the way in which governance operates. From an empirical point of view, the interest of our work is to bring out the key success factors in the development of a territorial brand and how the brand can become an element of valuation for a territory.

Keywords: brand, marketing, strategy, territory, third party stakeholder, wood

Procedia PDF Downloads 43
4575 Variation in Wood Anatomical Properties of Acacia seyal var. seyal Tree Species Growing in Different Zones in Sudan

Authors: Hanadi Mohamed Shawgi Gamal, Ashraf Mohamed Ahmed Abdalla

Abstract:

Sudan is endowed by a great diversity of tree species; nevertheless, the utilization of wood resources has traditionally concentrated on a few number of species. With the great variation in the climatic zones of Sudan, great variations are expected in the anatomical properties between and within species. This variation needs to be fully explored in order to suggest the best uses for the species. Modern research on wood has substantiated that the climatic condition where the species grow has significant effect on wood properties. Understanding the extent of variability of wood is important because the uses for each kind of wood are related to its characteristics; furthermore, the suitability or quality of wood for a particular purpose is determined by the variability of one or more of these characteristics. The present study demonstrates the effect of rainfall zones in some anatomical properties of Acacia seyal var. seyal growing in Sudan. For this purpose, twenty healthy trees were collected randomly from two zones (ten trees per zone). One zone with relatively low rainfall (273mm annually) which represented by North Kordofan state and White Nile state and the second with relatively high rainfall (701 mm annually) represented by Blue Nile state and South Kordofan state. From each sampled tree, a stem disc (3 cm thick) was cut at 10% from stem height. One radius was obtained in central stem dices. Two representative samples were taken from each disc, one at 10% distance from pith to bark, the second at 90% in order to represent the juvenile and mature wood. The investigated anatomical properties were fibers length, fibers and vessels diameter, lumen diameter, and wall thickness as well as cell proportions. The result of the current study reveals significant differences between zones in mature wood vessels diameter and wall thickness, as well as juvenile wood vessels, wall thickness. The higher values were detected in the drier zone. Significant differences were also observed in juvenile wood fiber length, diameter as well as wall thickness. Contrary to vessels diameter and wall thickness, the fiber length, diameter as well as wall thickness were decreased in the drier zone. No significant differences have been detected in cell proportions of juvenile and mature wood. The significant differences in some fiber and vessels dimension lead to expect significant differences in wood density. From these results, Acacia seyal var. seyal seems to be well adapted with the change in rainfall and may survive in any rainfall zone.

Keywords: Acacia seyal var. seyal, anatomical properties, rainfall zones, variation

Procedia PDF Downloads 115
4574 Elastic Constants of Fir Wood Using Ultrasound and Compression Tests

Authors: Ergun Guntekin

Abstract:

Elastic constants of Fir wood (Abies cilicica) have been investigated by means of ultrasound and compression tests. Three modulus of elasticity in principal directions (EL, ER, ET), six Poisson’s ratios (ʋLR, ʋLT, ʋRT, ʋTR, ʋRL, ʋTL) and three shear modules (GLR, GRT, GLT) were determined. 20 x 20 x 60 mm samples were conditioned at 65 % relative humidity and 20ºC before testing. Three longitudinal and six shear wave velocities propagating along the principal axes of anisotropy, and additionally, three quasi-shear wave velocities at 45° angle with respect to the principal axes of anisotropy were measured. 2.27 MHz longitudinal and 1 MHz shear sensors were used for obtaining sound velocities. Stress-strain curves of the samples in compression tests were obtained using bi-axial extensometer in order to calculate elastic constants. Test results indicated that most of the elastic constants determined in the study are within the acceptable range. Although elastic constants determined from ultrasound are usually higher than those determined from compression tests, the values of EL and GLR determined from compression tests were higher in the study. The results of this study can be used in the numerical modeling of elements or systems under load using Fir wood.

Keywords: compression tests, elastic constants, fir wood, ultrasound

Procedia PDF Downloads 187
4573 Customer Involvement in the Development of New Sustainable Products: A Review of the Literature

Authors: Natalia Moreira, Trevor Wood-Harper

Abstract:

The acceptance of sustainable products by the final consumer is still one of the challenges of the industry, which constantly seeks alternative approaches to successfully be accepted in the global market. A large set of methods and approaches have been discussed and analysed throughout the literature. Considering the current need for sustainable development and the current pace of consumption, the need for a combined solution towards the development of new products became clear, forcing researchers in product development to propose alternatives to the previous standard product development models. This paper presents, through a systemic analysis of the literature on product development, eco-design and consumer involvement, a set of alternatives regarding consumer involvement towards the development of sustainable products and how these approaches could help improve the sustainable industry’s establishment in the general market. The initial findings of the research show that the understanding of the benefits of sustainable behaviour lead to a more conscious acquisition and eventually to the implementation of sustainable change in the consumer. Thus this paper is the initial approach towards the development of new sustainable products using the fashion industry as an example of practical implementation and acceptance by the consumers. By comparing the existing literature and critically analysing it this paper concluded that the consumer involvement is strategic to improve the general understanding of sustainability and its features. The use of consumers and communities has been studied since the early 90s in order to exemplify uses and to guarantee a fast comprehension. The analysis done also includes the importance of this approach for the increase of innovation and ground breaking developments, thus requiring further research and practical implementation in order to better understand the implications and limitations of this methodology.

Keywords: consumer involvement, products development, sustainability, eco-design

Procedia PDF Downloads 562
4572 The Influence of Fiber Fillers on the Bonding Safety of Wood-Adhesive Interfaces: A Fracture Energetic Approach

Authors: M. H. Brandtner-Hafner

Abstract:

Adhesives have established themselves as an innovative joining technology in the wood industry. The strengths of adhesive bonding lie in the realization of lightweight designs, the avoidance of material weakening, and the joining of different types of materials. There is now a number of ways to positively influence the properties of bonded joints. One way is to add fiber fillers. This leads to an improvement in adhesion, structural integrity, and fracture toughness. In this study, the effectiveness of fiber-modified adhesives for bonding wooden joints is reviewed. A series of experimental tests were performed using the fracture analytical GF-principle to study the adhesive bonding safety and performance of the wood-adhesive interface. Two different construction adhesives based on epoxy and PUR were modified with different fiber materials and applied to bond wooden joints. The results show that bonding efficiency by adding fibrous materials to the bonding matrix leads to significant improvements in structural material properties.

