Search results for: transport carbon dioxide emissions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5535

Search results for: transport carbon dioxide emissions

5415 Jabodebek Light Rail Transit with Grade of Automation (GoA) No.3 (Driverless) Technology towards Jakarta Net-Zero Emissions (NZE) 2050

Authors: Nadilla Saskia, Octoria Nur, Assegaf Zareeva

Abstract:

Mass transport infrastructures are essential to enhance the connectivity between regions and regional equity in Indonesia. Indonesia’s capital city, Jakarta, ranked the 10th highest congestion rate in the world based on the 2019 traffic index, contributing to air pollution and energy consumption. Other than that, the World Air Quality Report in 2019 depicted Jakarta’s air pollutant concentration at 49.4 mg, the 5th highest in the world. Issues of severe traffic congestion, lack of sufficient urban infrastructure in Jakarta, and greenhouse gas emissions have to be addressed through mass transportation. Indonesia’s government is currently constructing The Greater Jakarta LRT (Light Rapid Transit) as convenient, efficient, and environmentally friendly transportation connecting Jakarta with Bekasi and Cibubur areas and plans to serve the passengers in August 2023. Greater Jakarta LRT is operated with Grade of Automation (GoA) No.3, Driverless Train Operation (DTO). Hence, the automated technology used in rail infrastructure is anticipated to address these issues with greater results. The paper will be validated and establish the extent to which the automation system would increase energy efficiency, help reduce carbon emissions, and benefit the environment. Based on the calculated CO2 emissions and fuel consumption for the existing condition (2015) during the feasibility study of the LRT Project and the predicted condition in 2030, it is obtained that Greater Jakarta LRT with GoA3 operation will reduce the CO2 emissions and fuel consumption by more than 50% in 2030. In the bigger picture, Greater Jakarta LRT supports the government's goal of achieving Jakarta Net-Zero Emissions (NZE) 2050.

Keywords: LRT, Grade of Automation (GoA), energy efficiency, carbon emissions, railway infrastructure, DKI Jakarta

Procedia PDF Downloads 52
5414 Using the Ecological Analysis Method to Justify the Environmental Feasibility of Biohydrogen Production from Cassava Wastewater Biogas

Authors: Jonni Guiller Madeira, Angel Sanchez Delgado, Ronney Mancebo Boloy

Abstract:

The use bioenergy, in recent years, has become a good alternative to reduce the emission of polluting gases. Several Brazilian and foreign companies are doing studies related to waste management as an essential tool in the search for energy efficiency, taking into consideration, also, the ecological aspect. Brazil is one of the largest cassava producers in the world; the cassava sub-products are the food base of millions of Brazilians. The repertoire of results about the ecological impact of the production, by steam reforming, of biohydrogen from cassava wastewater biogas is very limited because, in general, this commodity is more common in underdeveloped countries. This hydrogen, produced from cassava wastewater, appears as an alternative fuel to fossil fuels since this is a low-cost carbon source. This paper evaluates the environmental impact of biohydrogen production, by steam reforming, from cassava wastewater biogas. The ecological efficiency methodology developed by Cardu and Baica was used as a benchmark in this study. The methodology mainly assesses the emissions of equivalent carbon dioxide (CO₂, SOₓ, CH₄ and particulate matter). As a result, some environmental parameters, such as equivalent carbon dioxide emissions, pollutant indicator, and ecological efficiency are evaluated due to the fact that they are important to energy production. The average values of the environmental parameters among different biogas compositions (different concentrations of methane) were calculated, the average pollution indicator was 10.11 kgCO₂e/kgH₂ with an average ecological efficiency of 93.37%. As a conclusion, bioenergy production using biohydrogen from cassava wastewater treatment plant is a good option from the environmental feasibility point of view. This fact can be justified by the determination of environmental parameters and comparison of the environmental parameters of hydrogen production via steam reforming from different types of fuels.

Keywords: biohydrogen, ecological efficiency, cassava, pollution indicator

Procedia PDF Downloads 169
5413 Aerodynamic Analysis of a Frontal Deflector for Vehicles

Authors: C. Malça, N. Alves, A. Mateus

Abstract:

This work was one of the tasks of the Manufacturing2Client project, whose objective was to develop a frontal deflector to be commercialized in the automotive industry, using new project and manufacturing methods. In this task, in particular, it was proposed to develop the ability to predict computationally the aerodynamic influence of flow in vehicles, in an effort to reduce fuel consumption in vehicles from class 3 to 8. With this aim, two deflector models were developed and their aerodynamic performance analyzed. The aerodynamic study was done using the Computational Fluid Dynamics (CFD) software Ansys CFX and allowed the calculation of the drag coefficient caused by the vehicle motion for the different configurations considered. Moreover, the reduction of diesel consumption and carbon dioxide (CO2) emissions associated with the optimized deflector geometry could be assessed.

Keywords: erodynamic analysis, CFD, CO2 emissions, drag coefficient, frontal deflector, fuel consumption

Procedia PDF Downloads 379
5412 Carbon Sequestration in Spatio-Temporal Vegetation Dynamics

Authors: Nothando Gwazani, K. R. Marembo

Abstract:

An increase in the atmospheric concentration of carbon dioxide (CO₂) from fossil fuel and land use change necessitates identification of strategies for mitigating threats associated with global warming. Oceans are insufficient to offset the accelerating rate of carbon emission. However, the challenges of oceans as a source of reducing carbon footprint can be effectively overcome by the storage of carbon in terrestrial carbon sinks. The gases with special optical properties that are responsible for climate warming include carbon dioxide (CO₂), water vapors, methane (CH₄), nitrous oxide (N₂O), nitrogen oxides (NOₓ), stratospheric ozone (O₃), carbon monoxide (CO) and chlorofluorocarbons (CFC’s). Amongst these, CO₂ plays a crucial role as it contributes to 50% of the total greenhouse effect and has been linked to climate change. Because plants act as carbon sinks, interest in terrestrial carbon sequestration has increased in an effort to explore opportunities for climate change mitigation. Removal of carbon from the atmosphere is a topical issue that addresses one important aspect of an overall strategy for carbon management namely to help mitigate the increasing emissions of CO₂. Thus, terrestrial ecosystems have gained importance for their potential to sequester carbon and reduce carbon sink in oceans, which have a substantial impact on the ocean species. Field data and electromagnetic spectrum bands were analyzed using ArcGIS 10.2, QGIS 2.8 and ERDAS IMAGINE 2015 to examine the vegetation distribution. Satellite remote sensing data coupled with Normalized Difference Vegetation Index (NDVI) was employed to assess future potential changes in vegetation distributions in Eastern Cape Province of South Africa. The observed 5-year interval analysis examines the amount of carbon absorbed using vegetation distribution. In 2015, the numerical results showed low vegetation distribution, therefore increased the acidity of the oceans and gravely affected fish species and corals. The outcomes suggest that the study area could be effectively utilized for carbon sequestration so as to mitigate ocean acidification. The vegetation changes measured through this investigation suggest an environmental shift and reduced vegetation carbon sink, and that threatens biodiversity and ecosystem. In order to sustain the amount of carbon in the terrestrial ecosystems, the identified ecological factors should be enhanced through the application of good land and forest management practices. This will increase the carbon stock of terrestrial ecosystems thereby reducing direct loss to the atmosphere.

Keywords: remote sensing, vegetation dynamics, carbon sequestration, terrestrial carbon sink

Procedia PDF Downloads 123
5411 A Consumption-Based Hybrid Life Cycle Assessment of Carbon Footprints in California: High Footprints in Small Urban Households

Authors: Jukka Heinonen

Abstract:

Higher density reduces distances, private car dependency and thus reduces greenhouse gas emissions (GHGs). As a result, increased density has been given a central role among urban development targets. However, it is not just travel behavior that changes along with density. Rather, the consumption patterns, or overall lifestyles, change along with changing urban structure, particularly with changing housing types and consumption opportunities. Furthermore, elevated consumption of services, more frequent flying and less intra-household sharing have been shown to potentially outweigh the gains from reduced driving in more dense urban settlements. In this study, the geography of carbon footprints (CFs) in California is analyzed paying close attention to the household size differences and the resulting economies-of-scale advantages and disadvantages. A hybrid life cycle assessment (LCA) framework is employed together with consumer expenditure data to assess the CFs. According to the study, small urban households have the highest CFs in California. Their transport related emissions are significantly lower than those of the residents of less urbanized areas, but higher emissions from other consumption categories, together with the low degree of sharing of goods, overweigh the gains. Two functional units, per capita and per household, are used to analyze the CFs and to demonstrate the importance of household size. The lifestyle impacts visible through the consumption data are also discussed. The study suggests that there are still significant gaps in our understanding of the premises of low-carbon human settlements.

Keywords: carbon footprint, life cycle assessment, lifestyle, household size, consumption, economies-of-scale

Procedia PDF Downloads 322
5410 Extracting the Atmospheric Carbon Dioxide and Convert It into Useful Minerals at the Room Conditions

Authors: Muthana A. M. Jamel Al-Gburi

Abstract:

Elimination of carbon dioxide (CO2) gas from our atmosphere is very important but complicated, and since there is always an increase in the gas amounts of the other greenhouse ones in our atmosphere, causes by both some of the human activities and the burning of the fossil fuels, which leads to the Global Warming phenomena i.e., increasing the earth temperature to a higher level, creates desertification, tornadoes and storms. In our present research project, we constructed our own system to extract carbon dioxide directly from the atmospheric air at the room conditions and investigated how to convert the gas into a useful mineral or Nano scale fibers made of carbon by using several chemical processes and chemical reactions leading to a valuable building material and also to mitigate the environmental negative change. In the present water pool system (Carbone Dioxide Domestic Extractor), the ocean-sea water was used to dissolve the CO2 gas from the room and converted into carbonate minerals by using a number of additives like shampoo, clay and MgO. Note that the atmospheric air includes CO2 gas has circulated within the sea water by air pump connected to a perforated tubes fixed deep on the pool base. Those chemical agents were mixed with the ocean-sea water to convert the formed acid from the water-CO2 reaction into a useful mineral. After we successfully constructed the system, we did intense experiments and investigations on the CO2 gas reduction level and found which is the optimum active chemical agent to work in the atmospheric conditions.

Keywords: global warming, CO₂ gas, ocean-sea water, additives, solubility level

Procedia PDF Downloads 51
5409 Calculating the Carbon Footprint of Laser Cutting Machines from Cradle to Grave and Examination the Effect of the Use of the Machine on the Carbon Footprint

Authors: Melike Yaylacı, Tuğba Bilgin

Abstract:

Against the climate crisis, an increasing number of countries are working on green energy, carbon emission measurement, calculation and reduction. The work of industrial organizations with the highest carbon emissions on these issues is increasing. Aim of this paper is calculating carbon emissions of laser cutting machine with cradle-to-grave approach and discuss the potential affects of usage condisions, such as laser power, gas type, gas pressure, on carbon footprint. In particular, this study includes consumption of electricity used in production, laser cutting machine raw materials, and disposal of the machine. In the process of raw material supplying, machine procesing and shipping, all calculations were studied using the Tier1 approach. Laser cutting machines require a specified cutting parameter set for each different material in different thickneses, this parameters are a combination of laser power, gas type, cutting speed, gas pressure and focus point, The another purpose of this study is examine the potential affect of different cutting parameters for the same material in same thickness on carbon footprint.

