Search results for: wear defects
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1145

Search results for: wear defects

1025 Magnetic Field Effects on Parabolic Graphene Quantum Dots with Topological Defects

Authors: Defne Akay, Bekir S. Kandemir

Abstract:

In this paper, we investigate the low-lying energy levels of the two-dimensional parabolic graphene quantum dots (GQDs) in the presence of topological defects with long range Coulomb impurity and subjected to an external uniform magnetic field. The low-lying energy levels of the system are obtained within the framework of the perturbation theory. We theoretically demonstrate that a valley splitting can be controlled by geometrical parameters of the graphene quantum dots and/or by tuning a uniform magnetic field, as well as topological defects. It is found that, for parabolic graphene dots, the valley splitting occurs due to the introduction of spatial confinement. The corresponding splitting is enhanced by the introduction of a uniform magnetic field and it increases by increasing the angle of the cone in subcritical regime.

Keywords: coulomb impurity, graphene cones, graphene quantum dots, topological defects

Procedia PDF Downloads 269
1024 Microstructure and Tribological Properties of AlSi5Cu2/SiC Composite

Authors: Magdalena Suśniak, Joanna Karwan-Baczewska

Abstract:

Microstructure and tribological properties of AlSi5Cu2 matrix composite reinforced with SiC have been studied by microscopic examination and basic tribological properties. Composite material was produced by the mechanical alloying and spark plasma sintering (SPS) technique. The mixture of AlSi5Cu2 chips with 0, 10, 15 wt. % of SiC powder were placed in 250 ml mixing jar and milled 40 hours. To prevent the extreme cold welding the 1 wt. % of stearic acid was added to the powder mixture as a process control agent. Mechanical alloying provide to obtain composites powder with uniform distribution of SiC in matrix. Composite powders were poured into a graphite and a pulsed electric current was passed through powder under vacuum to consolidate material. Processing conditions were: sintering temperature 450°C, uniaxial pressure 32MPa, time of sintering 5 minutes. After SPS process composite samples indicate higher hardness values, lower weight loss, and lower coefficient of friction as compared with the unreinforced alloy. Light microscope micrograph of the worn surfaces and wear debris revealed that in the unreinforced alloy the prominent wear mechanism was the adhesive wear. In the AlSi5Cu2/SiC composites, by increasing of SiC the wear mechanism changed from adhesive and micro-cutting to abrasive and delamination for composite with 20 SiC wt. %. In all the AlSi5Cu2/SiC composites, abrasive wear was the main wear mechanism.

Keywords: aluminum matrix composite, mechanical alloying, spark plasma sintering, AlSi5Cu2/SiC composite

Procedia PDF Downloads 359
1023 Effect of Modifiers (Sr/Sb) and Heat Treatment on the Microstructures and Wear Properties of Al-11Si-3Cu-0.5Mg Alloys

Authors: Sheng-Long Lee, Tse-An Pan

Abstract:

In this study, an optical microscope (OM), electron microscope (SEM), electrical conductivity meter (% IACS), hardness test, and wear test were subjected to analyze the microstructure of the wrought Al-11Si-3Cu-0.5Mg alloys. The effect of eutectic silicon morphology and alloy hardness on wear properties was investigated. The results showed that in the cast state, the morphology of eutectic silicon modified by strontium and antimony is lamellar and finer fibrous structure. After homogenization, the eutectic Si modified by Sr coarsened, and the eutectic Si modified by Sb refined due to fragmentation. The addition of modifiers, hot rolling, and solution aging treatment can control eutectic silicon morphology and hardness. The finer eutectic silicon and higher hardness have better wear resistance. During the wearing process, a protective oxide layer, also known as Mechanical Mixed Layer (MML), is formed on the surface of the alloy. The MML has higher stability and cracking resistance in Sr-modified alloys than in Sb-modified alloys. The study found that the wearing behavior of Al-11Si-3Cu-0.5Mg alloy was enhanced by the combination of adding Sr with lower solution time and T6 peak aging.

Keywords: Al-Si-Cu-Mg alloy, eutectic silicon, heat treatment, wear property

Procedia PDF Downloads 45
1022 Influence of Aluminum Content on the Microstructural, Mechanical and Tribological Properties of TiAlN Coatings for Using in Dental and Surgical Instrumentation

Authors: Hernan D. Mejia, Gilberto B. Gaitan, Mauricio A. Franco

Abstract:

420 steel is normally used in the manufacture of dental and surgical instrumentation, as well as parts in the chemical, pharmaceutical, and food industries, among others, where they must withstand heavy loads and often be in contact with corrosive environments, which leads to wear and deterioration of these steels in relatively short times. In the case of medical applications, the instruments made of this steel also suffer wear and corrosion during the repetitive sterilization processes due to the relatively low achievable hardness of just 50 HRC and its hardly acceptable resistance to corrosion. In order to improve the wear resistance of 420 steel, TiAlN coatings were deposited, increasing the aluminum content in the alloy by varying the power applied to the aluminum target of 900, 1100, and 1300 W. Evaluations using XRD, Micro Raman, XPS, AFM, SEM, and TEM showed a columnar growth crystal structure with an average thickness of 2 microns and consisting of the TiN and TiAlN phases, whose roughness and grain size decrease with a higher Al content. The AlN phase also appears in the sample deposited at 1300W. The hardness, determined by nanoindentation, initially increases with the aluminum content from 9.7 GPa to 17.1 GPa, but then decreases to 15.4 GPa for the sample with the highest aluminum content due to the appearance of hexagonal AlN and a decrease of harder TiN and TiAlN phases. It was observed that the wear coefficient had a contrary behavior, which took values of 2.7; 1.7 and 6.6x10⁻⁶ mm³/N.m, respectively. All the coated samples significantly improved the wear resistance of the uncoated 420 steel.