Keywords: fiber-modified adhesives, bonding safety, wood-adhesive interfaces, fracture analysis

Procedia PDF Downloads 71
4571 Investigation on Mechanical Properties of a Composite Material of Olive Flour Wood with a Polymer Matrix

Authors: Slim Souissi, Mohamed Ben Amar, Nesrine Bouhamed, Pierre Marechal

Abstract:

The bio-composites development from biodegradable materials and natural fibers has a growing interest in the science of composite materials. The present work was conducted as part of a cooperation project between the Sfax University and the Havre University. This work consists in developing and monitoring the properties of a composite material of olive flour wood with a polymer matrix (urea formaldehyde). For this, ultrasonic non-destructive and destructive methods of characterization were used to optimize the mechanical and acoustic properties of the studied material based on the elaboration parameters.

Keywords: bio-composite, olive flour wood, polymer matrix, ultrasonic methods, mechanical properties

Procedia PDF Downloads 464
4570 Biomass Waste-To-Energy Technical Feasibility Analysis: A Case Study for Processing of Wood Waste in Malta

Authors: G. A. Asciak, C. Camilleri, A. Rizzo

Abstract:

The waste management in Malta is a national challenge. Coupled with Malta’s recent economic boom, which has seen massive growth in several sectors, especially the construction industry, drastic actions need to be taken. Wood waste, currently being dumped in landfills, is one type of waste which has increased astronomically. This research study aims to carry out a thorough examination on the possibility of using this waste as a biomass resource and adopting a waste-to-energy technology in order to generate electrical energy. This study is composed of three distinct yet interdependent phases, namely, data collection from the local SMEs, thermal analysis using the bomb calorimeter, and generation of energy from wood waste using a micro biomass plant. Data collection from SMEs specializing in wood works was carried out to obtain information regarding the available types of wood waste, the annual weight of imported wood, and to analyse the manner in which wood shavings are used after wood is manufactured. From this analysis, it resulted that five most common types of wood available in Malta which would suitable for generating energy are Oak (hardwood), Beech (hardwood), Red Beech (softwood), African Walnut (softwood) and Iroko (hardwood). Subsequently, based on the information collected, a thermal analysis using a 6200 Isoperibol calorimeter on the five most common types of wood was performed. This analysis was done so as to give a clear indication with regards to the burning potential, which will be valuable when testing the wood in the biomass plant. The experiments carried out in this phase provided a clear indication that the African Walnut generated the highest gross calorific value. This means that this type of wood released the highest amount of heat during the combustion in the calorimeter. This is due to the high presence of extractives and lignin, which accounts for a slightly higher gross calorific value. This is followed by Red Beech and Oak. Moreover, based on the findings of the first phase, both the African Walnut and Red Beech are highly imported in the Maltese Islands for use in various purposes. Oak, which has the third highest gross calorific value is the most imported and common wood used. From the five types of wood, three were chosen for use in the power plant on the basis of their popularity and their heating values. The PP20 biomass plant was used to burn the three types of shavings in order to compare results related to the estimated feedstock consumed by the plant, the high temperatures generated, the time taken by the plant to produce gasification temperatures, and the projected electrical power attributed to each wood type. From the experiments, it emerged that whilst all three types reached the required gasification temperature and thus, are feasible for electrical energy generation. African Walnut was deemed to be the most suitable fast-burning fuel. This is followed by Red-beech and Oak, which required a longer period of time to reach the required gasification temperatures. The results obtained provide a clear indication that wood waste can not only be treated instead of being dumped in dumped in landfill but coupled.

Keywords: biomass, isoperibol calorimeter, waste-to-energy technology, wood

Procedia PDF Downloads 211
4569 Adjustments of Mechanical and Hydraulic Properties of Wood Formed under Environmental Stresses

Authors: B. Niez, B. Moulia, J. Dlouha, E. Badel

Abstract:

Trees adjust their development to the environmental conditions they experience. Storms events of last decades showed that acclimation of trees to mechanical stresses due to wind is a very important process that allows the trees to sustain for long years. In the future, trees will experience new wind patterns, namely, more often strong winds and fewer daily moderate winds. Moreover, these patterns will go along with drought periods that may interact with the capacity of trees to adjust their growth to mechanical stresses due to wind. It is necessary to understand the mechanisms of wood functional acclimations to environmental conditions in order to predict their behaviour and in order to give foresters and breeders the relevant tools to adapt their forest management. This work aims to study how trees adjust the mechanical and hydraulic functions of their wood to environmental stresses and how this acclimation may be beneficial for the tree to resist to future stresses. In this work, young poplars were grown under controlled climatic conditions that include permanent environmental stress (daily mechanical stress of the stem by bending and/or hydric stress). Then, the properties of wood formed under these stressed conditions were characterized. First, hydraulic conductivity and sensibility to cavitation were measured at the tissue level in order to evaluate the changes in water transport capacity. Secondly, bending tests and Charpy impact tests were carried out at the millimetric scale to locally measure mechanical parameters such as elastic modulus, elastic limit or rupture energy. These experimental data allow evaluating the impacts of mechanical and water stress on the wood material. At the stem level, they will be merged in an integrative model in order to evaluate the beneficial aspect of wood acclimation for trees.

