Search results for: tissues investigations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1919

Search results for: tissues investigations

209 Effect of Packaging Material and Water-Based Solutions on Performance of Radio Frequency Identification for Food Packaging Applications

Authors: Amelia Frickey, Timothy (TJ) Sheridan, Angelica Rossi, Bahar Aliakbarian

Abstract:

The growth of large food supply chains demanded improved end-to-end traceability of food products, which has led to companies being increasingly interested in using smart technologies such as Radio Frequency Identification (RFID)-enabled packaging to track items. As technology is being widely used, there are several technological or economic issues that should be overcome to facilitate the adoption of this track-and-trace technology. One of the technological challenges of RFID technology is its sensitivity to different environmental form factors, including packaging materials and the content of the packaging. Although researchers have assessed the performance loss due to the proximity of water and aqueous solutions, there is still the need to further investigate the impacts of food products on the reading range of RFID tags. However, to the best of our knowledge, there are not enough studies to determine the correlation between RFID tag performance and food beverages properties. The goal of this project was to investigate the effect of the solution properties (pH and conductivity) and different packaging materials filled with food-like water-based solutions on the performance of an RFID tag. Three commercially available ultra high-frequency RFID tags were placed on three different bottles and filled with different concentrations of water-based solutions, including sodium chloride, citric acid, sucrose, and ethanol. Transparent glass, Polyethylneterephtalate (PET), and Tetrapak® were used as the packaging materials commonly used in the beverage industries. Tag readability (Theoretical Read Range, TRR) and sensitivity (Power on Tag Forward, PoF) were determined using an anechoic chamber. First, the best place to attach the tag for each packaging material was investigated using empty and water-filled bottles. Then, the bottles were filled with the food-like solutions and tested with the three different tags and the PoF and TRR at the fixed frequency of 915MHz. In parallel, the pH and conductivity of solutions were measured. The best-performing tag was then selected to test the bottles filled with wine, orange, and apple juice. Despite various solutions altering the performance of each tag, the change in tag performance had no correlation with the pH or conductivity of the solution. Additionally, packaging material played a significant role in tag performance. Each tag tested performed optimally under different conditions. This study is the first part of comprehensive research to determine the regression model for the prediction of tag performance behavior based on the packaging material and the content. More investigations, including more tags and food products, are needed to be able to develop a robust regression model. The results of this study can be used by RFID tag manufacturers to design suitable tags for specific products with similar properties.

Keywords: smart food packaging, supply chain management, food waste, radio frequency identification

Procedia PDF Downloads 92
208 Assessment of Environmental Mercury Contamination from an Old Mercury Processing Plant 'Thor Chemicals' in Cato Ridge, KwaZulu-Natal, South Africa

Authors: Yohana Fessehazion

Abstract:

Mercury is a prominent example of a heavy metal contaminant in the environment, and it has been extensively investigated for its potential health risk in humans and other organisms. In South Africa, massive mercury contamination happened in1980s when the England-based mercury reclamation processing plant relocated to Cato Ridge, KwaZulu-Natal Province, and discharged mercury waste into the Mngceweni River. This mercury waste discharge resulted in high mercury concentration that exceeded the acceptable levels in Mngceweni River, Umgeni River, and human hair of the nearby villagers. This environmental issue raised the alarm, and over the years, several environmental assessments were reported the dire environmental crises resulting from the Thor Chemicals (now known as Metallica Chemicals) and urged the immediate removal of the around 3,000 tons of mercury waste stored in the factory storage facility over two decades. Recently theft of some containers with the toxic substance from the Thor Chemicals warehouse and the subsequent fire that ravaged the facility furtherly put the factory on the spot escalating the urgency of left behind deadly mercury waste removal. This project aims to investigate the mercury contamination leaking from an old Thor Chemicals mercury processing plant. The focus will be on sediments, water, terrestrial plants, and aquatic weeds such as the prominent water hyacinth weeds in the nearby water systems of Mngceweni River, Umgeni River, and Inanda Dam as a bio-indicator and phytoremediator for mercury pollution. Samples will be collected in spring around October when the condition is favourable for microbial activity to methylate mercury incorporated in sediments and blooming season for some aquatic weeds, particularly water hyacinth. Samples of soil, sediment, water, terrestrial plant, and aquatic weed will be collected per sample site from the point of source (Thor Chemicals), Mngceweni River, Umgeni River, and the Inanda Dam. One-way analysis of variance (ANOVA) tests will be conducted to determine any significant differences in the Hg concentration among all sampling sites, followed by Least Significant Difference post hoc test to determine if mercury contamination varies with the gradient distance from the source point of pollution. The flow injection atomic spectrometry (FIAS) analysis will also be used to compare the mercury sequestration between the different plant tissues (roots and stems). The principal component analysis is also envisaged for use to determine the relationship between the source of mercury pollution and any of the sampling points (Umgeni and Mngceweni Rivers and the Inanda Dam). All the Hg values will be expressed in µg/L or µg/g in order to compare the result with the previous studies and regulatory standards. Sediments are expected to have relatively higher levels of Hg compared to the soils, and aquatic macrophytes, water hyacinth weeds are expected to accumulate a higher concentration of mercury than terrestrial plants and crops.

Keywords: mercury, phytoremediation, Thor chemicals, water hyacinth

Procedia PDF Downloads 182
207 Innovative Fabric Integrated Thermal Storage Systems and Applications

Authors: Ahmed Elsayed, Andrew Shea, Nicolas Kelly, John Allison

Abstract:

In northern European climates, domestic space heating and hot water represents a significant proportion of total primary total primary energy use and meeting these demands from a national electricity grid network supplied by renewable energy sources provides an opportunity for a significant reduction in EU CO2 emissions. However, in order to adapt to the intermittent nature of renewable energy generation and to avoid co-incident peak electricity usage from consumers that may exceed current capacity, the demand for heat must be decoupled from its generation. Storage of heat within the fabric of dwellings for use some hours, or days, later provides a route to complete decoupling of demand from supply and facilitates the greatly increased use of renewable energy generation into a local or national electricity network. The integration of thermal energy storage into the building fabric for retrieval at a later time requires much evaluation of the many competing thermal, physical, and practical considerations such as the profile and magnitude of heat demand, the duration of storage, charging and discharging rate, storage media, space allocation, etc. In this paper, the authors report investigations of thermal storage in building fabric using concrete material and present an evaluation of several factors that impact upon performance including heating pipe layout, heating fluid flow velocity, storage geometry, thermo-physical material properties, and also present an investigation of alternative storage materials and alternative heat transfer fluids. Reducing the heating pipe spacing from 200 mm to 100 mm enhances the stored energy by 25% and high-performance Vacuum Insulation results in heat loss flux of less than 3 W/m2, compared to 22 W/m2 for the more conventional EPS insulation. Dense concrete achieved the greatest storage capacity, relative to medium and light-weight alternatives, although a material thickness of 100 mm required more than 5 hours to charge fully. Layers of 25 mm and 50 mm thickness can be charged in 2 hours, or less, facilitating a fast response that could, aggregated across multiple dwellings, provide significant and valuable reduction in demand from grid-generated electricity in expected periods of high demand and potentially eliminate the need for additional new generating capacity from conventional sources such as gas, coal, or nuclear.

Keywords: fabric integrated thermal storage, FITS, demand side management, energy storage, load shifting, renewable energy integration

Procedia PDF Downloads 146
206 Study of Biomechanical Model for Smart Sensor Based Prosthetic Socket Design System

Authors: Wei Xu, Abdo S. Haidar, Jianxin Gao

Abstract:

Prosthetic socket is a component that connects the residual limb of an amputee with an artificial prosthesis. It is widely recognized as the most critical component that determines the comfort of a patient when wearing the prosthesis in his/her daily activities. Through the socket, the body weight and its associated dynamic load are distributed and transmitted to the prosthesis during walking, running or climbing. In order to achieve a good-fit socket for an individual amputee, it is essential to obtain the biomechanical properties of the residual limb. In current clinical practices, this is achieved by a touch-and-feel approach which is highly subjective. Although there have been significant advancements in prosthetic technologies such as microprocessor controlled knee and ankle joints in the last decade, the progress in designing a comfortable socket has been rather limited. This means that the current process of socket design is still very time-consuming, and highly dependent on the expertise of the prosthetist. Supported by the state-of-the-art sensor technologies and numerical simulations, a new socket design system is being developed to help prosthetists achieve rapid design of comfortable sockets for above knee amputees. This paper reports the research work related to establishing biomechanical models for socket design. Through numerical simulation using finite element method, comprehensive relationships between pressure on residual limb and socket geometry were established. This allowed local topological adjustment for the socket so as to optimize the pressure distributions across the residual limb. When the full body weight of a patient is exerted on the residual limb, high pressures and shear forces between the residual limb and the socket occur. During numerical simulations, various hyperplastic models, namely Ogden, Yeoh and Mooney-Rivlin, were used, and their effectiveness in representing the biomechanical properties of soft tissues of the residual limb was evaluated. This also involved reverse engineering, which resulted in an optimal representative model under compression test. To validate the simulation results, a range of silicone models were fabricated. They were tested by an indentation device which yielded the force-displacement relationships. Comparisons of results obtained from FEA simulations and experimental tests showed that the Ogden model did not fit well the soft tissue material indentation data, while the Yeoh model gave the best representation of the soft tissue mechanical behavior under indentation. Compared with hyperplastic model, the result showed that elastic model also had significant errors. In addition, normal and shear stress distributions on the surface of the soft tissue model were obtained. The effect of friction in compression testing and the influence of soft tissue stiffness and testing boundary conditions were also analyzed. All these have contributed to the overall goal of designing a good-fit socket for individual above knee amputees.

Keywords: above knee amputee, finite element simulation, hyperplastic model, prosthetic socket

Procedia PDF Downloads 177
205 The Historical Background of Physical Changing Towards Ancient Mosques in Aceh, Indonesia

Authors: Karima Adilla

Abstract:

Aceh province, into which Islam convinced to have entered Indonesia in the 12th Century before spreading throughout the archipelago and the rest of Southeast Asia, has several early Islamic mosques that still exist until today. However, due to some circumstances, the restoration and rehabilitation towards those mosques have been made in some periods, while the background was diverse. Concerning this, the research will examine the physical changing aspects of 3 prominent historical mosques in Aceh Besar and Banda Aceh; those are, Indrapuri Mosque, Baiturrahman Grand Mosque, and Baiturrahim Mosque built coincided with the beginning of Islam’s development in Aceh and regarded as eventful mosques. The existence of Indrapuri Mosque built on the remains of the Lamuri Kingdom’s temple is a historical trace that there was Hindu-Buddhist civilization in Aceh before Islam entered and became the majority religion about 98% from Aceh total population. Also, there was the Dutch who colonialized Aceh behind the existence of two famous mosques in Aceh, namely Baiturrahman Grand Mosque and Baiturrahim Mosque, as the colonizer also assisted to rebuild those 2 sacred Mosques to quell the anger of the Acehnese people because their mosque was burnt by the Dutch. Interestingly, despite underwent a long history successively since the rise of Islam after the Hindu-Buddhist kingdom had collapsed, colonialization, conflict, in Aceh, and even experienced the earthquake and tsunami disaster in 2004, those mosques still exist. Therefore, those mosques have been considered as historical silent witnesses. However, it was not merely those reasons that led the mosques underwent several physical changes, otherwise economic, political, social, cultural and religious factors were also highly influential. Instead of directly illustrating the physical changing of those three mosques, this research intends to identify under what condition the physical appearance continuously changing during the sultanate era, the colonial period until post-independent in terms of the architectural style, detail elements, design philosophy, and how the remnants buildings act as medium to bridge the history. A framework will use qualitative research methods by collecting actual data of the mosque's physical change figures through field studies, investigations, library studies and interviews. This research aims to define every trace of historical issues embedded in the physical changing of those mosques as they are intertwined in collecting historical proof. Thus, the result will reveal the characteristic interrelation between history, the mosque architectural style in a certain period, the physical changes background and its impact. Eventually, this research will also explicate a clear inference of each mosque’s role in representing history in Aceh Besar and Banda Aceh specifically, as well as Aceh generally through architectural design concepts.