Keywords: hard coatings, magnetron sputtering, TiAlN coatings, surgical instruments, wear resistance

Procedia PDF Downloads 95
1021 Experimental Investigations to Measure Surface Fatigue Wear in Journal Bearing by Using Vibration Signal Analysis

Authors: Amarnath M., Ramachandra C. G., H. Chelladurai, P..Sateesh Kumar, K. Santhosh Kumar

Abstract:

Journal bearings are extensively used sliding contact machine elements to support radial/axial loaded rotors used in various applications viz. automobile crankshaft, turbine propeller shaft, rope conveyer, heavy duty electric motors. The primary reasons for the failures of these bearings include unstable lubricant film, oil degradation, misalignment, etc. This paper describes the results of experimental investigations carried out to detect surface fatigue wear developed on load bearing the contact surfaces of journal bearing. The test bearing was subjected to fatigue load cycles over a period of 600 hours. The vibration signals were acquired from the journal bearing at regular intervals of 100 hrs. These signals were post-processed by using the vibration analysis technique to obtain diagnostic information of wear propagated in the journal-bearing system.

Keywords: fatigue, journal bearing, sound signals, vibration signals, wear

Procedia PDF Downloads 35
1020 Effect of Roughness and Microstructure on Tribological Behaviour of 35NCD16 Steel

Authors: A. Jourani, C. Trevisiol, S. Bouvier

Abstract:

The aim of this work is to study the coupled effect of microstructure and surface roughness on friction coefficient, wear resistance and wear mechanisms. Friction tests on 35NCD16 steel are performed under different normal loads (50-110 N) on a pin-on-plane configuration at cyclic sliding with abrasive silicon carbide grains ranging from 35 µm to 200 µm. To vary hardness and microstructure, the specimens are subjected to water quenching and tempering at various temperatures from 200°C to 600°C. The evolution of microstructures and wear mechanisms of worn surfaces are analyzed using scanning electron microscopy (SEM). For a given microstructure and hardness, the friction coefficient decreases with increasing of normal load and decreasing of the abrasive particle size. The wear rate increase with increasing of normal load and abrasive particle size. The results also reveal that there is a critical hardness Hcᵣᵢₜᵢcₐₗ around 430 Hv which maximizes the friction coefficient and wear rate. This corresponds to a microstructure transition from martensite laths to carbides and equiaxed grains, for a tempering around 400°C. Above Hcᵣᵢₜᵢcₐₗ the friction coefficient and the amount of material loss decrease with an increase of hardness and martensite volume fraction. This study also shows that the debris size and the space between the abrasive particles decrease with a reduction in the particle size. The coarsest abrasive grains lost their cutting edges, accompanied by particle damage and empty space due to the particle detachment from the resin matrix. The compact packing nature of finer abrasive papers implicates lower particle detachment and facilitates the clogging and the transition from abrasive to adhesive wear.

Keywords: martensite, microstructure, friction, wear, surface roughness

Procedia PDF Downloads 139
1019 ED Machining of Particulate Reinforced Metal Matrix Composites

Authors: Sarabjeet Singh Sidhu, Ajay Batish, Sanjeev Kumar

Abstract:

This paper reports the optimal process conditions for machining of three different types of metal matrix composites (MMCs): 65vol%SiC/A356.2; 10vol%SiC-5vol%quartz/Al and 30vol%SiC/A359 using PMEDM process. Metal removal rate (MRR), tool wear rate (TWR), surface roughness (SR) and surface integrity (SI) were evaluated after each trial and contributing process parameters were identified. The four responses were then collectively optimized using the technique for order preference by similarity to ideal solution (TOPSIS) and optimal process conditions were identified for each type of MMCS. The density of reinforced particles shields the matrix material from spark energy hence the high MRR and SR was observed with lowest reinforced particle. TWR was highest with Cu-Gr electrode due to disintegration of the weakly bonded particles in the composite electrode. Each workpiece was examined for surface integrity and ranked as per severity of surface defects observed and their rankings were used for arriving at the most optimal process settings for each workpiece.

Keywords: metal matrix composites (MMCS), metal removal rate (MRR), surface roughness (SR), surface integrity (SI), tool wear rate (TWR), technique for order preference by similarity to ideal solution (TOPSIS)

Procedia PDF Downloads 261
1018 Tribological Characterization of Composites Based on Epoxy Resin Filled with Tailings of Scheelite

Authors: Clarissa D. M. O. Guimaraes, Mariza C. M. Fernandes, Francisco R. V. Diaz, Juliana R. Souza

Abstract:

The use of mineral fillers in the preparation of organic matrix composites can be an efficient alternative in minimizing the environmental damage generated in passive mineral beneficiation processes. In addition, it may represent a new material option for wind, construction, and aeronautical industries, for example. In this sense, epoxy resin composites with Tailings of Scheelite (TS) were developed. The composites were manufactured with 5%, 10% and 20% of TS in volume percentage, homogenized by mechanical mixing and molded in a silicon mold. In order to make the tribological evaluation, pin on disk tests were performed to analyze coefficient of friction and wear. The wear mechanisms were identified by SEM (scanning electron microscope) images. The coefficient of friction had a tendency to decrease with increasing amount of filler. The wear tends to increase with increasing amount of filler, although it exhibits a similar wear behavior. The results suggest characteristics that are potential used in many tribological applications.