Keywords: acclimation, environmental stresses, hydraulics, mechanics, wood

Procedia PDF Downloads 175
4568 Wash Fastness of Textile Fibers Dyed with Natural Dye from Eucalyptus Wood Steaming Waste

Authors: Ticiane Rossi, Maurício C. Araújo, José O. Brito, Harold S. Freeman

Abstract:

Natural dyes are gaining interest due their expected low risk to human health and to the environment. In this study, the wash fastness of a natural coloring matter from the liquid waste produced in the steam treatment of eucalyptus wood in textile fabrics was investigated. Specifically, eucalyptus wood extract was used to dye cotton, nylon and wool in an exhaust dyeing process without the addition of the traditional mordanting agents and then submitted to wash fastness analysis. The resulting dyed fabrics were evaluated for color fastness. It was found that wash fastness of dyed fabrics was very good to cotton and excellent to nylon and wool.

Keywords: eucalyptus, natural dye, textile fibers, wash fastness

Procedia PDF Downloads 583
4567 Influence of Litter Materials on Organs' Relative Weights, Meat Quality, Breast and Footpad Dermatitis of Broiler Chickens under Hot Humid Climate

Authors: Oyegunle Oke, James Daramola, Oluwaseun Iyasere, Babatunde Modinat

Abstract:

Wood shavings are the most common materials used as litter in commercial broiler production in many areas in Nigeria. A study was conducted to determine the effects of litter materials on organ weights, meat quality, footpad, and breast dermatitis of broiler chickens under hot humid climate. One hundred and eighty broiler chicks of marshal strains were randomly assigned to three treatments of wood shavings, maize cobs and chopped Panicum maximum as litter materials replicated four (4) times with 15 birds each in a completely randomized design. Data were collected on the relative body weights, meat quality, breast and foot pad dermatitis. The result showed that birds reared on chopped Panicum maximum had higher relative weight on the liver than those reared on wood shavings and maize cobs. Spleen and bursa of Fabricius were not significantly affected by litter materials. There was no significant effect of litter materials on meat quality. The relative weight of thigh of birds reared on chopped Panicum maximum, and Maize cobs were similar but higher than those reared on Wood shavings. Fresh breast weight of birds reared on wood shavings was higher than those reared on chopped Panicum maximum and maize cobs. It was concluded that chopped Panicum maximum could serve as a replacement for wood shavings as a litter material for broiler chickens.

Keywords: chickens, dermatitis, organs, litter materials

Procedia PDF Downloads 327
4566 Engineered Biopolymers as Novel Sustainable Resin Binder for Wood Composites

Authors: Somaieh Salehpour, Douglas Ireland, Chris Anderson, Charles Markessini

Abstract:

Over the last few years, advancements have been made around improving sustainability for wood composite boards. One of the last and most challenging sustainability hurdles is finding a viable alternative to petroleum-based resin binders. In today’s market, no longer is formaldehyde emission control sufficient to meet the requirements of many architects and end-use consumers. Even the use of highly reactive isocyanates is considered by many as not sustainable enough since these chemicals are manufactured from classical fossil fuel sources. The emergence of biopolymers specifically engineered for usage as wood composite binders has been successfully demonstrated in this paper as a viable option towards a truly renewable wood composite board. Recent technology advancements driven by EcoSynthetix and CHIMAR have exploited the advantages of using an engineered biopolymer. The evidence shows that this renewable technology has the potential to be used as a partial up to full replacement of classical formaldehyde technologies. Numerous trials, both in the lab and at industrial scale, have shown that a renewable binder of the proposed technology can produce a commercially viable board in a traditional industrial setting. The ultimate goal of this work is to provide evidence that a sustainable binder alternative can be used to make a commercial board while at the same time improving the total cost of manufacturing.

Keywords: no added formaldehyde, renewable, biopolymers, sustainable wood composites, engineered biopolymers

Procedia PDF Downloads 374
4565 Effectiveness of Biopesticide against Insects Pest and Its Quality of Pomelo (Citrus maxima Merr.)

Authors: U. Pangnakorn, S. Chuenchooklin

Abstract:

Effect of biopesticide from wood vinegar and extracted substances from 3 medicinal plants such as: non taai yak (Stemona tuberosa Lour), boraphet (Tinospora crispa Mier) and derris (Derris elliptica Roxb) were tested on the age five years of pomelo. The selected pomelo was carried out for insects pest control and its quality. The experimental site was located at farmer’s orchard in Phichit Province, Thailand. This study was undertaken during the drought season (December to March). The extracted from plants and wood vinegar were evaluated in 6 treatments: 1) water as control; 2) wood vinegar; 3) S. tuberosa Lour; 4) T. crispa Mier; 5) D. elliptica Roxb; 6) mixed (wood vinegar + S. tuberosa Lour + T. crispa Mier + D. elliptica Roxb). The experiment was RCB with 6 treatments and 3 replications per treatment. The results showed that T. crispa Mier was the highest effectiveness for reduction population of thrips (Scirtothrips dorsalis Hood) and citrus leaf miner (Phyllocnistis citrella Stainton) at 14.10 and 15.37 respectively, followed by treatment of mixed, D. elliptica Roxb, S. tuberosa Lour and wood vinegar with significance different. Additionally, T. crispa Mier promoted the high quality of harvested pomelo in term of thickness of skin at 12.45 mm and S. tuberosa Lour gave the high quality of the pomelo in term of firmness (276.5 kg/cm2) and brix (11.0%).