Keywords: life cycle assessment, carbon emission, laser cutting machine, cutting parameters

Procedia PDF Downloads 63
5408 Electrochemical Biosensor for Rutin Detection with Multiwall Carbon Nanotubes and Cerium Dioxide Nanoparticles

Authors: Stephen Rathinaraj Benjamin, Flavio Colmati Junior, Maria Izabel Florindo Guedes, Rosa Amalia Fireman Dutra

Abstract:

A new enzymatic electrochemical biosensor based on multiwall carbon nanotubes and cerium oxide nanoparticles for the detection of rutin has been developed. The cerium oxide nanoparticles /HRP/ multiwall carbon nanotubes/ carbon paste electrode (HRP/ CeO2/MWCNTs/CPE) was prepared by ensuing addition of MWCNTs and HRP on the CPE, followed by the mixing with cerium oxide nanoparticles. Surface physical characteristics of the modified electrode and the electrochemical properties of the composite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), cylic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). The HRP/ CeO2/MWCNTs/CPE showed good selectivity, stability and reproducibility, which was further applied to detect rutin tablet and capsule samples with satisfactory results.

Keywords: cerium dioxide nanoparticles, horseradish peroxidase, multiwall carbon nanotubes, rutin

Procedia PDF Downloads 369
5407 Comparison of Hydrogen and Electrification Perspectives in Decarbonizing the Transport Sector

Authors: Matteo Nicoli, Gianvito Colucci, Valeria Di Cosmo, Daniele Lerede, Laura Savoldi

Abstract:

The transport sector is currently responsible for approximately 1/3 of greenhouse gas emissions in Europe. In the wider context of achieving carbon neutrality of the global energy system, different alternatives are available to decarbonizethe transport sector. In particular, while electricity is already the most consumed energy commodity in rail transport, battery electric vehicles are one of the zero-emissions options on the market for road transportation. On the other hand, hydrogen-based fuel cell vehicles are available for road and non-road vehicles. The European Commission is strongly pushing toward the integration of hydrogen in the energy systems of European countries and its widespread adoption as an energy vector to achieve the Green Deal targets. Furthermore, the Italian government is defining hydrogen-related objectives with the publication of a dedicated Hydrogen Strategy. The adoption of energy system optimization models to study the possible penetration of alternative zero-emitting transport technologies gives the opportunity to perform an overall analysis of the effects that the development of innovative technologies has on the entire energy system and on the supply-side, devoted to the production of energy carriers such as hydrogen and electricity. Using an open-source modeling framework such as TEMOA, this work aims to compare the role of hydrogen and electric vehicles in the decarbonization of the transport sector. The analysis investigates the advantages and disadvantages of adopting the two options, from the economic point of view (costs associated with the two options) and the environmental one (looking at the emissions reduction perspectives). Moreover, an analysis on the profitability of the investments in hydrogen and electric vehicles will be performed. The study investigates the evolution of energy consumption and greenhouse gas emissions in different transportation modes (road, rail, navigation, and aviation) by detailed analysis of the full range of vehicles included in the techno-economic database used in the TEMOA model instance adopted for this work. The transparency of the analysis is guaranteed by the accessibility of the TEMOA models, based on an open-access source code and databases.

Keywords: battery electric vehicles, decarbonization, energy system optimization models, fuel cell vehicles, hydrogen, open-source modeling, TEMOA, transport

Procedia PDF Downloads 65
5406 Evaluation of Strategies to Mitigate the Carbon Emissions from MSW: A Case Study

Authors: N. Anusree, P. Sughosh, G. L. Sivakumar Babu

Abstract:

Municipalities throughout the world are marred with serious issues related to the Municipal Solid Waste (MSW) collection, treatment, and safe disposal. While the Waste Management sector contributes around 3-9 % of the overall anthropogenic methane emission, measures towards mitigating these emissions are rarely given attention in developing countries. In the case of Bangalore, India, around 5680 tons of MSW is generated in a day, and its collection and treatment efficiency are around 90-95 % and 26.4 %, respectively. About 33.4 % of the waste collected is directly landfilled without any treatment, further aggravating the situation. The potential of reducing the emissions emanating from the MSW of Bangalore city without any severe consequences on the current MSW management practices is evaluated in this study. Three emission scenarios consisting of the baseline condition (current practices – Case-1), the application of biocovers for methane oxidation in the dumpsites (case-2), and the diversion of Organic Fraction of MSW (OFMSW) along with the application of biocovers (case-3) are evaluated and compared with each other. The emissions are calculated based on the aerobic and anaerobic stochiometric relations for the three scenarios. Laboratory scale column studies are carried out to determine the methane oxidation potential of three different biocover material (digested MBT (mechanically biologically treated) waste, Fresh MBT waste, and charcoal amended with fresh MBT waste). The results shown that around 40 % and 83 % reduction in carbon emissions can be achieved in case 3 and 2 in comparison to the baseline condition. The study clearly shows that with minor changes in the waste management practices, substantial reductions in the carbon emissions can be attained in Bangalore City.