Keywords: composites, mineral filler, tailings of scheelite, tribology

Procedia PDF Downloads 140
1017 Ways to Prevent Increased Wear of the Drive Box Parts and the Central Drive of the Civil Aviation Turbo Engine Based on Tribology

Authors: Liudmila Shabalinskaya, Victor Golovanov, Liudmila Milinis, Sergey Loponos, Alexander Maslov, D. O. Frolov

Abstract:

The work is devoted to the rapid laboratory diagnosis of the condition of aircraft friction units, based on the application of the nondestructive testing method by analyzing the parameters of wear particles, or tribodiagnostics. The most important task of tribodiagnostics is to develop recommendations for the selection of more advanced designs, materials and lubricants based on data on wear processes for increasing the life and ensuring the safety of the operation of machines and mechanisms. The object of tribodiagnostics in this work are the tooth gears of the central drive and the gearboxes of the gas turbine engine of the civil aviation PS-90A type, in which rolling friction and sliding friction with slip occur. The main criterion for evaluating the technical state of lubricated friction units of a gas turbine engine is the intensity and rate of wear of the friction surfaces of the friction unit parts. When the engine is running, oil samples are taken and the state of the friction surfaces is evaluated according to the parameters of the wear particles contained in the oil sample, which carry important and detailed information about the wear processes in the engine transmission units. The parameters carrying this information include the concentration of wear particles and metals in the oil, the dispersion composition, the shape, the size ratio and the number of particles, the state of their surfaces, the presence in the oil of various mechanical impurities of non-metallic origin. Such a morphological analysis of wear particles has been introduced into the order of monitoring the status and diagnostics of various aircraft engines, including a gas turbine engine, since the type of wear characteristic of the central drive and the drive box is surface fatigue wear and the beginning of its development, accompanied by the formation of microcracks, leads to the formation of spherical, up to 10 μm in size, and in the aftermath of flocculent particles measuring 20-200 μm in size. Tribodiagnostics using the morphological analysis of wear particles includes the following techniques: ferrography, filtering, and computer analysis of the classification and counting of wear particles. Based on the analysis of several series of oil samples taken from the drive box of the engine during their operating time, a study was carried out of the processes of wear kinetics. Based on the results of the study and comparing the series of criteria for tribodiagnostics, wear state ratings and statistics of the results of morphological analysis, norms for the normal operating regime were developed. The study allowed to develop levels of wear state for friction surfaces of gearing and a 10-point rating system for estimating the likelihood of the occurrence of an increased wear mode and, accordingly, prevention of engine failures in flight.

Keywords: aviation, box of drives, morphological analysis, tribodiagnostics, tribology, ferrography, filtering, wear particle

Procedia PDF Downloads 235
1016 Ti-Mo-N Nano-Grains Embedded into Thin MoSₓ-Based Amorphous Matrix: A Novel Structure for Superhardness and Ultra-Low Wear

Authors: Lina Yang, Mao Wen, Jianhong Chen, Kan Zhang

Abstract:

Molybdenum disulfide (MoS₂) represents a highly sought lubricant for reducing friction based on intrinsic layered structure, but for this reason, practical applications have been greatly restricted due to the fact that its low hardness would cause severe wear. Here, a novel TiMoN/MoSₓ composite coatings with TiMoN solid solution grains embedded into MoSₓ-based amorphous matrix has been successfully designed and synthesized, through magnetron co-sputtering technology. Desirably, in virtue of such special microstructure, superhardness and excellent toughness can be well achieved, along with an ultra-low wear rate at ~2×10⁻¹¹ mm³/Nm in the air environment, simultaneously, low friction at ~0.1 is maintained. It should be noted that this wear level is almost two orders of magnitude lower than that of pure TiN coating, and is, as we know, the lowest wear rate in dry sliding. Investigations of tribofilm reveal that it is amorphous MoS₂ in nature, and its formation arises directly from the MoSₓ amorphous matrix. Which contributes to effective lubrication behavior, coupled with excellent mechanical performances of such composite coating, exceptionally low wear can be guaranteed. The findings in this work suggest that the special composite structure makes it possible for the synthesis of super-hard and super-durable lubricative coating, offering guidance to synthesize ultrahigh performance protective coating for industrial application.

Keywords: hardness, MoS₂-containing composite coatings, toughness, tribological properties

Procedia PDF Downloads 118
1015 Tribological Behavior of PTFE Composites Used for Guide Rings of Hydraulic Actuating Cylinders under Oil-Lubricated Condition

Authors: Trabelsi Mohamed, Kharrat Mohamed, Dammak Maher

Abstract:

Guide rings play an important role in the performance and durability of hydraulic actuating cylinders. In service, guide rings surfaces are subjected to friction and wear against steel counterface. A good mastery of these phenomena is required for the improvement of the energy safeguard and the durability of the actuating cylinder. Polytetrafluoroethylene (PTFE) polymer is extensively used in guide rings thanks to its low coefficient of friction, its good resistance to solvents as well as its high temperature stability. In this study, friction and wear behavior of two PTFE composites filled with bronze and bronze plus MoS2 were evaluated under oil-lubricated condition, aiming as guide rings for hydraulic actuating cylinder. Wear tests of the PTFE composite specimen sliding against steel ball were conducted using reciprocating linear tribometer. The wear mechanisms of the composites under the same sliding condition were discussed, based on Scanning Electron Microscopy examination of the worn composite surface and the optical micrographs of the steel counter surface. As for the results, comparative friction behaviors of the PTFE composites and lower friction coefficients were recorded under oil lubricated condition. The wear behavior was considerably improved to compare with this in dry sliding, while the oil adsorbed layer limited the transfer of the PTFE to the steel counter face during the sliding test.