Keywords: Aceh ancient mosques, Aceh history, Islamic architecture, physical changing

Procedia PDF Downloads 109
204 Time to Retire Rubber Crumb: How Soft Fall Playgrounds are Threatening Australia’s Great Barrier Reef

Authors: Michelle Blewitt, Scott P. Wilson, Heidi Tait, Juniper Riordan

Abstract:

Rubber crumb is a physical and chemical pollutant of concern for the environment and human health, warranting immediate investigations into its pathways to the environment and potential impacts. This emerging microplastic is created by shredding end-of-life tyres into ‘rubber crumb’ particles between 1-5mm used on synthetic turf fields and soft-fall playgrounds as a solution to intensifying tyre waste worldwide. Despite having known toxic and carcinogenic properties, studies into the transportation pathways and movement patterns of rubber crumbs from these surfaces remain in their infancy. To address this deficit, AUSMAP, the Australian Microplastic Assessment Project, in partnership with the Tangaroa Blue Foundation, conducted a study to quantify crumb loss from soft-fall surfaces. To our best knowledge, this is the first of its kind, with funding for the audits being provided by the Australian Government’s Reef Trust. Sampling occurred at 12 soft-fall playgrounds within the Great Barrier Reef Catchment Area on Australia’s North-East coast, in close proximity to the United Nations World Heritage Listed Reef. Samples were collected over a 12-month period using randomized sediment cores at 0, 2 and 4 meters away from the playground edge along a 20-meter transect. This approach facilitated two objectives pertaining to particle movement: to establish that crumb loss is occurring and that it decreases with distance from the soft-fall surface. Rubber crumb abundance was expressed as a total value and used to determine an expected average of rubber crumb loss per m2. An Analysis of Variance (ANOVA) was used to compare the differences in crumb abundance at each interval from the playground. Site characteristics, including surrounding sediment type, playground age, degree of ultra-violet exposure and amount of foot traffic, were additionally recorded for the comparison. Preliminary findings indicate that crumb is being lost at considerable rates from soft-fall playgrounds in the region, emphasizing an urgent need to further examine it as a potential source of aquatic pollution, soil contamination and threat to individuals who regularly utilize these surfaces. Additional implications for the future of rubber crumbs as a fit-for-purpose recycling initiative will be discussed with regard to industry, governments and the economic burden of surface maintenance and/ or replacement.

Keywords: microplastics, toxic rubber crumb, litter pathways, marine environment

Procedia PDF Downloads 60
203 Revealing the Nitrogen Reaction Pathway for the Catalytic Oxidative Denitrification of Fuels

Authors: Michael Huber, Maximilian J. Poller, Jens Tochtermann, Wolfgang Korth, Andreas Jess, Jakob Albert

Abstract:

Aside from the desulfurisation, the denitrogenation of fuels is of great importance to minimize the environmental impact of transport emissions. The oxidative reaction pathway of organic nitrogen in the catalytic oxidative denitrogenation could be successfully elucidated. This is the first time such a pathway could be traced in detail in non-microbial systems. It was found that the organic nitrogen is first oxidized to nitrate, which is subsequently reduced to molecular nitrogen via nitrous oxide. Hereby, the organic substrate serves as a reducing agent. The discovery of this pathway is an important milestone for the further development of fuel denitrogenation technologies. The United Nations aims to counteract global warming with Net Zero Emissions (NZE) commitments; however, it is not yet foreseeable when crude oil-based fuels will become obsolete. In 2021, more than 50 million barrels per day (mb/d) were consumed for the transport sector alone. Above all, heteroatoms such as sulfur or nitrogen produce SO₂ and NOx during combustion in the engines, which is not only harmful to the climate but also to health. Therefore, in refineries, these heteroatoms are removed by hy-drotreating to produce clean fuels. However, this catalytic reaction is inhibited by the basic, nitrogenous reactants (e.g., quinoline) as well as by NH3. The ion pair of the nitrogen atom forms strong pi-bonds to the active sites of the hydrotreating catalyst, which dimin-ishes its activity. To maximize the desulfurization and denitrogenation effectiveness in comparison to just extraction and adsorption, selective oxidation is typically combined with either extraction or selective adsorption. The selective oxidation produces more polar compounds that can be removed from the non-polar oil in a separate step. The extraction step can also be carried out in parallel to the oxidation reaction, as a result of in situ separation of the oxidation products (ECODS; extractive catalytic oxidative desulfurization). In this process, H8PV5Mo7O40 (HPA-5) is employed as a homogeneous polyoxometalate (POM) catalyst in an aqueous phase, whereas the sulfur containing fuel components are oxidized after diffusion from the organic fuel phase into the aqueous catalyst phase, to form highly polar products such as H₂SO₄ and carboxylic acids, which are thereby extracted from the organic fuel phase and accumulate in the aqueous phase. In contrast to the inhibiting properties of the basic nitrogen compounds in hydrotreating, the oxidative desulfurization improves with simultaneous denitrification in this system (ECODN; extractive catalytic oxidative denitrogenation). The reaction pathway of ECODS has already been well studied. In contrast, the oxidation of nitrogen compounds in ECODN is not yet well understood and requires more detailed investigations.

Keywords: oxidative reaction pathway, denitrogenation of fuels, molecular catalysis, polyoxometalate

Procedia PDF Downloads 151
202 Enumerating Insect Biodiversity in the Himalayan Mountains of India in Context to Species Richness, Biogeographic Distribution, and Possible Gap Areas in Taxonomic Research

Authors: Kailash Chandra, Devanshu Gupta

Abstract:

The Himalayan Mountains of India fall under two biogeographic zones Trans Himalaya (TH) and Himalaya and seven biotic provinces (TH-Ladakh Mountains, TH-Tibetan Plateau, TH-Sikkim, North-West Himalaya, West Himalaya, Central Himalaya, and East Himalaya). Because of the extreme environment and altitudinal variations, unique physiography, varied ecological conditions, and different vegetations, the Himalaya exhibit a rich assemblage of life, both flora, and fauna, further subjected to the impacts of climate change. To the authors’ best knowledge, there is no comprehensive account except for sporadic faunal investigations, to assess or interpret the insect diversity and their biogeographic distribution in Indian Himalaya (IH), one of the biodiversity hotspots. Therefore, in this paper, a compelling review of the extensive knowledge of insect diversity of IH is presented for the first time to the best of our knowledge. The inventory of the known insect species of IH was compiled from the exploration cum faunal-study data ready with the zoological survey of India, Kolkata as well as from the information published in the scientific literature till date. The species were listed with their valid names with their distribution in seven biotic provinces of IH. The insect fauna of IH represents about 38% of the identified insect diversity of India. The interpretation of data provided significant information in detecting possible gap areas in the taxonomic representation of different insect orders. Archaeognatha, Zygentoma, Ephemeroptera, Phasmida, Embioptera, Psocoptera, Phthiraptera, Strepsiptera, Megaloptera, Raphidioptera, Siphonaptera, and Mecoptera need revisions, and it is required to collect more samples from remote areas of the region. Scope for finding new taxa even in the most diverse orders, Coleoptera, Lepidoptera, Hymenoptera, Diptera, and Hemiptera cannot be overlooked. Exploration of cold deserts of Trans Himalaya and East Himalaya (Arunachal Pradesh) may result in a good number of new species from these regions. The most notable data was that many of the species recorded from Himalaya are still known from their type localities only, so there is an urgency to revisit and resurvey those collection localities for the evaluation of the status of those species. It is also required to assess and monitor the impact of climate change on the diversity of insects inhabiting in the fragile Himalayan ecosystem. DNA barcoding especially pests and biological control agents to solve the problems of identification in species complexes is also the need of the hour. In a nutshell, it can be concluded that the inventory of insects of this region is extensive but is far from final as every year hundreds of new species are described.

Keywords: catalog, climate change, diversity, DNA barcoding

Procedia PDF Downloads 188
201 The Effectiveness of Multiphase Flow in Well- Control Operations

Authors: Ahmed Borg, Elsa Aristodemou, Attia Attia

Abstract:

Well control involves managing the circulating drilling fluid within the wells and avoiding kicks and blowouts as these can lead to losses in human life and drilling facilities. Current practices for good control incorporate predictions of pressure losses through computational models. Developing a realistic hydraulic model for a good control problem is a very complicated process due to the existence of a complex multiphase region, which usually contains a non-Newtonian drilling fluid and the miscibility of formation gas in drilling fluid. The current approaches assume an inaccurate flow fluid model within the well, which leads to incorrect pressure loss calculations. To overcome this problem, researchers have been considering the more complex two-phase fluid flow models. However, even these more sophisticated two-phase models are unsuitable for applications where pressure dynamics are important, such as in managed pressure drilling. This study aims to develop and implement new fluid flow models that take into consideration the miscibility of fluids as well as their non-Newtonian properties for enabling realistic kick treatment. furthermore, a corresponding numerical solution method is built with an enriched data bank. The research work considers and implements models that take into consideration the effect of two phases in kick treatment for well control in conventional drilling. In this work, a corresponding numerical solution method is built with an enriched data bank. Software STARCCM+ for the computational studies to study the important parameters to describe wellbore multiphase flow, the mass flow rate, volumetric fraction, and velocity of each phase. Results showed that based on the analysis of these simulation studies, a coarser full-scale model of the wellbore, including chemical modeling established. The focus of the investigations was put on the near drill bit section. This inflow area shows certain characteristics that are dominated by the inflow conditions of the gas as well as by the configuration of the mud stream entering the annulus. Without considering the gas solubility effect, the bottom hole pressure could be underestimated by 4.2%, while the bottom hole temperature is overestimated by 3.2%. and without considering the heat transfer effect, the bottom hole pressure could be overestimated by 11.4% under steady flow conditions. Besides, larger reservoir pressure leads to a larger gas fraction in the wellbore. However, reservoir pressure has a minor effect on the steady wellbore temperature. Also as choke pressure increases, less gas will exist in the annulus in the form of free gas.

Keywords: multiphase flow, well- control, STARCCM+, petroleum engineering and gas technology, computational fluid dynamic

Procedia PDF Downloads 93
200 Biophysical and Structural Characterization of Transcription Factor Rv0047c of Mycobacterium Tuberculosis H37Rv

Authors: Md. Samsuddin Ansari, Ashish Arora

Abstract:

Every year 10 million people fall ill with one of the oldest diseases known as tuberculosis, caused by Mycobacterium tuberculosis. The success of M. tuberculosis as a pathogen is because of its ability to persist in host tissues. Multidrug resistance (MDR) mycobacteria cases increase every day, which is associated with efflux pumps controlled at the level of transcription. The transcription regulators of MDR transporters in bacteria belong to one of the following four regulatory protein families: AraC, MarR, MerR, and TetR. Phenolic acid decarboxylase repressor (PadR), like a family of transcription regulators, is closely related to the MarR family. Phenolic acid decarboxylase repressor (PadR) was first identified as a transcription factor involved in the regulation of phenolic acid stress response in various microorganisms (including Mycobacterium tuberculosis H37Rv). Recently research has shown that the PadR family transcription factors are global, multifunction transcription regulators. Rv0047c is a PadR subfamily-1 protein. We are exploring the biophysical and structural characterization of Rv0047c. The Rv0047 gene was amplified by PCR using the primers containing EcoRI and HindIII restriction enzyme sites cloned in pET-NH6 vector and overexpressed in DH5α and BL21 (λDE3) cells of E. coli following purification with Ni2+-NTA column and size exclusion chromatography. We did DSC to know the thermal stability; the Tm (transition temperature) of protein is 55.29ºC, and ΔH (enthalpy change) of 6.92 kcal/mol. Circular dichroism to know the secondary structure and conformation and fluorescence spectroscopy for tertiary structure study of protein. To understand the effect of pH on the structure, function, and stability of Rv0047c we employed spectroscopy techniques such as circular dichroism, fluorescence, and absorbance measurements in a wide range of pH (from pH-2.0 to pH-12). At low and high pH, it shows drastic changes in the secondary and tertiary structure of the protein. EMSA studies showed the specific binding of Rv0047c with its own 30-bp promoter region. To determine the effect of complex formation on the secondary structure of Rv0047c, we examined the CD spectra of the complex of Rv0047c with promoter DNA of rv0047. The functional role of Rv0047c was characterized by over-expressing the Rv0047c gene under the control of hsp60 promoter in Mycobacterium tuberculosis H37Rv. We have predicted the three-dimensional structure of Rv0047c using the Swiss Model and Modeller, with validity checked by the Ramachandra plot. We did molecular docking of Rv0047c with dnaA, through PatchDock following refinement through FireDock. Through this, it is possible to easily identify the binding hot-stop of the receptor molecule with that of the ligand, the nature of the interface itself, and the conformational change undergone by the protein pattern. We are using X-crystallography to unravel the structure of Rv0047c. Overall the studies show that Rv0047c may have transcription regulation along with providing an insight into the activity of Rv0047c in the pH range of subcellular environment and helps to understand the protein-protein interaction, a novel target to kill dormant bacteria and potential strategy for tuberculosis control.