Keywords: MSW, biocover, composting, carbon emission

Procedia PDF Downloads 106
5405 Carbon Dioxide Capture, Utilization, and Storage: Sequestration

Authors: Ankur Sachan

Abstract:

Carbon dioxide being the most anthropogenic greenhouse gas,it needs to be isolated from entering into atmosphere. Carbon capture and storage is process that captures CO2 emitted from various sources, separates it from other gases and stores it in a safe place preferably in underground geological formations for large period of time. It is then purified and monitored so that can be made to reuse. Monoethanolamine, zeolitic imidazolate framework, microalgae, membranes etc are utilized to capture CO2. Post-combustion, pre-combustion and oxyfuel combustion along with chemical looping combustion are technologies for scrubbing CO2. The properties of CO2 being easily miscible and readily dissolving in oil with impurities makes it capable for numerous applications such as in producing oil by enhanced oil recovery (EOR), Bio CCS Algal Synthesis etc. CO2-EOR operation is capable to produce million barrels of oil and extend the field's lifetime as in case of Weyburn Oil Field in Canada. The physical storage of CO2 is technically the most feasible direction provided that the associated safety and sustainability issues can be met and new materials for CCUS process at low cost are urgently found so that so that fossil based systems with carbon capture are cost competitive.

Keywords: carbon capture, CCUS, sustainability, oil

Procedia PDF Downloads 486
5404 Locally Produced Solid Biofuels – Carbon Dioxide Emissions and Competitiveness with Conventional Ways of Individual Space Heating

Authors: Jiri Beranovsky, Jaroslav Knapek, Tomas Kralik, Kamila Vavrova

Abstract:

The paper deals with the results of research focused on the complex aspects of the use of intentionally grown biomass on agricultural land for the production of solid biofuels as an alternative for individual household heating. . The study primarily deals with the analysis of CO2 emissions of the logistics cycle of biomass for the production of energy pellets. Growing, harvesting, transport and storage are evaluated in the pellet production cycle. The aim is also to take into account the consumption profile during the year in terms of heating of common family houses, which are typical end-market segment for these fuels. It is assumed that in family houses, bio-pellets are able to substitute typical fossil fuels, such as brown coal and old wood burning heating devices and also electric boilers. One of the competing technology with the pellets are heat pumps. The results show the CO2 emissions related with considered fuels and technologies for their utilization. Comparative analysis is aimed biopellets from intentionally grown biomass, brown coal, natural gas and electricity used in electric boilers and heat pumps. Analysis combines CO2 emissions related with individual fuels utilization with costs of these fuels utilization. Cost of biopellets from intentionally grown biomass is derived from the economic models of individual energy crop plantations. At the same time, the restrictions imposed by EU legislation on Ecodesign's fuel and combustion equipment requirements and NOx emissions are discussed. Preliminary results of analyzes show that to achieve the competitiveness of pellets produced from specifically grown biomass, it would be necessary to either significantly ecological tax on coal (from about 0.3 to 3-3.5 EUR/GJ), or to multiply the agricultural subsidy per area. In addition to the Czech Republic, the results are also relevant for other countries, such as Bulgaria and Poland, which also have a high proportion of solid fuels for household heating.

Keywords: CO2 emissions, heating costs, energy crop, pellets, brown coal, heat pumps, economical evaluation

Procedia PDF Downloads 82
5403 Carbon Accounting for Sustainable Design and Manufacturing in the Signage Industry

Authors: Prudvi Paresi, Fatemeh Javidan

Abstract:

In recent years, greenhouse gas, or in particular, carbon emissions, have received special attention from environmentalists and designers due to the fact that they significantly contribute to the temperature rise. The building industry is one of the top seven major industries contributing to embodied carbon emission. Signage systems are an integral part of the building industry and bring completeness to the space-building by providing the required information and guidance. A significant amount of building materials, such as steel, aluminium, acrylic, LED, etc., are utilized in these systems, but very limited information is available on their sustainability and carbon footprint. Therefore, there is an urgent need to assess the emissions associated with the signage industry and for controlling these by adopting different mitigation techniques without sacrificing the efficiency of the project. The present paper investigates the embodied carbon of two case studies in the Australian signage industry within the cradle – gate (A1-A3) and gate–site (A4-A5) stages. A material source-based database is considered to achieve more accuracy. The study identified that aluminium is the major contributor to embodied carbon in the signage industry compared to other constituents. Finally, an attempt is made to suggest strategies for mitigating embodied carbon in this industry.

Keywords: carbon accounting, small-scale construction, signage industry, construction materials

Procedia PDF Downloads 84
5402 A Statistical Analysis on Relationship between Temperature Variations with Latitude and Altitude regarding Total Amount of Atmospheric Carbon Dioxide in Iran

Authors: Masoumeh Moghbel

Abstract:

Nowadays, carbon dioxide which is produced by human activities is considered as the main effective factor in the global warming occurrence. Regarding to the role of CO2 and its ability in trapping the heat, the main objective of this research is study the effect of atmospheric CO2 (which is recorded in Manaloa) on variations of temperature parameters (daily mean temperature, minimum temperature and maximum temperature) in 5 meteorological stations in Iran which were selected according to the latitude and altitude in 40 years statistical period. Firstly, the trend of temperature parameters was studied by Regression and none-graphical Man-Kendal methods. Then, relation between temperature variations and CO2 were studied by Correlation technique. Also, the impact of CO2 amount on temperature in different atmospheric levels (850 and 500 hpa) was analyzed. The results illustrated that correlation coefficient between temperature variations and CO2 in low latitudes and high altitudes is more significant rather than other regions. it is important to note that altitude as the one of the main geographic factor has limitation in affecting the temperature variations, so that correlation coefficient between these two parameters in 850 hpa (r=0.86) is more significant than 500 hpa (r = 0.62).