Keywords: wood vinegar, medicinal plants, Pomelo (Citrus maxima Merr.), Thrips (Scirtothrips dorsalis Hood), citrus leaf miner (Phyllocnistis citrella Stainton)

Procedia PDF Downloads 348
4564 Bioincision of Gmelina Arborea Roxb. Heartwood with Inonotus Dryophilus (Berk.) Murr. for Improved Chemical Uptake and Penetration

Authors: A. O. Adenaiya, S. F. Curling, O. Y. Ogunsanwo, G . A. Ormondroyd

Abstract:

Treatment of wood with chemicals in order to prolong its service life may prove difficult in some refractory wood species. This impermeability in wood is usually due to biochemical changes which occur during heartwood formation. Bioincision, which is a short-term, controlled microbial decomposition of wood, is one of the promising approaches capable of improving the amenability of refractory wood to chemical treatments. Gmelina Arborea, a mainstay timber species in Nigeria, has impermeable heartwood due to the excessive tyloses which occlude its vessels. Therefore, the chemical uptake and penetration in Gmelina arborea heartwood bioincised with Inonotus dryophilus fungus was investigated. Five mature Gmelina Arborea trees were harvested at the Departmental plantation in Ajibode, Ibadan, Nigeria and a bolt of 300 cm was obtained from the basal portion of each tree. The heartwood portion of the bolts was extracted and converted into dimensions 20 mm x 20 mm x 60 mm and subsequently conditioned (200C at 65% Relative Humidity). Twenty wood samples each were bioincised with the white-rot fungus Inonotus dryophilus (ID, 999) for 3, 5, 7 and 9 weeks using standard procedure, while a set of sterile control samples were prepared. Ten of each bioincised and control sample were pressure-treated with 5% tanalith preservative, while the other ten of each bioincised and control samples were pressure-treated with a liquid dye for easy traceability of the chemical in the wood, both using a full cell treatment process. The bioincised and control samples were evaluated for their Weight Loss before chemical treatment (WL, %), Preservative Absorption (PA, Kg/m3), Preservative Retention (PR, Kg/m3), Axial Absorption (AA, Kg/m3), Lateral Absorption (LA, Kg/m3), Axial Penetration Depth (APD, mm), Radial Penetration Depth (RPD, mm), and Tangential Penetration Depth (TPD, mm). The data obtained were analyzed using ANOVA at α0.05. Results show that the weight loss was least in the samples bioincised for three weeks (0.09%) and highest after 7 weeks of bioincision (0.48%). The samples bioincised for 3 weeks had the least PA (106.72 Kg/m3) and PR (5.87 Kg/m3), while the highest PA (134.9 Kg/m3) and PR were observed after 7 weeks of bioincision (7.42 Kg/m3). The AA ranged from 27.28 Kg/m3 (3 weeks) to 67.05 Kg/m3 (5 weeks), while the LA was least after 5 weeks of incubation (28.1 Kg/m3) and highest after 9 weeks (71.74 Kg/m3). Significantly lower APD was observed in control samples (6.97 mm) than in the samples bioincised after 9weeks (19.22 mm). The RPD increased from 0.08 mm (control samples) to 3.48 mm (5 weeks), while TPD ranged from 0.38 mm (control samples) to 0.63 mm (9 weeks), implying that liquid flow in the wood was predominantly through the axial pathway. Bioincising G. arborea heartwood with I. dryophilus fungus for 9 weeks is capable of enhancing chemical uptake and deeper penetration of chemicals in the wood through the degradation of the occluding vessel tyloses, which is accompanied by a minimal degradation of the polymeric wood constituents.

Keywords: Bioincision, chemical uptake, penetration depth, refractory wood, tyloses

Procedia PDF Downloads 75
4563 Experimental and Numerical Analysis of Wood Pellet Breakage during Pneumatic Transport

Authors: Julian Jaegers, Siegmar Wirtz, Viktor Scherer

Abstract:

Wood pellets belong to the most established trade formats of wood-based fuels. Especially, because of the transportability and the storage properties, but also due to low moisture content, high energy density, and the homogeneous particle size and shape, wood pellets are well suited for power generation in power plants and for the use in automated domestic firing systems. Before they are thermally converted, wood pellets pass various transport and storage procedures. There they undergo different mechanical impacts, which leads to pellet breakage and abrasion and to an increase in fines. The fines lead to operational problems during storage, charging, and discharging of pellets, they can increase the risk of dust explosions and can lead to pollutant emissions during combustion. In the current work, the dependence of the formation of fines caused by breakage during pneumatic transport is analyzed experimentally and numerically. The focus lies on the influence of conveying velocity, pellet loading, pipe diameter, and the shape of pipe components like bends or couplings. A test rig has been built, which allows the experimental evaluation of the pneumatic transport varying the above-mentioned parameters. Two high-speed cameras are installed for the quantitative optical access to the particle-particle and particle-wall contacts. The particle size distribution of the bulk before and after a transport process is measured as well as the amount of fines produced. The experiments will be compared with results of corresponding DEM/CFD simulations to provide information on contact frequencies and forces. The contribution proposed will present experimental results and report on the status of the DEM/CFD simulations. The final goal of the project is to provide a better insight into pellet breakage during pneumatic transport and to develop guidelines ensuring a more gentle transport.

Keywords: DEM/CFD-simulation of pneumatic conveying, mechanical impact on wood pellets during transportation, pellet breakage, pneumatic transport of wood pellets

Procedia PDF Downloads 119
4562 Durability of Cement Bonded Particleboards Produced from Terminalia superba and Gmelina arborea against Subterranean Termite Attack

Authors: Amos Olajide Oluyege, Emmanuel Uchechukwu Opara, Sunday Adeniyi Adedutan, Joseph Adeola Fuwape

Abstract:

This study was conducted to determine the durability of wood-cement particleboards when exposed to attack by subterranean termites, Macrotermes subhylinus. The boards were made from Terminalia superba and Gmelina arborea wood sawdust at nominal board densities (BD) of 1000, 900, and 800 kg/m³ using wood-cement mixing ratios (MR) of 3:1, 2.5:1, 2:1, and 1:1. Above ground durability tests against termite attack were carried out according to ASTM D 2017 for 14 weeks. Results of visual assessment of the wood cement particleboards show that all the board samples had a visual rating that was not less than 7 (i.e., moderate attack) for both species irrespective of the MR and BD. T. superba boards were found to have higher resistance to termite attack compared to their G. arborea counterparts. The mean values for weight loss following exposure ranged from 1.93 to 6.13% and 3.24 to 12.44%. Analysis of variance (ANOVA) results of the weight loss assessment revealed a significant (p < 0.05) effect of species and mixing ratio on the weight loss of the boards due to termite attack with F(₁,₇₂) = 92.890 and P = 0.000 and F(₃,₇₂) = 8.318 and p = 0.000, while board density did not have any significant effect (p > 0.05) with F (₂,₇₂) = 1.307 and p = 0.277. Thus, boards made from a higher mixing ratio had better resistance against termite attacks. Thus, it can be concluded that the durability of cement-bonded particleboards when exposed to subterranean termite attack is not only dependent on the quality of the wood raw material (species) but also on the enhanced protection imparted by the cement matrix; the protection increased with increase in cement/wood mixing ratio.