Keywords: PTFE, composite, bronze, MoS2, friction, wear, oil-lubrication

Procedia PDF Downloads 268
1014 Analysis of User Complaints and Preferences by Conducting User Surveys to Ascertain the Need for Change in Current Design of Helmets

Authors: Pratham Baheti, Rohan Sanghi, Aditya Gupta

Abstract:

In the largely populated city of New Delhi, India, there are a lot of people that travel by two-wheelers. Majority of the people wear helmets while traveling and know how important it is to wear helmets for their safety. Still, the number of deaths because of road accidents involving two-wheelers is significant. We had conducted a survey by traveling within and in the outskirts of Delhi so as to see the variation in data and in the opinion of people towards helmet being a safety device rather than to escape the traffic police. We conducted a survey at traffic junctions and crossings of all the stakeholders and collected feedback on the Helmet scenario in India. According to the survey, the possible reason for these deaths is that the people, being unaware of helmet safety standards (ISI standards for helmets), buy helmets with fake ISI mark from unauthorized helmet sellers for a cheap price. Also, for the people who do not wear a helmet at all or wear a helmet just because it is a law, the reasons that they do not want to wear a helmet is heavyweight, lack of ventilation, inconvenience due to a strap, and hair problems. To address all these problems, we are designing a helmet with reduced weight and also working on the Helmet’s retention system and ventilation. We plan to provide this product at a cheap cost whilst maintaining the ISI standards so that a larger section of the population would be able to afford the helmet.

Keywords: safety, survey, ISI marks, stakeholders, helmet

Procedia PDF Downloads 254
1013 Effect of Zr Addition to Aluminum Grain Refined by Ti+B on Its Wear Resistance after Extrusion Condition

Authors: Adnan I. O. Zaid, Safwan M. A. Alqawabah

Abstract:

Review of the available literature on grain refinement of aluminum and its alloys reveals that little work is published on the effect of refiners on mechanical characteristics and wear resistance. In this paper, the effect of addition of Zr to Al grain refined by Ti+B on its metallurgical, mechanical characteristics and wear resistance both in the as cast and after extrusion condition are presented and discussed. It was found that Addition of Zr to Al resulted in deterioration of its mechanical strength and hardness, whereas it resulted in improvement of both of them when added to Al grain refined by Ti+B. Furthermore it was found that the direct extrusion process resulted in further increase of the mechanical strength and hardness of Al and its micro-alloys. Also it resulted in increase of their work hardening index, n, i.e. improved their formability, hence it reduces the number of stages required for forming at large strains in excess of the plastic instability before Zr addition.

Keywords: aluminum, grain refinement, titanium + boron, zirconium, mechanical characteristics, wear resistance, direct extrusion

Procedia PDF Downloads 414
1012 An Investigation of Machinability of Inconel 718 in EDM Using Different Cryogenic Treated Tools

Authors: Pradeep Joshi, Prashant Dhiman, Shiv Dayal Dhakad

Abstract:

Inconel 718 is a family if Nickel-Chromium based Superalloy; it has very high oxidation and corrosion resistance. Inconel 718 is widely being used in aerospace, engine, turbine etc. due to its high mechanical strength and creep resistance. Being widely used, its machining should be easy but in real its machining is very difficult, especially by using traditional machining methods. It becomes easy to machine only by using non Traditional machining such as EDM. During EDM machining there is wear of both tool and workpiece, the tool wear is undesired because it changes tool shape, geometry. To reduce the tool wear rate (TWR) cryogenic treatment is performed on tool before the machining operation. The machining performances of the process are to be evaluated in terms of MRR, TWR which are functions of Discharge current, Pulse on-time, Pulse Off-time.

Keywords: EDM, cyrogenic, TWR, MRR

Procedia PDF Downloads 421
1011 Tool Wear Analysis in 3D Manufactured Ti6AI4V

Authors: David Downey

Abstract:

With the introduction of additive manufacturing (3D printing) to produce titanium (Ti6Al4V) components in the medical/aerospace and automotive industries, intricate geometries can be produced with virtually complete design freedom. However, the consideration of microstructural anisotropy resulting from the additive manufacturing process becomes necessary due to this design flexibility and the need to print a geometric shape that can consist of numerous angles, radii, and swept surfaces. A femoral knee implant serves as an example of a 3D-printed near-net-shaped product. The mechanical properties of the printed components, and consequently, their machinability, are affected by microstructural anisotropy. Currently, finish-machining operations performed on titanium printed parts using selective laser melting (SLM) utilize the same cutting tools employed for processing wrought titanium components. Cutting forces for components manufactured through SLM can be up to 70% higher than those for their wrought counterparts made of Ti6Al4V. Moreover, temperatures at the cutting interface of 3D printed material can surpass those of wrought titanium, leading to significant tool wear. Although the criteria for tool wear may be similar for both 3D printed and wrought materials, the rate of wear during the machining process may differ. The impact of these issues on the choice of cutting tool material and tool lifetimes will be discussed.