Keywords: altitude, atmospheric carbon dioxide, latitude, temperature variations

Procedia PDF Downloads 377
5401 European Environmental Policy for Road Transport: Analysis of the Perverse Effects Generated and Proposals for a Good Practice Guide

Authors: Pedro Pablo Ramírez Sánchez, Alassane Ballé Ndiaye, Roberto Rendeiro Martín-Cejas

Abstract:

The aim of this paper is to analyse the different environmental policies adopted in Europe for car emissions, to comment on some of the possible perverse effects generated and point out these policies which are considered more efficient under the environmental perspective. This paper is focused on passenger cars as this category is the most significant in road transport. The utility of this research lies in this being the first step or basis to improve and optimise actual policies. The methodology applied in this paper refers to a comparative analysis from a practical and theoretical point of view of European environmental policies in road transport. This work describes an overview of the road transport industry in Europe pointing out some relevant aspects such as the contribution of road transport to total emissions and the vehicle fleet in Europe. Additionally, we propose a brief practice guide with the combined policies in order to optimise their aim.

Keywords: air quality, climate change, emission, environment, perverse effect, road transport, tax policy

Procedia PDF Downloads 130
5400 Study of Chemical Compounds of Garlic

Authors: A. B. Bazaralieva, A. A. Turgumbayeva

Abstract:

The phytosubstance from garlic was obtained by extraction with liquid carbon dioxide under critical conditions. Methods of processing raw materials are proposed, and the chemical composition of garlic is studied by gas chromatography and mass spectrometry. The garlic extract's composition was determined using gas chromatography (GC) and gas chromatography-mass spectrophotometry (GC-MS). The phytosubstance had 54 constituents. The extract included the following main compounds: Manool (39.56%), Viridifrolol (7%), Podocarpa-1,8,11,13-tetraen-3-one, 14-isopropyl-1,13-dimethoxy- 5,15 percent, (+)-2-Bornanone (4.29%), Thujone (3.49%), Linolic acid ethyl ester (3.41%), and 12-O-Methylcarn.

Keywords: Allium sativum, bioactive compounds of garlic, carbon dioxide extraction of garlic, GS-MS method

Procedia PDF Downloads 73
5399 Survey Research Assessment for Renewable Energy Integration into the Mining Industry

Authors: Kateryna Zharan, Jan C. Bongaerts

Abstract:

Mining operations are energy intensive, and the share of energy costs in total costs is often quoted in the range of 40 %. Saving on energy costs is, therefore, a key element of any mine operator. With the improving reliability and security of renewable energy (RE) sources, and requirements to reduce carbon dioxide emissions, perspectives for using RE in mining operations emerge. These aspects are stimulating the mining companies to search for ways to substitute fossil energy with RE. Hereby, the main purpose of this study is to present the survey research assessment in matter of finding out the key issues related to the integration of RE into mining activities, based on the mining and renewable energy experts’ opinion. The purpose of the paper is to present the outcomes of a survey conducted among mining and renewable energy experts about the feasibility of RE in mining operations. The survey research has been developed taking into consideration the following categories: first of all, the mining and renewable energy experts were chosen based on the specific criteria. Secondly, they were offered a questionnaire to gather their knowledge and opinions on incentives for mining operators to turn to RE, barriers and challenges to be expected, environmental effects, appropriate business models and the overall impact of RE on mining operations. The outcomes of the survey allow for the identification of factors which favor and disfavor decision-making on the use of RE in mining operations. It concludes with a set of recommendations for further study. One of them relates to a deeper analysis of benefits for mining operators when using RE, and another one suggests that appropriate business models considering economic and environmental issues need to be studied and developed. The results of the paper will be used for developing a hybrid optimized model which might be adopted at mines according to their operation processes as well as economic and environmental perspectives.

Keywords: carbon dioxide emissions, mining industry, photovoltaic, renewable energy, survey research, wind generation

Procedia PDF Downloads 333
5398 The Relationship between Renewable Energy, Real Income, Tourism and Air Pollution

Authors: Eyup Dogan

Abstract:

One criticism of the energy-growth-environment literature, to the best of our knowledge, is that only a few studies analyze the influence of tourism on CO₂ emissions even though tourism sector is closely related to the environment. The other criticism is the selection of methodology. Panel estimation techniques that fail to consider both heterogeneity and cross-sectional dependence across countries can cause forecasting errors. To fulfill the mentioned gaps in the literature, this study analyzes the impacts of real GDP, renewable energy and tourism on the levels of carbon dioxide (CO₂) emissions for the top 10 most-visited countries around the world. This study focuses on the top 10 touristic (most-visited) countries because they receive about the half of the worldwide tourist arrivals in late years and are among the top ones in 'Renewables Energy Country Attractiveness Index (RECAI)'. By looking at Pesaran’s CD test and average growth rates of variables for each country, we detect the presence of cross-sectional dependence and heterogeneity. Hence, this study uses second generation econometric techniques (cross-sectionally augmented Dickey-Fuller (CADF), and cross-sectionally augmented IPS (CIPS) unit root test, the LM bootstrap cointegration test, and the DOLS and the FMOLS estimators) which are robust to the mentioned issues. Therefore, the reported results become accurate and reliable. It is found that renewable energy mitigates the pollution whereas real GDP and tourism contribute to carbon emissions. Thus, regulatory policies are necessary to increase the awareness of sustainable tourism. In addition, the use of renewable energy and the adoption of clean technologies in tourism sector as well as in producing goods and services play significant roles in reducing the levels of emissions.

Keywords: air pollution, tourism, renewable energy, income, panel data

Procedia PDF Downloads 158
5397 Preparation of Bacterial Cellulose Membranes from Nata de Coco for CO2/CH4 Separation

Authors: Yanin Hosakun, Sujitra Wongkasemjit, Thanyalak Chaisuwan

Abstract:

Carbon dioxide removal from natural gas is an important process because the existence of carbon dioxide in natural gas contributes to pipeline corrosion, reduces the heating value, and takes up volume in the pipeline. In this study, bacterial cellulose was chosen for the CO2/CH4 gas separation membrane due to its unique structure and prominent properties. Additionally, it can simply be obtained by culturing the bacteria so called “Acetobacter xylinum” through fermentation of coconut juice. Bacterial cellulose membranes with and without silver ions were prepared and studied for the separation performance of CO2 and CH4.