Keywords: cement-bonded particleboard, mixing ratio, board density, Gmelina arborea, Terminalia superba

Procedia PDF Downloads 179
4561 Evaluation of Invasive Tree Species for Production of Phosphate Bonded Composites

Authors: Stephen Osakue Amiandamhen, Schwaller Andreas, Martina Meincken, Luvuyo Tyhoda

Abstract:

Invasive alien tree species are currently being cleared in South Africa as a result of the forest and water imbalances. These species grow wildly constituting about 40% of total forest area. They compete with the ecosystem for natural resources and are considered as ecosystem engineers by rapidly changing disturbance regimes. As such, they are harvested for commercial uses but much of it is wasted because of their form and structure. The waste is being sold to local communities as fuel wood. These species can be considered as potential feedstock for the production of phosphate bonded composites. The presence of bark in wood-based composites leads to undesirable properties, and debarking as an option can be cost implicative. This study investigates the potentials of these invasive species processed without debarking on some fundamental properties of wood-based panels. Some invasive alien tree species were collected from EC Biomass, Port Elizabeth, South Africa. They include Acacia mearnsii (Black wattle), A. longifolia (Long-leaved wattle), A. cyclops (Red-eyed wattle), A. saligna (Golden-wreath wattle) and Eucalyptus globulus (Blue gum). The logs were chipped as received. The chips were hammer-milled and screened through a 1 mm sieve. The wood particles were conditioned and the quantity of bark in the wood was determined. The binding matrix was prepared using a reactive magnesia, phosphoric acid and class S fly ash. The materials were mixed and poured into a metallic mould. The composite within the mould was compressed at room temperature at a pressure of 200 KPa. After initial setting which took about 5 minutes, the composite board was demoulded and air-cured for 72 h. The cured product was thereafter conditioned at 20°C and 70% relative humidity for 48 h. Test of physical and strength properties were conducted on the composite boards. The effect of binder formulation and fly ash content on the properties of the boards was studied using fitted response surface technology, according to a central composite experimental design (CCD) at a fixed wood loading of 75% (w/w) of total inorganic contents. The results showed that phosphate/magnesia ratio of 3:1 and fly ash content of 10% was required to obtain a product of good properties and sufficient strength for intended applications. The proposed products can be used for ceilings, partitioning and insulating wall panels.

Keywords: invasive alien tree species, phosphate bonded composites, physical properties, strength

Procedia PDF Downloads 263
4560 Life Cycle Assessment-Based Environmental Assessment of the Production and Maintenance of Wooden Windows

Authors: Pamela Del Rosario, Elisabetta Palumbo, Marzia Traverso

Abstract:

The building sector plays an important role in addressing pressing environmental issues such as climate change and resource scarcity. The energy performance of buildings is considerably affected by the external envelope. In fact, a considerable proportion of the building energy demand is due to energy losses through the windows. Nevertheless, according to literature, to pay attention only to the contribution of windows to the building energy performance, i.e., their influence on energy use during building operation, could result in a partial evaluation. Hence, it is important to consider not only the building energy performance but also the environmental performance of windows, and this not only during the operational stage but along its complete life cycle. Life Cycle Assessment (LCA) according to ISO 14040:2006 and ISO 14044:2006+A1:2018 is one of the most adopted and robust methods to evaluate the environmental performance of products throughout their complete life cycle. This life-cycle based approach avoids the shift of environmental impacts of a life cycle stage to another, allowing to allocate them to the stage in which they originated and to adopt measures that optimize the environmental performance of the product. Moreover, the LCA method is widely implemented in the construction sector to assess whole buildings as well as construction products and materials. LCA is regulated by the European Standards EN 15978:2011, at the building level, and EN 15804:2012+A2:2019, at the level of construction products and materials. In this work, the environmental performance of wooden windows was assessed by implementing the LCA method and adopting primary data. More specifically, the emphasis is given to embedded and operational impacts. Furthermore, correlations are made between these environmental impacts and aspects such as type of wood and window transmittance. In the particular case of the operational impacts, special attention is set on the definition of suitable maintenance scenarios that consider the potential climate influence on the environmental impacts. For this purpose, a literature review was conducted, and expert consultation was carried out. The study underlined the variability of the embedded environmental impacts of wooden windows by considering different wood types and transmittance values. The results also highlighted the need to define appropriate maintenance scenarios for precise assessment results. It was found that both the service life and the window maintenance requirements in terms of treatment and its frequency are highly dependent not only on the wood type and its treatment during the manufacturing process but also on the weather conditions of the place where the window is installed. In particular, it became evident that maintenance-related environmental impacts were the highest for climate regions with the lowest temperatures and the greatest amount of precipitation.