Keywords: mycobacterium tuberculosis, phenolic acid decarboxylase repressor, Rv0047c, Circular dichroism, fluorescence spectroscopy, docking, protein-protein interaction

Procedia PDF Downloads 73
199 Vascular Targeted Photodynamic Therapy Monitored by Real-Time Laser Speckle Imaging

Authors: Ruth Goldschmidt, Vyacheslav Kalchenko, Lilah Agemy, Rachel Elmoalem, Avigdor Scherz

Abstract:

Vascular Targeted Photodynamic therapy (VTP) is a new modality for selective cancer treatment that leads to the complete tumor ablation. A photosensitizer, a bacteriochlorophyll derivative in our case, is first administered to the patient and followed by the illumination of the tumor area, by a near-IR laser for its photoactivation. The photoactivated drug releases reactive oxygen species (ROS) in the circulation, which reacts with blood cells and the endothelium leading to the occlusion of the blood vasculature. If the blood vessels are only partially closed, the tumor may recover, and cancer cells could survive. On the other hand, excessive treatment may lead to toxicity of healthy tissues nearby. Simultaneous VTP monitoring and image processing independent of the photoexcitation laser has not yet been reported, to our knowledge. Here we present a method for blood flow monitoring, using a real-time laser speckle imaging (RTLSI) in the tumor during VTP. We have synthesized over the years a library of bacteriochlorophyll derivatives, among them WST11 and STL-6014. Both are water soluble derivatives that are retained in the blood vasculature through their partial binding to HSA. WST11 has been approved in Mexico for VTP treatment of prostate cancer at a certain drug dose, and time/intensity of illumination. Application to other bacteriochlorophyll derivatives or other cancers may require different treatment parameters (such as light/drug administration). VTP parameters for STL-6014 are still under study. This new derivative mainly differs from WST11 by its lack of the central Palladium, and its conjugation to an Arg-Gly-Asp (RGD) sequence. RGD is a tumor-specific ligand that is used for targeting the necrotic tumor domains through its affinity to αVβ3 integrin receptors. This enables the study of cell-targeted VTP. We developed a special RTLSI module, based on Labview software environment for data processing. The new module enables to acquire raw laser speckle images and calculate the values of the laser temporal statistics of time-integrated speckles in real time, without additional off-line processing. Using RTLSI, we could monitor the tumor’s blood flow following VTP in a CT26 colon carcinoma ear model. VTP with WST11 induced an immediate slow down of the blood flow within the tumor and a complete final flow arrest, after some sporadic reperfusions. If the irradiation continued further, the blood flow stopped also in the blood vessels of the surrounding healthy tissue. This emphasizes the significance of light dose control. Using our RTLSI system, we could prevent any additional healthy tissue damage by controlling the illumination time and restrict blood flow arrest within the tumor only. In addition, we found that VTP with STL-6014 was the most effective when the photoactivation was conducted 4h post-injection, in terms of tumor ablation success in-vivo and blood vessel flow arrest. In conclusion, RTSLI application should allow to optimize VTP efficacy vs. toxicity in both the preclinical and clinical arenas.

Keywords: blood vessel occlusion, cancer treatment, photodynamic therapy, real time imaging

Procedia PDF Downloads 197
198 Phenolic Acids of Plant Origin as Promising Compounds for Elaboration of Antiviral Drugs against Influenza

Authors: Vladimir Berezin, Aizhan Turmagambetova, Andrey Bogoyavlenskiy, Pavel Alexyuk, Madina Alexyuk, Irina Zaitceva, Nadezhda Sokolova

Abstract:

Introduction: Influenza viruses could infect approximately 5% to 10% of the global human population annually, resulting in serious social and economic damage. Vaccination and etiotropic antiviral drugs are used for the prevention and treatment of influenza. Vaccination is important; however, antiviral drugs represent the second line of defense against new emerging influenza virus strains for which vaccines may be unsuccessful. However, the significant drawback of commercial synthetic anti-flu drugs is the appearance of drug-resistant influenza virus strains. Therefore, the search and development of new anti-flu drugs efficient against drug-resistant strains is an important medical problem for today. The aim of this work was a study of four phenolic acids of plant origin (Gallic, Syringic, Vanillic, and Protocatechuic acids) as a possible tool for treatment against influenza virus. Methods: Phenolic acids; gallic, syringic, vanillic, and protocatechuic have been prepared by extraction from plant tissues and purified using high-performance liquid chromatography fractionation. Avian influenza virus, strain A/Tern/South Africa/1/1961 (H5N3) and human epidemic influenza virus, strain A/Almaty/8/98 (H3N2) resistant to commercial anti-flu drugs (Rimantadine, Oseltamivir) were used for testing antiviral activity. Viruses were grown in the allantoic cavity of 10 days old chicken embryos. The chemotherapeutic index (CTI), determined as the ratio of an average toxic concentration of the tested compound (TC₅₀) to the average effective virus-inhibition concentration (EC₅₀), has been used as a criteria of specific antiviral action. Results: The results of study have shown that the structure of phenolic acids significantly affected their ability to suppress the reproduction of tested influenza virus strains. The highest antiviral activity among tested phenolic acids was detected for gallic acid, which contains three hydroxyl groups in the molecule at C3, C4, and C5 positions. Antiviral activity of gallic acid against A/H5N3 and A/H3N2 influenza virus strains was higher than antiviral activity of Oseltamivir and Rimantadine. gallic acid inhibited almost 100% of the infection activity of both tested viruses. Protocatechuic acid, which possesses 2 hydroxyl groups (C3 and C4) have shown weaker antiviral activity in comparison with gallic acid and inhibited less than 10% of virus infection activity. Syringic acid, which contains two hydroxyl groups (C3 and C5), was able to suppress up to 12% of infection activity. Substitution of two hydroxyl groups by methoxy groups resulted in the complete loss of antiviral activity. Vanillic acid, which is different from protocatechuic acid by replacing of C3 hydroxyl group to methoxy group, was able to suppress about 30% of infection activity of tested influenza viruses. Conclusion: For pronounced antiviral activity, the molecular of phenolic acid must have at least two hydroxyl groups. Replacement of hydroxyl groups to methoxy group leads to a reduction of antiviral properties. Gallic acid demonstrated high antiviral activity against influenza viruses, including Rimantadine and Oseltamivir resistant strains, and could be used as a potential candidate for the development of antiviral drug against influenza virus.