Keywords: bacterial cellulose, CO2, CH4 separation, membrane, nata de coco

Procedia PDF Downloads 214
5396 Study of Chemical Compounds of Garlic

Authors: Bazaraliyeva Aigerim Bakytzhanovna, Turgumbayeva Aknur Amanbekovna

Abstract:

The phytosubstance from garlic was obtained by extraction with liquid carbon dioxide under critical conditions. Methods of processing raw materials are proposed, and the chemical composition of garlic is studied by gas chromatography and mass spectrometry. The garlic extract's composition was determined using gas chromatography (GC) and gas chromatography-mass spectrophotometry (GC-MS). The phytosubstance had 54 constituents. The extract included the following main compounds: Manool (39.56%), Viridifrolol (7%), Podocarpa-1,8,11,13-tetraen-3-one, 14-isopropyl-1,13-dimethoxy- 5,15 percent, (+)-2-Bornanone (4.29%), Thujone (3.49%), Linolic acid ethyl ester (3.41%), and 12-O-Methylcarn.

Keywords: allium sativum, bioactive compounds of garlic, carbon dioxide extraction of garlic, GS-MS method

Procedia PDF Downloads 54
5395 Global Emission Inventories of Air Pollutants from Combustion Sources

Authors: Shu Tao

Abstract:

Based on a global fuel consumption data product (PKU-FUEL-2007) compiled recently and a series of databases for emission factors of various sources, global emission inventories of a number of greenhouse gases and air pollutants, including CO2, CO, SO2, NOx, primary particulate matter (total, PM 10, and PM 2.5), black carbon, organic carbon, mercury, volatile organic carbons, and polycyclic aromatic hydrocarbons, from combustion sources have been developed. The inventories feather high spatial and sectorial resolutions. The spatial resolution of the inventories are 0.1 by 0.1 degree, based on a sub-national disaggregation approach to reduce spatial bias due to uneven distribution of per person fuel consumption within countries. The finely resolved inventories provide critical information for chemical transport modeling and exposure modeling. Emissions from more than 60 sources in energy, industry, agriculture, residential, transportation, and wildfire sectors were quantified in this study. With the detailed sectorial information, the inventories become an important tool for policy makers. For residential sector, a set of models were developed to simulate temporal variation of fuel consumption, consequently pollutant emissions. The models can be used to characterize seasonal as well as inter-annual variations in the emissions in history and to predict future changes. The models can even be used to quantify net change of fuel consumption and pollutant emissions due to climate change. The inventories has been used for model ambient air quality, population exposure, and even health effects. A few examples of the applications are discussed.

Keywords: air pollutants, combustion, emission inventory, sectorial information

Procedia PDF Downloads 344
5394 Experimental and Analytical Design of Rigid Pavement Using Geopolymer Concrete

Authors: J. Joel Bright, P. Peer Mohamed, M. Aswin SAangameshwaran

Abstract:

The increasing usage of concrete produces 80% of carbon dioxide in the atmosphere. Hence, this results in various environmental effects like global warming. The amount of the carbon dioxide released during the manufacture of OPC due to the calcination of limestone and combustion of fossil fuel is in the order of one ton for every ton of OPC produced. Hence, to minimize this Geo Polymer Concrete was introduced. Geo polymer concrete is produced with 0% cement, and hence, it is eco-friendly and it also uses waste product from various industries like thermal power plant, steel manufacturing plant, and paper waste materials. This research is mainly about using Geo polymer concrete for pavement which gives very high strength than conventional concrete and at the same time gives way for sustainable development.

Keywords: activator solution, GGBS, fly ash, metakaolin

Procedia PDF Downloads 420
5393 Reducing Greenhouse Gass Emissions by Recyclable Material Bank Project of Universities in Central Region of Thailand

Authors: Ronbanchob Apiratikul

Abstract:

This research studied recycled waste by the Recyclable Material Bank Project of 4 universities in the central region of Thailand for the evaluation of reducing greenhouse gas emissions compared with landfilling activity during July 2012 to June 2013. The results showed that the projects collected total amount of recyclable wastes of about 911,984.80 kilograms. Office paper had the largest amount among these recycled wastes (50.68% of total recycled waste). Groups of recycled waste can be prioritized from high to low according to their amount as paper, plastic, glass, mixed recyclables, and metal, respectively. The project reduced greenhouse gas emissions equivalent to about 2814.969 metric tons of carbon dioxide. The most significant recycled waste that affects the reduction of greenhouse gas emissions is office paper which is 70.16% of total reduced greenhouse gasses emission. According to amount of reduced greenhouse gasses emission, groups of recycled waste can be prioritized from high to low significances as paper, plastic, metals, mixed recyclables, and glass, respectively.