Keywords: embedded impacts, environmental performance, life cycle assessment, LCA, maintenance stage, operational impacts, wooden windows

Procedia PDF Downloads 201
4559 Design and Development of Ceramics Kiln by Application Burners Use from High Pressure of Household Gas Stove

Authors: Somboon Sarasit

Abstract:

This research aims to develop a model small ceramic kiln using burner from a high-pressure household gas stove. The efficiency of the kiln and community technology transfer. The study of history shows that this area used to be a source of pottery on the old capital of Ayutthaya. There is evidence from pottery kilns unearthed many types of wood kiln since 2535 and was assumed that the production will end when the war with Burma in the Ayutthaya period. The result of the research design and performance testing of ceramic kiln using burners by gas cooker and outside from 200-liter steel drums inside with ceramic fiber. It was found that the Graze Firing of the products to be at a temperature of 1230°C. The duration of the burn approximately 5-6 hours and uses only 3-4 kg of LPG products, a coffee can burn up to 40-50 pieces. It is an energy-efficient Kiln. Use safe and appropriate opportunities for entrepreneurs, small ceramic and entrepreneurs with new investments or those who want to produce ceramic products as a hobby. The community interest in the pottery to create a new one to continue the product development and manufacturing in the harshest existence forever.

Keywords: ceramics kiln design and development, ceramic gas kiln, burners application, high-pressure of household gas stove

Procedia PDF Downloads 519
4558 Developing of Ecological Internal Insulation Composite Boards for Innovative Retrofitting of Heritage Buildings

Authors: J. N. Nackler, K. Saleh Pascha, W. Winter

Abstract:

WHISCERS™ (Whole House In-Situ Carbon and Energy Reduction Solution) is an innovative process for Internal Wall Insulation (IWI) for energy-efficient retrofitting of heritage building, which uses laser measuring to determine the dimensions of a room, off-site insulation board cutting and rapid installation to complete the process. As part of a multinational investigation consortium the Austrian part adapted the WHISCERS system to local conditions of Vienna where most historical buildings have valuable stucco facades, precluding the application of an external insulation. The Austrian project contribution addresses the replacement of commonly used extruded polystyrene foam (XPS) with renewable materials such as wood and wood products to develop a more sustainable IWI system. As the timber industry is a major industry in Austria, a new innovative and more sustainable IWI solution could also open up new markets. The first approach of investigation was the Life Cycle Assessment (LCA) to define the performance of wood fibre board as insulation material in comparison to normally used XPS-boards. As one of the results the global-warming potential (GWP) of wood-fibre-board is 15 times less the equivalent to carbon dioxide while in the case of XPS it´s 72 times more. The hygrothermal simulation program WUFI was used to evaluate and simulate heat and moisture transport in multi-layer building components of the developed IWI solution. The results of the simulations prove in examined boundary conditions of selected representative brickwork constructions to be functional and usable without risk regarding vapour diffusion and liquid transport in proposed IWI. In a further stage three different solutions were developed and tested (1 - glued/mortared, 2 - with soft board, connected to wall with gypsum board as top layer, 3 - with soft board and clay board as top layer). All three solutions presents a flexible insulation layer out of wood fibre towards the existing wall, thus compensating irregularities of the wall surface. From first considerations at the beginning of the development phase, three different systems had been developed and optimized according to assembly technology and tested as small specimen in real object conditions. The built prototypes are monitored to detect performance and building physics problems and to validate the results of the computer simulation model. This paper illustrates the development and application of the Internal Wall Insulation system.

Keywords: internal insulation, wood fibre, hygrothermal simulations, monitoring, clay, condensate

Procedia PDF Downloads 195
4557 MY ATBU: A Rebranding Campaign Using Promotional Products

Authors: Azeez Ayodele

Abstract:

Promotional products take symbolic roles, they can become an emblem, and they can become part of a rebrand and even be a brand itself. Promotional products express both an institution’s inspirations and its aspirations; it can reflect a continuum. This stimulates the interest of the study, which is to examine the impact of rebranding Abubakar Tafawa Balewa University, Bauchi-Nigeria, using promotional products. It examines the concept of rebranding with the aim to discuss the effectiveness of the promotional products in branding higher educational sector that needs to be assessed and measured. Therefore, some measures of branding activities are proposed. Conclusion suggests that university rebranding is effective and the use of a commercial approach can be easier.

Keywords: branding, higher education, promotional products, rebranding

Procedia PDF Downloads 226
4556 Influence of Vacuum Pressure on the Thermal Bonding Energy of Water in Wood

Authors: Aleksandar Dedic, Dusko Salemovic, Milorad Danilovic, Radomir Kuzmanovic

Abstract:

This paper takes into consideration the influence of bonding energy of water on energy demand of vacuum wood drying using the specific method of obtaining sorption isotherms. The experiment was carried out on oak wood at vacuum pressures of: 0.7 bar, 0.5bar and 0.3bar. The experimental work was done to determine a mathematical equation between the moisture content and energy of water-bonding. This equation helps in finding the average amount of energy of water-bonding necessary in calculation of energy consumption by use of the equation of heat balance in real drying chambers. It is concluded that the energy of water-bonding is large enough to be included into consideration. This energy increases at lower values of moisture content, when drying process approaches to the end, and its average values are lower on lower pressure.

Keywords: bonding energy, drying, isosters, oak, vacuum

Procedia PDF Downloads 249
4555 Exploration of Industrial Symbiosis Opportunities with an Energy Perspective

Authors: Selman Cagman

Abstract:

A detailed analysis is made within an organized industrial zone (OIZ) that has 1165 production facilities such as manufacturing of furniture, fabricated metal products (machinery and equipment), food products, plastic and rubber products, machinery and equipment, non-metallic mineral products, electrical equipment, textile products, and manufacture of wood and cork products. In this OIZ, a field study is done by choosing some facilities that can represent the whole OIZ sectoral distribution. In this manner, there are 207 facilities included to the site visit, and there is a 17 questioned survey carried out with each of them to assess their inputs, outputs, and waste amounts during manufacturing processes. The survey result identify that MDF/Particleboard and chipboard particles, textile, food, foam rubber, sludge (treatment sludge, phosphate-paint sludge, etc.), plastic, paper and packaging, scrap metal (aluminum shavings, steel shavings, iron scrap, profile scrap, etc.), slag (coal slag), ceramic fracture, ash from the fluidized bed are the wastes come from these facilities. As a result, there are 5 industrial symbiosis projects established with this study. One of the projects is a 2.840 kW capacity Integrated Biomass Based Waste Incineration-Energy Production Facility running on 35.000 tons/year of MDF particles and chipboard waste. Another project is a biogas plant with 225 tons/year whey, 100 tons/year of sesame husk, 40 tons/year of burnt wafer dough, and 2.000 tons/year biscuit waste. These two plants investment costs and operational costs are given in detail. The payback time of the 2.840 kW plant is almost 4 years and the biogas plant is around 6 years.