Keywords: antiviral activity, influenza virus, drug resistance, phenolic acids

Procedia PDF Downloads 109
197 Vitamin B9 Separation by Synergic Pertraction

Authors: Blaga Alexandra Cristina, Kloetzer Lenuta, Bompa Amalia Stela, Galaction Anca Irina, Cascaval Dan

Abstract:

Vitamin B9 is an important member of vitamins B group, being a growth factor, important for making genetic material as DNA and RNA, red blood cells, for building muscle tissues, especially during periods of infancy, adolescence and pregnancy. Its production by biosynthesis is based on the high metabolic potential of mutant Bacillus subtilis, due to a superior biodisponibility compared to that obtained by chemical pathways. Pertraction, defined as the extraction and transport through liquid membranes consists in the transfer of a solute between two aqueous phases of different pH-values, phases that are separated by a solvent layer of various sizes. The pertraction efficiency and selectivity could be significantly enhanced by adding a carrier in the liquid membrane, such as organophosphoric compounds, long chain amines or crown-ethers etc., the separation process being called facilitated pertraction. The aim of the work is to determine the impact of the presence of two extractants/carriers in the bulk liquid membrane, i.e. di(2-ethylhexyl) phosphoric acid (D2EHPA) and lauryltrialkylmetilamine (Amberlite LA2) on the transport kinetics of vitamin B9. The experiments have been carried out using two pertraction equipments for a free liquid membrane or bulk liquid membrane. One pertraction cell consists on a U-shaped glass pipe (used for the dichloromethane membrane) and the second one is an H-shaped glass pipe (used for h-heptane), having 45 mm inner diameter of the total volume of 450 mL, the volume of each compartment being of 150 mL. The aqueous solutions are independently mixed by means of double blade stirrers with 6 mm diameter and 3 mm height, having the rotation speed of 500 rpm. In order to reach high diffusional rates through the solvent layer, the organic phase has been mixed with a similar stirrer, at a similar rotation speed (500 rpm). The area of mass transfer surface, both for extraction and for reextraction, was of 1.59x10-³ m2. The study on facilitated pertraction with the mixture of two carriers, namely D2EHPA and Amberlite LA-2, dissolved in two solvents with different polarities: n-heptane and dichloromethane, indicated the possibility to obtain the synergic effect. The synergism has been analyzed by considering the vitamin initial and final mass flows, as well as the permeability factors through liquid membrane. The synergic effect has been observed at low D2EHPA concentrations and high Amberlite LA-2 concentrations, being more important for the low-polar solvent (n-heptane). The results suggest that the mechanism of synergic pertraction consists on the reaction between the organophosphoric carrier and vitamin B9 at the interface between the feed and membrane phases, while the aminic carrier enhances the hydrophobicity of this compound by solvation. However, the formation of this complex reduced the reextraction rate and, consequently, affects the synergism related to the final mass flows and permeability factor. For describing the influences of carriers concentrations on the synergistic coefficients, some equations have been proposed by taking into account the vitamin mass flows or permeability factors, with an average deviations between 4.85% and 10.73%.

Keywords: pertraction, synergism, vitamin B9, Amberlite LA-2, di(2-ethylhexyl) phosphoric acid

Procedia PDF Downloads 246
196 Antimicrobial Nanocompositions Made of Amino Acid Based Biodegradable Polymers

Authors: Nino Kupatadze, Mzevinar Bedinashvili, Tamar Memanishvili, Manana Gurielidze, David Tugushi, Ramaz Katsarava

Abstract:

Bacteria easily colonize the surfaces of tissues, surgical devices (implants, orthopedics, catheters, etc.), and instruments causing surgical device related infections. Therefore, the battle against bacteria and the prevention of surgical devices from biofilm formation is one of the main challenges of biomedicine today. Our strategy to the solution of this problem consists in using antimicrobial polymeric coatings as effective “shields” to protect surfaces from bacteria’s colonization and biofilm formation. As one of the most promising approaches look be the use of antimicrobial bioerodible polymeric nanocomposites containing silver nanoparticles (AgNPs). We assume that the combination of an erodible polymer with a strong bactericide should put obstacles to bacteria to occupy the surface and to form biofilm. It has to be noted that this kind of nanocomposites are also promising as wound dressing materials to treat infected superficial wounds. Various synthetic and natural polymers were used for creating biocomposites containing AgNPs as both particles' stabilizers and matrices forming elastic films at surfaces. One of the most effective systems to fabricate AgNPs is an ethanol solution of polyvinylpyrrolidone(PVP) with dissolved AgNO3–ethanol serves as a AgNO3 reductant and PVP as AgNPs stabilizer (through the interaction of nanoparticles with nitrogen atom of the amide group). Though PVP is biocompatible and film-forming polymer, it is not a good candidate to design either "biofilm shield" or wound dressing material because of a high solubility in water – though the solubility of PVP provides the desirable release of AgNPs from the matrix, but the coating is easily washable away from the surfaces. More promising as matrices look water insoluble but bioerodible polymers that can provide the release of AgNPs and form long-lasting coatings at the surfaces. For creating bioerodible water-insoluble antimicrobial coatings containing AgNPs, we selected amino acid based biodegradable polymers(AABBPs)–poly(ester amide)s, poly(ester urea)s, their copolymers containing amide and related groups capable to stabilize AgNPs. Among a huge variety of AABBPs reported we selected the polymers soluble in ethanol. For preparing AgNPs containing nanocompositions AABBPs and AgNO3 were dissolved in ethanol and subjected to photochemical reduction using daylight-irradiation. The formation of AgNPs was observed visually by coloring the solutions in brownish-red. The obtained AgNPs were characterized by UV-spectroscopy, transmission electron microscopy(TEM), and dynamic light scattering(DLS). According to the UV and TEM data, the photochemical reduction resulted presumably in spherical AgNPs with rather high contribution of the particles below 10 nm that are known as responsible for the antimicrobial activity. DLS study showed that average size of nanoparticles formed after photo-reduction in ethanol solution ranged within 50 nm. The in vitro antimicrobial activity study of the new nanocomposite material is in progress now.