Keywords: additive manufacturing, build orientation, microstructural anisotropy, printed titanium Ti6Al4V, tool wear

Procedia PDF Downloads 67
1010 The Integrated Strategy of Maintenance with a Scientific Analysis

Authors: Mahmoud Meckawey

Abstract:

This research is dealing with one of the most important aspects of maintenance fields, that is Maintenance Strategy. It's the branch which concerns the concepts and the schematic thoughts in how to manage maintenance and how to deal with the defects in the engineering products (buildings, machines, etc.) in general. Through the papers we will act with the followings: i) The Engineering Product & the Technical Systems: When we act with the maintenance process, in a strategic view, we act with an (engineering product) which consists of multi integrated systems. In fact, there is no engineering product with only one system. We will discuss and explain this topic, through which we will derivate a developed definition for the maintenance process. ii) The factors or basis of the functionality efficiency: That is the main factors affect the functional efficiency of the systems and the engineering products, then by this way we can give a technical definition of defects and how they occur. iii) The legality of occurrence of defects (Legal defects and Illegal defects): with which we assume that all the factors of the functionality efficiency been applied, and then we will discuss the results. iv) The Guarantee, the Functional Span Age and the Technical surplus concepts: In the complementation with the above topic, and associated with the Reliability theorems, where we act with the Probability of Failure state, with which we almost interest with the design stages, that is to check and adapt the design of the elements. But in Maintainability we act in a different way as we act with the actual state of the systems. So, we act with the rest of the story that means we have to act with the complementary part of the probability of failure term which refers to the actual surplus of the functionality for the systems.

Keywords: engineering product and technical systems, functional span age, legal and illegal defects, technical and functional surplus

Procedia PDF Downloads 451
1009 Effects of Test Environment on the Sliding Wear Behaviour of Cast Iron, Zinc-Aluminium Alloy and Its Composite

Authors: Mohammad M. Khan, Gajendra Dixit

Abstract:

Partially lubricated sliding wear behaviour of a zinc-based alloy reinforced with 10wt% SiC particles has been studied as a function of applied load and solid lubricant particle size and has been compared with that of matrix alloy and conventionally used grey cast iron. The wear tests were conducted at the sliding velocities of 2.1m/sec in various partial lubricated conditions using pin on disc machine as per ASTM G-99-05. Base oil (SAE 20W-40) or mixture of the base oil with 5wt% graphite of particle sizes (7-10 µm) and (100 µm) were used for creating lubricated conditions. The matrix alloy revealed primary dendrites of a and eutectoid a + h and Î phases in the Inter dendritic regions. Similar microstructure has been depicted by the composite with an additional presence of the dispersoid SiC particles. In the case of cast iron, flakes of graphite were observed in the matrix; the latter comprised of (majority of) pearlite and (limited quantity of) ferrite. Results show a large improvement in wear resistance of the zinc-based alloy after reinforcement with SiC particles. The cast iron shows intermediate response between the matrix alloy and composite. The solid lubrication improved the wear resistance and friction behaviour of both the reinforced and base alloy. Moreover, minimum wear rate is obtained in oil+ 5wt % graphite (7-10 µm) lubricated environment for the matrix alloy and composite while for cast iron addition of solid lubricant increases the wear rate and minimum wear rate is obtained in case of oil lubricated environment. The cast iron experienced higher frictional heating than the matrix alloy and composite in all the cases especially at higher load condition. As far as friction coefficient is concerned, a mixed trend of behaviour was noted. The wear rate and frictional heating increased with load while friction coefficient was affected in an opposite manner. Test duration influenced the frictional heating and friction coefficient of the samples in a mixed manner.

Keywords: solid lubricant, sliding wear, grey cast iron, zinc based metal matrix composites

Procedia PDF Downloads 286
1008 Mechanical Analysis and Characterization of Friction Stir Processed Aluminium Alloy

Authors: Jaswinder Kumar, Kulbir Singh Sandhu

Abstract:

Friction stir processing (FSP) is a solid-state surface processing technique. A single-pass FSP was performed on Aluminum alloy at combinations of different tool rotational speeds with cylindrical threaded pin profiled tool. The effect of these parameters on tribological properties was studied. The wear resistance is found to be increased from base metal to a single pass FSP sample. The results revealed that with an increase in tool rotational speed, the wear rate increases. The high heat generation causes matrix softening, which results in an increased wear rate; on the other hand, high heat generation leads to coarse grains, which also affected tribological properties. Furthermore, Microstructure results showed that FSPed alloy has a more refined grain structure as compare to the base material, which may be resulted in enhancement of hardness and resistance to wear in FSP.

Keywords: friction stir processing, aluminium alloy, microhardness, microstructure

Procedia PDF Downloads 78
1007 Native Point Defects in ZnO

Authors: A. M. Gsiea, J. P. Goss, P. R. Briddon, Ramadan. M. Al-habashi, K. M. Etmimi, Khaled. A. S. Marghani

Abstract:

Using first-principles methods based on density functional theory and pseudopotentials, we have performed a details study of native defects in ZnO. Native point defects are unlikely to be cause of the unintentional n-type conductivity. Oxygen vacancies, which considered most often been invoked as shallow donors, have high formation energies in n-type ZnO, in edition are a deep donors. Zinc interstitials are shallow donors, with high formation energies in n-type ZnO, and thus unlikely to be responsible on their own for unintentional n-type conductivity under equilibrium conditions, as well as Zn antisites which have higher formation energies than zinc interstitials. Zinc vacancies are deep acceptors with low formation energies for n-type and in which case they will not play role in p-type coductivity of ZnO. Oxygen interstitials are stable in the form of electrically inactive split interstitials as well as deep acceptors at the octahedral interstitial site under n-type conditions. Our results may provide a guide to experimental studies of point defects in ZnO.