Keywords: recycling, garbage bank, waste management, recyclable wastes, greenhouse gases

Procedia PDF Downloads 395
5392 Energy Budgeting, Carbon and Water Footprints Under Conventional and Conservation Tillage Practices of Rice-Wheat Double Cropping System

Authors: Ahmad Latif Virk, Naeem Ahmad, Muhammad Ishaq Asif Rehmani

Abstract:

Amid the present environmental crises, developing environment-resilient and cost-effective conservation agriculture strategies to feed the world's ever-growing population is pertinent. Therefore, a field study was conducted to test the hypothesis that residue retention under no-till (NTR) would enhance energy productivity (EP) and energy use efficiency (EUE) while offsetting the carbon footprints (CF), water footprints (WF) and greenhouse gases emissions (GHGs) in rice (Oryza sativa L.)-wheat (Triticum aestivum L.) double cropping system. Two tillage systems viz., conventional tillage (CT) and conservation tillage (no-till; NT), with or without residue retention, were combined into four treatments as CT0 (puddled rice, conventional wheat - residue); CTR (puddled rice, conventional wheat + residue); NT0 (direct rice seeding, zero-tilled wheat - residue); NTR (direct rice seeding, zero-tilled wheat + residue) were evaluated. Overall, results showed that the NT system had 34.2% lower energy consumption, 1.2 times more EP than CT system. Moreover, NTR had 19.8% higher EUE than CT0. The overall system grain yield ranged from 7.8 to 9.3 Mg ha−1 under NT0 and CTR, respectively. The NTR had 56.6% and 17.9% lesser CF and WF, respectively, than CT0. The net GHGs emissions (CO2-eq kg ha−1) under CT0 were the highest, while NTR had the lowest emissions. The NTR enhanced carbon sequestration in soil that can offset half of the system's CO2 emissions. The findings of this study might help develop a suitable strategy for resource/energy conservation and higher productivity while offsetting GHGs emissions in the Indo-Gangetic Plains.

Keywords: residue, yield, indirect emissions, energy use efficiency, carbon sequestration

Procedia PDF Downloads 55
5391 Gas Separation by Water-Swollen Membrane

Authors: Lenka Morávková, Zuzana Sedláková, Jiří Vejražka, Věra Jandová, Pavel Izák

Abstract:

The need to minimize the costs of biogas upgrading leads to a continuous search for new and more effective membrane materials. The improvement of biogas combustion efficiency is connected with polar gases removal from a feed stream. One of the possibilities is the use of water–swollen polyamide layer of thin film composite reverse osmosis membrane for simultaneous carbon dioxide and hydrogen sulphide removal. Transport properties and basic characteristics of a thin film composite membrane were compared in the term of appropriate water-swollen membrane choice for biogas upgrading. SEM analysis showed that the surface of the best performing composites changed significantly upon swelling by water. The surface changes were found to be a proof that the selective skin polyamide layer was swollen well. Further, the presence of a sufficient number of associative centers, namely amido groups, inside the upper layer of the hydrophilic thin composite membrane can play an important role in the polar gas separation from a non-polar gas. The next key factor is a high porosity of the membrane support.

Keywords: biogas upgrading, carbon dioxide separation, hydrogen sulphide separation, water-swollen membrane

Procedia PDF Downloads 318
5390 Solar-Plasma Reactors for a Zero-Emission Economy

Authors: Dassou Nagassou

Abstract:

Recent increase in frequency and severity of climatic impacts throughout the world has put a particular emphasis on the urgency to address the anthropogenic greenhouse gas emissions. The latter, mainly composed of carbon dioxide are responsible for the global warming of planet earth. Despite efforts to transition towards a zero-emission economy, manufacturing industries, electricity generation power plants, and transportation sectors continue to encounter challenges which hinder their progress towards a full decarbonization. The growing energy demand from both developed and under-developed economies exacerbates the situation and as a result, more carbon dioxide is discharged into the atmosphere. This situation imposes a lot of constraints on industries which are involved i.e., manufacturing industries, transportation, and electricity generation which must navigate the stringent environmental regulations in order to remain profitable. Existing solutions such as energy efficiencies, green materials (life cycle analysis), and many more have fallen short to address the problem due to their inadaptation to existing infrastructures, low efficiencies, and prohibitive costs. The proposed technology exploits the synergistic interaction between solar radiation and plasma to boost a direct decomposition of the molecules of carbon dioxide while producing alternative fuels which can be used to sustain on-site high-temperature processes via 100% solar energy harvesting in the form of photons and electricity. The advantages of this technology and its ability to be easily integrated into existing systems make it appealing for the industry which can now afford to fast track on the path towards full decarbonization, thanks to the solar plasma reactor. Despite the promising experimental results which proved the viability of this concept, solar-plasma reactors require further investigations to understand the synergistic interactions between plasma and solar radiation for a potential technology scale-up.

Keywords: solar, non-equilibrium, plasma, reactor, greenhouse-gases, solar-fuels

Procedia PDF Downloads 34
5389 Thermo-Physical Properties and Solubility of CO2 in Piperazine Activated Aqueous Solutions of β-Alanine

Authors: Ghulam Murshid

Abstract:

Carbon dioxide is one of the major greenhouse gas (GHG) contributors. It is an obligation of the industry to reduce the amount of carbon dioxide emission to the acceptable limits. Tremendous research and studies are reported in the past and still the quest to find the suitable and economical solution of this problem needed to be explored in order to develop the most plausible absorber for carbon dioxide removal. Amino acids are reported by the researchers as a potential solvent for absorption of carbon dioxide to replace alkanolamines due to its ability to resist oxidative degradation, low volatility due to its ionic structure and higher surface tension. In addition, the introduction of promoter-like piperazine to amino acid helps to further enhance the solubility. In this work, the effect of piperazine on thermophysical properties and solubility of β-Alanine aqueous solutions were studied for various concentrations. The measured physicochemical properties data was correlated as a function of temperature using least-squares method and the correlation parameters are reported together with it respective standard deviations. The effect of activator piperazine on the CO2 loading performance of selected amino acid under high-pressure conditions (1bar to 10bar) at temperature range of (30 to 60)oC was also studied. Solubility of CO2 decreases with increasing temperature and increases with increasing pressure. Quadratic representation of solubility using Response Surface Methodology (RSM) shows that the most important parameter to optimize solubility is system pressure. The addition of promoter increases the solubility effect of the solvent.