Keywords: nanocomposites, silver nanoparticles, polymer, biodegradable

Procedia PDF Downloads 378
195 Oxalate Method for Assessing the Electrochemical Surface Area for Ni-Based Nanoelectrodes Used in Formaldehyde Sensing Applications

Authors: S. Trafela, X. Xua, K. Zuzek Rozmana

Abstract:

In this study, we used an accurate and precise method to measure the electrochemically active surface areas (Aecsa) of nickel electrodes. Calculated Aecsa is really important for the evaluation of an electro-catalyst’s activity in electrochemical reaction of different organic compounds. The method involves the electrochemical formation of Ni(OH)₂ and NiOOH in the presence of adsorbed oxalate in alkaline media. The studies were carried out using cyclic voltammetry with polycrystalline nickel as a reference material and electrodeposited nickel nanowires, homogeneous and heterogeneous nickel films. From cyclic voltammograms, the charge (Q) values for the formation of Ni(OH)₂ and NiOOH surface oxides were calculated under various conditions. At sufficiently fast potential scan rates (200 mV s⁻¹), the adsorbed oxalate limits the growth of the surface hydroxides to a monolayer. Although the Ni(OH)₂/NiOOH oxidation peak overlaps with the oxygen evolution reaction, in the reverse scan, the NiOOH/ Ni(OH)₂ reduction peak is well-separated from other electrochemical processes and can be easily integrated. The values of these integrals were used to correlate experimentally measured charge density with an electrochemically active surface layer. The Aecsa of the nickel nanowires, homogeneous and heterogeneous nickel films were calculated to be Aecsa-NiNWs = 4.2066 ± 0.0472 cm², Aecsa-homNi = 1.7175 ± 0.0503 cm² and Aecsa-hetNi = 2.1862 ± 0.0154 cm². These valuable results were expanded and used in electrochemical studies of formaldehyde oxidation. As mentioned nickel nanowires, heterogeneous and homogeneous nickel films were used as simple and efficient sensor for formaldehyde detection. For this purpose, electrodeposited nickel electrodes were modified in 0.1 mol L⁻¹ solution of KOH in order to expect electrochemical activity towards formaldehyde. The investigation of the electrochemical behavior of formaldehyde oxidation in 0.1 mol L⁻¹ NaOH solution at the surface of modified nickel nanowires, homogeneous and heterogeneous nickel films were carried out by means of electrochemical techniques such as cyclic voltammetric and chronoamperometric methods. From investigations of effect of different formaldehyde concentrations (from 0.001 to 0.1 mol L⁻¹) on electrochemical signal - current we provided catalysis mechanism of formaldehyde oxidation, detection limit and sensitivity of nickel electrodes. The results indicated that nickel electrodes participate directly in the electrocatalytic oxidation of formaldehyde. In the overall reaction, formaldehyde in alkaline aqueous solution exists predominantly in form of CH₂(OH)O⁻, which is oxidized to CH₂(O)O⁻. Taking into account the determined (Aecsa) values we have been able to calculate the sensitivities: 7 mA mol L⁻¹ cm⁻² for nickel nanowires, 3.5 mA mol L⁻¹ cm⁻² for heterogeneous nickel film and 2 mA mol L⁻¹ cm⁻² for heterogeneous nickel film. The detection limit was 0.2 mM for nickel nanowires, 0.5 mM for porous Ni film and 0.8 mM for homogeneous Ni film. All of these results make nickel electrodes capable for further applications.

Keywords: electrochemically active surface areas, nickel electrodes, formaldehyde, electrocatalytic oxidation

Procedia PDF Downloads 137
194 Thermal Method Production of the Hydroxyapatite from Bone By-Products from Meat Industry

Authors: Agnieszka Sobczak-Kupiec, Dagmara Malina, Klaudia Pluta, Wioletta Florkiewicz, Bozena Tyliszczak

Abstract:

Introduction: Request for compound of phosphorus grows continuously, thus, it is searched for alternative sources of this element. One of these sources could be by-products from meat industry which contain prominent quantity of phosphorus compounds. Hydroxyapatite, which is natural component of animal and human bones, is leading material applied in bone surgery and also in stomatology. This is material, which is biocompatible, bioactive and osteoinductive. Methodology: Hydroxyapatite preparation: As a raw material was applied deproteinized and defatted bone pulp called bone sludge, which was formed as waste in deproteinization process of bones, in which a protein hydrolysate was the main product. Hydroxyapatite was received in calcining process in chamber kiln with electric heating in air atmosphere in two stages. In the first stage, material was calcining in temperature 600°C within 3 hours. In the next stage unified material was calcining in three different temperatures (750°C, 850°C and 950°C) keeping material in maximum temperature within 3.0 hours. Bone sludge: Bone sludge was formed as waste in deproteinization process of bones, in which a protein hydrolysate was the main product. Pork bones coming from the partition of meat were used as a raw material for the production of the protein hydrolysate. After disintegration, a mixture of bone pulp and water with a small amount of lactic acid was boiled at temperature 130-135°C and under pressure4 bar. After 3-3.5 hours boiled-out bones were separated on a sieve, and the solution of protein-fat hydrolysate got into a decanter, where bone sludge was separated from it. Results of the study: The phase composition was analyzed by roentgenographic method. Hydroxyapatite was the only crystalline phase observed in all the calcining products. XRD investigation was shown that crystallization degree of hydroxyapatite was increased with calcining temperature. Conclusion: The researches were shown that phosphorus content is around 12%, whereas, calcium content amounts to 28% on average. The conducted researches on bone-waste calcining at the temperatures of 750-950°C confirmed that thermal utilization of deproteinized bone-waste was possible. X-ray investigations were confirmed that hydroxyapatite is the main component of calcining products, and also XRD investigation was shown that crystallization degree of hydroxyapatite was increased with calcining temperature. Contents of calcium and phosphorus were distinctly increased with calcining temperature, whereas contents of phosphorus soluble in acids were decreased. It could be connected with higher crystallization degree of material received in higher temperatures and its stable structure. Acknowledgements: “The authors would like to thank the The National Centre for Research and Development (Grant no: LIDER//037/481/L-5/13/NCBR/2014) for providing financial support to this project”.