Keywords: DFT, native, n-type, ZnO

Procedia PDF Downloads 558
1006 Experimental Study of Impregnated Diamond Bit Wear During Sharpening

Authors: Rui Huang, Thomas Richard, Masood Mostofi

Abstract:

The lifetime of impregnated diamond bits and their drilling efficiency are in part governed by the bit wear conditions, not only the extent of the diamonds’ wear but also their exposure or protrusion out of the matrix bonding. As much as individual diamonds wear, the bonding matrix does also wear through two-body abrasion (direct matrix-rock contact) and three-body erosion (cuttings trapped in the space between rock and matrix). Although there is some work dedicated to the study of diamond bit wear, there is still a lack of understanding on how matrix erosion and diamond exposure relate to the bit drilling response and drilling efficiency, as well as no literature on the process that governs bit sharpening a procedure commonly implemented by drillers when the extent of diamond polishing yield extremely low rate of penetration. The aim of this research is (i) to derive a correlation between the wear state of the bit and the drilling performance but also (ii) to gain a better understanding of the process associated with tool sharpening. The research effort combines specific drilling experiments and precise mapping of the tool-cutting face (impregnated diamond bits and segments). Bit wear is produced by drilling through a rock sample at a fixed rate of penetration for a given period of time. Before and after each wear test, the bit drilling response and thus efficiency is mapped out using a tailored design experimental protocol. After each drilling test, the bit or segment cutting face is scanned with an optical microscope. The test results show that, under the fixed rate of penetration, diamond exposure increases with drilling distance but at a decreasing rate, up to a threshold exposure that corresponds to the optimum drilling condition for this feed rate. The data further shows that the threshold exposure scale with the rate of penetration up to a point where exposure reaches a maximum beyond which no more matrix can be eroded under normal drilling conditions. The second phase of this research focuses on the wear process referred as bit sharpening. Drillers rely on different approaches (increase feed rate or decrease flow rate) with the aim of tearing worn diamonds away from the bit matrix, wearing out some of the matrix, and thus exposing fresh sharp diamonds and recovering a higher rate of penetration. Although a common procedure, there is no rigorous methodology to sharpen the bit and avoid excessive wear or bit damage. This paper aims to gain some insight into the mechanisms that accompany bit sharpening by carefully tracking diamond fracturing, matrix wear, and erosion and how they relate to drilling parameters recorded while sharpening the tool. The results show that there exist optimal conditions (operating parameters and duration of the procedure) for sharpening that minimize overall bit wear and that the extent of bit sharpening can be monitored in real-time.

Keywords: bit sharpening, diamond exposure, drilling response, impregnated diamond bit, matrix erosion, wear rate

Procedia PDF Downloads 64
1005 The Relationship between Spindle Sound and Tool Performance in Turning

Authors: N. Seemuang, T. McLeay, T. Slatter

Abstract:

Worn tools have a direct effect on the surface finish and part accuracy. Tool condition monitoring systems have been developed over a long period and used to avoid a loss of productivity resulting from using a worn tool. However, the majority of tool monitoring research has applied expensive sensing systems not suitable for production. In this work, the cutting sound in turning machine was studied using microphone. Machining trials using seven cutting conditions were conducted until the observable flank wear width (FWW) on the main cutting edge exceeded 0.4 mm. The cutting inserts were removed from the tool holder and the flank wear width was measured optically. A microphone with built-in preamplifier was used to record the machining sound of EN24 steel being face turned by a CNC lathe in a wet cutting condition using constant surface speed control. The sound was sampled at 50 kS/s and all sound signals recorded from microphone were transformed into the frequency domain by FFT in order to establish the frequency content in the audio signature that could be then used for tool condition monitoring. The extracted feature from audio signal was compared to the flank wear progression on the cutting inserts. The spectrogram reveals a promising feature, named as ‘spindle noise’, which emits from the main spindle motor of turning machine. The spindle noise frequency was detected at 5.86 kHz of regardless of cutting conditions used on this particular CNC lathe. Varying cutting speed and feed rate have an influence on the magnitude of power spectrum of spindle noise. The magnitude of spindle noise frequency alters in conjunction with the tool wear progression. The magnitude increases significantly in the transition state between steady-state wear and severe wear. This could be used as a warning signal to prepare for tool replacement or adapt cutting parameters to extend tool life.

Keywords: tool wear, flank wear, condition monitoring, spindle noise

Procedia PDF Downloads 307
1004 Excitation Dependent Luminescence in Cr³+ Doped MgAl₂O₄ Nanocrystals

Authors: Savita, Pargam Vashishtha, Govind Gupta, Ankush Vij, Anup Thakur

Abstract:

The ligand field dependent visible as well as NIR emission of the Cr³+dopant in spinel hosts has attracted immense attention in tuning the color emitted by the material. In this research, Mg1-xCrxAl₂O₄(x=0.5, 1, 3, 5, and 10 mol%) nanocrystals have been synthesizedby solution combustion method. The synthesized nanocrystals possessed a single phase cubic structure. The strong absorption by host lattice defects (antisite defects, F centres) andd-d transitions of Cr³+ ions lead to radiative emission in the visible and NIR region, respectively. The red-NIR emission in photoluminescence spectra inferred the octahedral symmetry of Cr³+ ions and anticipated the site distortion by the presence ofCr³+ clusters and antisite defects in the vicinity of Cr³+ ions. The thermoluminescence response of UV and γ-irradiated Cr doped MgAl2O4 samples revealed the formation of various shallow and deep defects with doping Cr³+ions. The induced structural cation disorder with an increase in doping concentration caused photoluminescence quenching beyond 3 mol% Cr³+ doping. The color tuning exhibited by Cr doped MgAl₂O₄ nanocrystals by varying Cr³+ ion concentration and excitation wavelength find its applicability in solid state lighting.