Keywords: amino acids, co2, global warming, solubility

Procedia PDF Downloads 388
5388 Integrating Reactive Chlorine Species Generation with H2 Evolution in a Multifunctional Photoelectrochemical System for Low Operational Carbon Emissions Saline Sewage Treatment

Authors: Zexiao Zheng, Irene M. C. Lo

Abstract:

Organic pollutants, ammonia, and bacteria are major contaminants in sewage, which may adversely impact ecosystems without proper treatment. Conventional wastewater treatment plants (WWTPs) are operated to remove these contaminants from sewage but suffer from high carbon emissions and are powerless to remove emerging organic pollutants (EOPs). Herein, we have developed a low operational carbon emissions multifunctional photoelectrochemical (PEC) system for saline sewage treatment to simultaneously remove organic compounds, ammonia, and bacteria, coupled with H2 evolution. A reduced BiVO4 (r-BiVO4) with improved PEC properties due to the construction of oxygen vacancies and V4+ species was developed for the multifunctional PEC system. The PEC/r-BiVO4 process could treat saline sewage to meet local WWTPs’ discharge standard in 40 minutes at 2.0 V vs. Ag/AgCl and completely degrade carbamazepine (one of the EOPs), coupled with significant evolution of H2. A remarkable reduction in operational carbon emissions was achieved by the PEC/r-BiVO4 process compared with large-scale WWTPs, attributed to the restrained direct carbon emissions from the generation of greenhouse gases. Mechanistic investigation revealed that the PEC system could activate chloride ions in sewage to generate reactive chlorine species and facilitate •OH production, promoting contaminants removal. The PEC system exhibited operational feasibility at different pH and total suspended solids concentrations and has outstanding reusability and stability, confirming its promising practical potential. The study combined the simultaneous removal of three major contaminants from saline sewage and H2 evolution in a single PEC process, demonstrating a viable approach to supplementing and extending the existing wastewater treatment technologies. The study generated profound insights into the in-situ activation of existing chloride ions in sewage for contaminants removal and offered fundamental theories for applying the PEC system in sewage remediation with low operational carbon emissions. The developed PEC system can fit well with the future needs of wastewater treatment because of the following features: (i) low operational carbon emissions, benefiting the carbon neutrality process; (ii) higher quality of the effluent due to the elimination of EOPs; (iii) chemical-free in the operation of sewage treatment; (iv) easy reuse and recycling without secondary pollution.

Keywords: contaminants removal, H2 evolution, multifunctional PEC system, operational carbon emissions, saline sewage treatment, r-BiVO4 photoanodes

Procedia PDF Downloads 122
5387 Effect of Sulphur Concentration on Microbial Population and Performance of a Methane Biofilter

Authors: Sonya Barzgar, J. Patrick, A. Hettiaratchi

Abstract:

Methane (CH4) is reputed as the second largest contributor to greenhouse effect with a global warming potential (GWP) of 34 related to carbon dioxide (CO2) over the 100-year horizon, so there is a growing interest in reducing the emissions of this gas. Methane biofiltration (MBF) is a cost effective technology for reducing low volume point source emissions of methane. In this technique, microbial oxidation of methane is carried out by methane-oxidizing bacteria (methanotrophs) which use methane as carbon and energy source. MBF uses a granular medium, such as soil or compost, to support the growth of methanotrophic bacteria responsible for converting methane to carbon dioxide (CO₂) and water (H₂O). Even though the biofiltration technique has been shown to be an efficient, practical and viable technology, the design and operational parameters, as well as the relevant microbial processes have not been investigated in depth. In particular, limited research has been done on the effects of sulphur on methane bio-oxidation. Since bacteria require a variety of nutrients for growth, to improve the performance of methane biofiltration, it is important to establish the input quantities of nutrients to be provided to the biofilter to ensure that nutrients are available to sustain the process. The study described in this paper was conducted with the aim of determining the influence of sulphur on methane elimination in a biofilter. In this study, a set of experimental measurements has been carried out to explore how the conversion of elemental sulphur could affect methane oxidation in terms of methanotrophs growth and system pH. Batch experiments with different concentrations of sulphur were performed while keeping the other parameters i.e. moisture content, methane concentration, oxygen level and also compost at their optimum level. The study revealed the tolerable limit of sulphur without any interference to the methane oxidation as well as the particular sulphur concentration leading to the greatest methane elimination capacity. Due to the sulphur oxidation, pH varies in a transient way which affects the microbial growth behavior. All methanotrophs are incapable of growth at pH values below 5.0 and thus apparently are unable to oxidize methane. Herein, the certain pH for the optimal growth of methanotrophic bacteria is obtained. Finally, monitoring methane concentration over time in the presence of sulphur is also presented for laboratory scale biofilters.

Keywords: global warming, methane biofiltration (MBF), methane oxidation, methanotrophs, pH, sulphur

Procedia PDF Downloads 212
5386 Improved Ohmic Contact by Li Doping in Electron Transport Layers

Authors: G. Sivakumar, T. Pratyusha, D. Gupta, W. Shen

Abstract:

To get ohmic contact between the cathode and organic semiconductor, transport layers are introduced between the active layer and the electrodes. Generally zinc oxide or titanium dioxide are used as electron transport layer. When electron transport layer is doped with lithium, the resultant film exhibited superior electronic properties, which enables faster electron transport. Doping is accomplished by heat treatment of films with Lithium salts. Li-doped films. We fabricated organic solar cell using PTB7(poly(3-hexylthiopene-2,5- diyl):PCBM(phenyl-C61-butyric acid methyl ester) and found that the solar cells prepared using Li doped films had better performance in terms of efficiency when compared to the undoped transport layers.

Keywords: electron transport layer, higher efficiency, lithium doping, ohmic contact

Procedia PDF Downloads 476