Keywords: industrial symbiosis, energy, biogas, waste to incineration

Procedia PDF Downloads 79
4554 Quantifying the Impacts of Elevated CO2 and N Fertilization on Wood Density in Loblolly Pine

Authors: Y. Cochet, A. Achim, Tom Flatman, J-C. Domec, J. Ogée, L. Wingate, Ram Oren

Abstract:

It is accepted that atmospheric CO2 concentration will increase in the future. For the past 30 years, researchers have used FACE (Free-Air Carbon Dioxide Enrichment) facilities to study the development of terrestrial ecosystems under elevated CO2 (eCO2). Forest responses to eCO2 are likely to impact timber industries with potential feedbacks towards the atmosphere. The main objectives of this study were to examine whether eCO2 alone or in combination with N-fertilization alter wood properties and to identify changes in wood anatomy related to water transport. Wood disks were sampled at breast height from mature loblolly pine trees (Pinus taeda L.) harvested at the Duke FACE site (NC, USA). By measuring ring width and intra-ring changes in density (X-ray densitometry) and tracheid size (lumen and cell wall thickness) from pith to bark, the following hypotheses were tested: 1) eCO2 and N-fertilization interact positively to increase significantly above-ground primary productivity; 2) eCO2 and N-fertilization lead to a decrease in density; 3) eCO2 and N-fertilization increase lumen diameter and decrease cell wall thickness, thus affecting water transport capacity. Our results revealed a boost in earlywood tracheid production induced by eCO2 lasting a few years. The following decrease seemed to be buffered by N-fertilization. X-ray profiles did not show a marked decrease in wood density under eCO2 or N-fertilization, although there were changes in cell anatomical properties such as a reduction in cell-wall thickness and an increase in lumen diameter. If such effects of eCO2 are confirmed, forest management strategies for example N-fertilization should be redesigned.

Keywords: wood density, Duke FACE (free-air carbon dioxide enrichment), N fertilization, tree ring

Procedia PDF Downloads 310
4553 Fabrication and Analysis of Simplified Dragonfly Wing Structures Created Using Balsa Wood and Red Prepreg Fibre Glass for Use in Biomimetic Micro Air Vehicles

Authors: Praveena Nair Sivasankaran, Thomas Arthur Ward, Rubentheren Viyapuri

Abstract:

Paper describes a methodology to fabricate a simplified dragonfly wing structure using balsa wood and red prepreg fibre glass. These simplified wing structures were created for use in Biomimetic Micro Air Vehicles (BMAV). Dragonfly wings are highly corrugated and possess complex vein structures. In order to mimic the wings function and retain its properties, a simplified version of the wing was designed. The simplified dragonfly wing structure was created using a method called spatial network analysis which utilizes Canny edge detection method. The vein structure of the wings were carved out in balsa wood and red prepreg fibre glass. Balsa wood and red prepreg fibre glass was chosen due to its ultra- lightweight property and hence, highly suitable to be used in our application. The fabricated structure was then immersed in a nanocomposite solution containing chitosan as a film matrix, reinforced with chitin nanowhiskers and tannic acid as a crosslinking agent. These materials closely mimic the membrane of a dragonfly wing. Finally, the wings were subjected to a bending test and comparisons were made with previous research for verification. The results had a margin of difference of about 3% and thus the structure was validated.

Keywords: dragonfly wings, simplified, Canny edge detection, balsa wood, red prepreg, chitin, chitosan, tannic acid

Procedia PDF Downloads 304
4552 Investigation of Wood Chips as Internal Carbon Source Supporting Denitrification Process in Domestic Wastewater Treatment

Authors: Ruth Lorivi, Jianzheng Li, John J. Ambuchi, Kaiwen Deng

Abstract:

Nitrogen removal from wastewater is accomplished by nitrification and denitrification processes. Successful denitrification requires carbon, therefore, if placed after biochemical oxygen demand (BOD) and nitrification process, a carbon source has to be re-introduced into the water. To avoid adding a carbon source, denitrification is usually placed before BOD and nitrification processes. This process however involves recycling the nitrified effluent. In this study wood chips were used as internal carbon source which enabled placement of denitrification after BOD and nitrification process without effluent recycling. To investigate the efficiency of a wood packed aerobic-anaerobic baffled reactor on carbon and nutrients removal from domestic wastewater, a three compartment baffled reactor was presented. Each of the three compartments was packed with 329 g wood chips 1x1cm acting as an internal carbon source for denitrification. The proposed mode of operation was aerobic-anoxic-anaerobic (OAA) with no effluent recycling. The operating temperature, hydraulic retention time (HRT), dissolved oxygen (DO) and pH were 24 ± 2 , 24 h, less than 4 mg/L and 7 ± 1 respectively. The removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N) and total nitrogen (TN) attained was 99, 87 and 83% respectively. TN removal rate was limited by nitrification as 97% of ammonia converted into nitrate and nitrite was denitrified. These results show that application of wood chips in wastewater treatment processes is an efficient internal carbon source. 