Keywords: antisite defects, cation disorder, color tuning, combustion synthesis

Procedia PDF Downloads 150
1003 Investigation of the Effects of Gamma Radiation on the Electrically Active Defects in InAs/InGaAs Quantum Dots Laser Structures Grown by Molecular Beam Epitaxy on GaAs Substrates Using Deep Level Transient Spectroscopy

Authors: M. Al Huwayz, A. Salhi, S. Alhassan, S. Alotaibi, A. Almalki, M.Almunyif, A. Alhassni, M. Henini

Abstract:

Recently, there has been much research carried out to investigate quantum dots (QDs) lasers with the aim to increase the gain of quantum well lasers. However, one of the difficulties with these structures is that electrically active defects can lead to serious issues in the performance of these devices. It is therefore essential to fully understand the types of defects introduced during the growth and/or the fabrication process. In this study, the effects of Gamma radiation on the electrically active defects in p-i-n InAs/InGaAsQDs laser structures grown by Molecular Beam Epitaxy (MBE) technique on GaAs substrates were investigated. Deep Level Transient Spectroscopy (DLTS), current-voltage (I-V), and capacitance-voltage (C-V) measurements were performed to explore these effects on the electrical properties of these QDs lasers. I-V measurements showed that as-grown sample had better electrical properties than the irradiated sample. However, DLTS and Laplace DLTS measurements at different reverse biases revealed that the defects in the-region of the p-i-n structures were decreased in the irradiated sample. In both samples, a trap with an activation energy of ~ 0.21 eV was assigned to the well-known defect M1 in GaAs layers

Keywords: quantum dots laser structures, gamma radiation, DLTS, defects, nAs/IngaAs

Procedia PDF Downloads 156
1002 Magneto-Electric Behavior a Couple Aluminum / Steel Xc48

Authors: A. Mekroud, A. Khemis, M. S. Mecibah

Abstract:

The tribological behavior of a pin of paramagnetic material (aluminum), rolling on a rotating disk made of ferromagnetic material (steel XC48) in the presence of an externally applied alternating magnetic field, with the passage of electric current were studied. All tests were performed using a conventional tribometer pin- disk. Structural characterization of the surfaces in contact, oxides and wear debris, by X-ray diffraction (θ-2θ angle), showed the significant effect of magnetic field on the activation of the contact surface of the pin in no ferromagnetic material. The absence of the magnetic field causes a change of wear mode.

Keywords: structural characterization of the surfaces, oxides and wear debris, X-ray diffraction

Procedia PDF Downloads 392
1001 Evaluation of High Temperature Wear Performance of as Cladded and Tig Re-Melting Stellite 6 Cladded Overlay on Aisi-304L Using SMAW Process

Authors: Manjit Singha, Sandeep Singh Sandhu, A. S. Shahi

Abstract:

Stellite 6 is cobalt based superalloy used for protective coatings. It is used to improve the wear performance of stainless steel engineering components subjected to harsh environmental conditions. This paper reports the high temperature wear analysis of satellite 6 cladded on AISI 304 L substrate using SMAW process. Bead on plate experiment was carried out by varying current and electrode manipulation techniques to optimize the dilution and hardness. 80 Amp current and weaving technique was found to be the optimum set of parameters for overlaying which were further used for multipass multilayer cladding on two plates of AISI 304 L substrate. On the first plate, seven layers seven passes of stellite 6 was overlaid which was used in as cladded form and the second plate was overlaid with five layers five passes of satellite 6 with further TIG remelting. The wear performance was examined for normal temperature environmental condition and harsh temperature environmental condition. The satellite 6 coating with TIG remelting was found to be better in both the conditions even with lesser metal deposition due to its finer grain structure.

Keywords: surfacing, stellite 6, dilution, overlay, SMAW, high-temperature frictional wear, micro-structure, micro-hardness

Procedia PDF Downloads 263
1000 Analyzing the Effectiveness of Different Testing Techniques in Ensuring Software Quality

Authors: R. M. P. C. Bandara, M. L. L. Weerasinghe, K. T. C. R. Kumari, A. G. D. R. Hansika, D. I. De Silva, D. M. T. H. Dias

Abstract:

Software testing is an essential process in software development that aims to identify defects and ensure that software is functioning as intended. Various testing techniques are employed to achieve this goal, but the effectiveness of these techniques varies. This research paper analyzes the effectiveness of different testing techniques in ensuring software quality. The paper explores different testing techniques, including manual and automated testing, and evaluates their effectiveness in terms of identifying defects, reducing the number of defects in software, and ensuring that software meets its functional and non-functional requirements. Moreover, the paper will also investigate the impact of factors such as testing time, test coverage, and testing environment on the effectiveness of these techniques. This research aims to provide valuable insights into the effectiveness of different testing techniques, enabling software development teams to make informed decisions about the testing approach that is best suited to their needs. By improving testing techniques, the number of defects in software can be reduced, enhancing the quality of software and ultimately providing better software for users.

Keywords: software testing life cycle, software testing techniques, software testing strategies, effectiveness, software quality

Procedia PDF Downloads 51
999 High-Temperature Tribological Characterization of Nano-Sized Silicon Nitride + 5% Boron Nitride Ceramic Composite

Authors: Mohammad Farooq Wani

Abstract:

Tribological studies on nano-sized ß-silicon nitride+5% BN were carried out in dry air at high temperatures to clarify the lack of consensus in the bibliographic data concerning the Tribological behavior of Si3N4 ceramics and effect of doped hexagonal boron nitride on coefficient of friction and wear coefficient at different loads and elevated temperatures. The composites were prepared via high energy mechanical milling and subsequent spark plasma sintering using Y2O3 and Al2O3 as sintering additives. After sintering, the average crystalline size of Si3N4 was observed to be 50 nm. Tribological tests were performed with temperature and Friction coefficients 0.16 to 1.183 and 0.54 to 0.71 were observed for Nano-sized ß-silicon nitride+5% BN composite under normal load of 10N-70 N and over high temperature range of 350 ºC-550 ºC respectively. Specific wear coefficients from 1.33x 10-4 mm3N-1m-1 to 4.42x 10-4 mm3N-1m-1 were observed for Nano-sized Si3N4 + 5% BN composite against Si3N4 ball as tribo-pair counterpart over high temperature range of 350 ºC-550 ºC while as under normal load of 10N to70N Specific wear coefficients of 6.91x 10-4 mm3N-1m-1 to 1.70x 10-4 were observed. The addition of BN to the Si3N4 composite resulted in a slight reduction of the friction coefficient and lower values of wear coefficient.

Keywords: ceramics, tribology, friction and wear, solid lubrication

Procedia PDF Downloads 348
998 Characterization Study of Aluminium 6061 Hybrid Composite

Authors: U. Achutha Kini, S. S. Sharma, K. Jagannath, P. R. Prabhu, M. C. Gowri Shankar

Abstract:

Aluminium matrix composites with alumina reinforcements give superior mechanical & physical properties. Their applications in several fields like automobile, aerospace, defense, sports, electronics, bio-medical and other industrial purposes are becoming essential for the last several decades. In the present work, fabrication of hybrid composite was done by Stir casting technique using Al 6061 as a matrix with alumina and silicon carbide (SiC) as reinforcement materials. The weight percentage of alumina is varied from 2 to 4% and the silicon carbide weight percentage is maintained constant at 2%. Hardness and wear tests are performed in the as cast and heat treated conditions. Age hardening treatment was performed on the specimen with solutionizing at 550°C, aging at two temperatures (150 and 200°C) for different time durations. Hardness distribution curves are drawn and peak hardness values are recorded. Hardness increase was very sensitive with respect to the decrease in aging temperature. There was an improvement in wear resistance of the peak aged material when aged at lower temperature. Also increase in weight percent of alumina, increases wear resistance at lower temperature but opposite behavior was seen when aged at higher temperature.

Keywords: hybrid composite, hardness test, wear test, heat treatment, pin on disc wear testing machine

Procedia PDF Downloads 300
997 Biomechanics of Ceramic on Ceramic vs. Ceramic on Xlpe Total Hip Arthroplasties During Gait

Authors: Athanasios Triantafyllou, Georgios Papagiannis, Vassilios Nikolaou, Panayiotis J. Papagelopoulos, George C. Babis

Abstract:

In vitro measurements are widely used in order to predict THAs wear rate implementing gait kinematic and kinetic parameters. Clinical tests of materials and designs are crucial to prove the accuracy and validate such measurements. The purpose of this study is to examine the affection of THA gait kinematics and kinetics on wear during gait, the essential functional activity of humans, by comparing in vivo gait data to in vitro results. Our study hypothesis is that both implants will present the same hip joint kinematics and kinetics during gait. 127 unilateral primary cementless total hip arthroplasties were included in the research. Independent t-tests were used to identify a statistically significant difference in kinetic and kinematic data extracted from 3D gait analysis. No statistically significant differences observed at mean peak abduction, flexion and extension moments between the two groups (P.abduction= 0,125, P.flexion= 0,218, P.extension= 0,082). The kinematic measurements show no statistically significant differences too (Prom flexion-extension= 0,687, Prom abduction-adduction= 0,679). THA kinematics and kinetics during gait are important biomechanical parameters directly associated with implants wear. In vitro studies report less wear in CoC than CoXLPE when tested with the same gait cycle kinematic protocol. Our findings confirm that both implants behave identically in terms of kinematics in the clinical environment, thus strengthening in vitro results of CoC advantage. Correlated to all other significant factors that affect THA wear could address in a complete prism the wear on CoC and CoXLPE.

Keywords: total hip arthroplasty biomechanics, THA gait analysis, ceramic on ceramic kinematics, ceramic on XLPE kinetics, total hip replacement wear

Procedia PDF Downloads 124
996 Study on Stability and Wear in a Total Hip Prostheses

Authors: Virgil Florescu, Lucian Capitanu

Abstract:

The studies performed by the author and presented here focus mainly on the FE simulation of some relevant phenomena related to stability of orthopedic implants, especially those components of Total Hip Prostheses. The objectives are to study the mechanisms of achieving stability of acetabular prosthetic components and the influence of some characteristic parameters, to evaluate the effect of femoral stem fixation modality on the stability of prosthetic component and to predict long-term behavior, to analyze a critical phenomena which influence the loading transfer mechanism through artificial joints and could lead to aseptic loosening – the wear of joint frictional surfaces. After a theoretical background an application is made considering only three activities: normal walking, stair ascending and stair descending. For each activity, this function is maximized in a different locations: if for normal walking the maxima is in the superior-posterior part of the acetabular cup, for stair descending this maxim value could be located rather in the superior-anterior part, for stair ascending being even closer to the central area of the cup.

Keywords: THA, acetabular stability, FEM simulation, stresses and displacements, wear tests, wear simulation

Procedia PDF Downloads 241