Keywords: aerobic-anaerobic baffled reactor, denitrification, nitrification, wood chip

Procedia PDF Downloads 267
4551 Assessing the Competitiveness of Green Charcoal Energy as an Alternative Source of Cooking Fuel in Uganda

Authors: Judith Awacorach, Quentin Gausset

Abstract:

Wood charcoal and firewood are the primary sources of energy for cooking fuel in most Sub-Saharan African countries, including Uganda. This leads to unsustainable forest use and to rapid deforestation. Green charcoal (made out of agricultural residues that are carbonized, reduced in char powder, and glued in briquettes, using a binder such as sugar molasse, cassava flour or clay) is a promising and sustainable alternative to wood charcoal and firewood. It is considered as renewable energy because the carbon emissions released by the combustion of green charcoal are immediately captured again in the next agricultural cycle. If practiced on a large scale, this has the potential to replace wood charcoal and stop deforestation. However, the uptake of green charcoal for cooking remains low in Uganda despite the introduction of the technology 15 years ago. The present paper reviews the barriers to the production and commercialization of green charcoal. The paper is based on the study of 13 production sites, recording the raw materials used, the production techniques, the quantity produced, the frequency of production, and the business model. Observations were made on each site, and interviews were conducted with the managers of the facilities and with one or two employees in the larger facilities. We also interviewed project administrators from four funding agencies interested in financing green charcoal production. The results of our research identify the main barriers as follows: 1) The price of green charcoal is not competitive (it is more labor and capital-intensive than wood charcoal). 2) There is a problem with quality control and labeling (one finds a wide variety of green charcoal with very different performances). 3) The carbonization of agricultural crop residues is a major bottleneck in green char production. Most briquettes are produced with wood charcoal dust or powder, which is a by-product of wood charcoal. As such, they increase the efficiency of wood charcoal but do not yet replace it. 4) There is almost no marketing chain for the product (most green charcoal is sold directly from producer to consumer without any middleman). 5) The financing institutions are reluctant to lend money for this kind of activity. 6) Storage can be challenging since briquettes can dissolve due to moisture. In conclusion, a number of important barriers need to be overcome before green charcoal can become a serious alternative to wood charcoal.

Keywords: briquettes, competitiveness, deforestation, green charcoal, renewable energy

Procedia PDF Downloads 18
4550 Experimental Research of Biogas Production by Using Sewage Sludge and Chicken Manure Bioloadings with Wood Biochar Additive

Authors: P. Baltrenas, D. Paliulis, V. Kolodynskij, D. Urbanas

Abstract:

Bioreactor; special device, which is used for biogas production from various organic material under anaerobic conditions. In this research, a batch bioreactor with a mechanical mixer was used for biogas production from sewage sludge and chicken manure bioloadings. The process of anaerobic digestion was mesophilic (35 °C). Produced biogas was stoted in a gasholder and the concentration of its components was measured with INCA 4000 biogas analyser. Also, a specific additive (pine wood biochar) was applied to prepare bioloadings. The application of wood biochar in bioloading increases the CH₄ concentration in the produced gas by 6-7%. The highest concentrations of CH₄ were found in biogas produced during the decomposition of sewage sludge bioloadings. The maximum CH₄ reached 77.4%. Studies have shown that the application of biochar in bioloadings also reduces average CO₂ and H₂S concentrations in biogas.

Keywords: biochar, biogas, bioreactor, sewage sludge

Procedia PDF Downloads 127
4549 Wood as a Climate Buffer in a Supermarket

Authors: Kristine Nore, Alexander Severnisen, Petter Arnestad, Dimitris Kraniotis, Roy Rossebø

Abstract:

Natural materials like wood, absorb and release moisture. Thus wood can buffer indoor climate. When used wisely, this buffer potential can be used to counteract the outer climate influence on the building. The mass of moisture used in the buffer is defined as the potential hygrothermal mass, which can be an energy storage in a building. This works like a natural heat pump, where the moisture is active in damping the diurnal changes. In Norway, the ability of wood as a material used for climate buffering is tested in several buildings with the extensive use of wood, including supermarkets. This paper defines the potential of hygrothermal mass in a supermarket building. This includes the chosen ventilation strategy, and how the climate impact of the building is reduced. The building is located above the arctic circle, 50m from the coastline, in Valnesfjord. It was built in 2015, has a shopping area, including toilet and entrance, of 975 m². The climate of the area is polar according to the Köppen classification, but the supermarket still needs cooling on hot summer days. In order to contribute to the total energy balance, wood needs dynamic influence to activate its hygrothermal mass. Drying and moistening of the wood are energy intensive, and this energy potential can be exploited. Examples are to use solar heat for drying instead of heating the indoor air, and raw air with high enthalpy that allow dry wooden surfaces to absorb moisture and release latent heat. Weather forecasts are used to define the need for future cooling or heating. Thus, the potential energy buffering of the wood can be optimized with intelligent ventilation control. The ventilation control in Valnesfjord includes the weather forecast and historical data. That is a five-day forecast and a two-day history. This is to prevent adjustments to smaller weather changes. The ventilation control has three zones. During summer, the moisture is retained to dampen for solar radiation through drying. In the winter time, moist air let into the shopping area to contribute to the heating. When letting the temperature down during the night, the moisture absorbed in the wood slow down the cooling. The ventilation system is shut down during closing hours of the supermarket in this period. During the autumn and spring, a regime of either storing the moisture or drying out to according to the weather prognoses is defined. To ensure indoor climate quality, measurements of CO₂ and VOC overrule the low energy control if needed. Verified simulations of the Valnesfjord building will build a basic model for investigating wood as a climate regulating material also in other climates. Future knowledge on hygrothermal mass potential in materials is promising. When including the time-dependent buffer capacity of materials, building operators can achieve optimal efficiency of their ventilation systems. The use of wood as a climate regulating material, through its potential hygrothermal mass and connected to weather prognoses, may provide up to 25% energy savings related to heating, cooling, and ventilation of a building.

Keywords: climate buffer, energy, hygrothermal mass, ventilation, wood, weather forecast

Procedia PDF Downloads 182