Keywords: bone by-products, bone sludge, calcination, hydroxyapatite

Procedia PDF Downloads 266
193 Biodegradable Cross-Linked Composite Hydrogels Enriched with Small Molecule for Osteochondral Regeneration

Authors: Elena I. Oprita, Oana Craciunescu, Rodica Tatia, Teodora Ciucan, Reka Barabas, Orsolya Raduly, Anca Oancea

Abstract:

Healing of osteochondral defects requires repair of the damaged articular cartilage, the underlying subchondral bone and the interface between these tissues (the functional calcified layer). For this purpose, developing a single monophasic scaffold that can regenerate two specific lineages (cartilage and bone) becomes a challenge. The aim of this work was to develop variants of biodegradable cross-linked composite hydrogel based on natural polypeptides (gelatin), polysaccharides components (chondroitin-4-sulphate and hyaluronic acid), in a ratio of 2:0.08:0.02 (w/w/w) and mixed with Si-hydroxyapatite (Si-Hap), in two ratios of 1:1 and 2:1 (w/w). Si-Hap was synthesized and characterized as a better alternative to conventional Hap. Subsequently, both composite hydrogel variants were cross-linked with (N, N-(3-dimethylaminopropyl)-N-ethyl carbodiimide (EDC) and enriched with a small bioactive molecule (icariin). The small molecule icariin (Ica) (C33H40O15) is the main active constituent (flavonoid) of Herba epimedium used in traditional Chinese medicine to cure bone- and cartilage-related disorders. Ica enhances osteogenic and chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), facilitates matrix calcification and increases the specific extracellular matrix (ECM) components synthesis by chondrocytes. Afterward, the composite hydrogels were characterized for their physicochemical properties in terms of the enzymatic biodegradation in the presence of type I collagenase and trypsin, the swelling capacity and the degree of crosslinking (TNBS assay). The cumulative release of Ica and real-time concentration were quantified at predetermined periods of time, according to the standard curve of standard Ica, after hydrogels incubation in saline buffer at physiological parameters. The obtained cross-linked composite hydrogels enriched with small-molecule Ica were also characterized for morphology by scanning electron microscopy (SEM). Their cytocompatibility was evaluated according to EN ISO 10993-5:2009 standard for medical device testing. Thus, analyses regarding cell viability (Live/Dead assay), cell proliferation (Neutral Red assay) and cell adhesion to composite hydrogels (SEM) were performed using NCTC clone L929 cell line. The final results showed that both cross-linked composite hydrogel variants enriched with Ica presented optimal physicochemical, structural and biological properties to be used as a natural scaffold able to repair osteochondral defects. The data did not reveal any toxicity of composite hydrogels in NCTC stabilized cell lines within the tested range of concentrations. Moreover, cells were capable of spreading and proliferating on both composite hydrogel surfaces. In conclusion, the designed biodegradable cross-linked composites enriched with Si and Ica are recommended for further testing as natural temporary scaffolds, which can allow cell migration and synthesis of new extracellular matrix within osteochondral defects.

Keywords: composites, gelatin, osteochondral defect, small molecule

Procedia PDF Downloads 151
192 Co-Seismic Deformation Using InSAR Sentinel-1A: Case Study of the 6.5 Mw Pidie Jaya, Aceh, Earthquake

Authors: Jefriza, Habibah Lateh, Saumi Syahreza

Abstract:

The 2016 Mw 6.5 Pidie Jaya earthquake is one of the biggest disasters that has occurred in Aceh within the last five years. This earthquake has caused severe damage to many infrastructures such as schools, hospitals, mosques, and houses in the district of Pidie Jaya and surrounding areas. Earthquakes commonly occur in Aceh Province due to the Aceh-Sumatra is located in the convergent boundaries of the Sunda Plate subducted beneath the Indo-Australian Plate. This convergence is responsible for the intensification of seismicity in this region. The plates are tilted at a speed of 63 mm per year and the right lateral component is accommodated by strike- slip faulting within Sumatra, mainly along the great Sumatran fault. This paper presents preliminary findings of InSAR study aimed at investigating the co-seismic surface deformation pattern in Pidie Jaya, Aceh-Indonesia. Coseismic surface deformation is rapid displacement that occurs at the time of an earthquake. Coseismic displacement mapping is required to study the behavior of seismic faults. InSAR is a powerful tool for measuring Earth surface deformation to a precision of a few centimetres. In this study, two radar images of the same area but at two different times are required to detect changes in the Earth’s surface. The ascending and descending Sentinel-1A (S1A) synthetic aperture radar (SAR) data and Sentinels application platform (SNAP) toolbox were used to generate SAR interferogram image. In order to visualize the InSAR interferometric, the S1A from both master (26 Nov 2016) and slave data-sets (26 Dec 2016) were utilized as the main data source for mapping the coseismic surface deformation. The results show that the fringes of phase difference have appeared in the border region as a result of the movement that was detected with interferometric technique. On the other hand, the dominant fringes pattern also appears near the coastal area, this is consistent with the field investigations two days after the earthquake. However, the study has also limitations of resolution and atmospheric artefacts in SAR interferograms. The atmospheric artefacts are caused by changes in the atmospheric refractive index of the medium, as a result, has limitation to produce coherence image. Low coherence will be affected the result in creating fringes (movement can be detected by fringes). The spatial resolution of the Sentinel satellite has not been sufficient for studying land surface deformation in this area. Further studies will also be investigated using both ALOS and TerraSAR-X. ALOS and TerraSAR-X improved the spatial resolution of SAR satellite.

Keywords: earthquake, InSAR, interferometric, Sentinel-1A

Procedia PDF Downloads 175
191 Automatic Identification of Pectoral Muscle

Authors: Ana L. M. Pavan, Guilherme Giacomini, Allan F. F. Alves, Marcela De Oliveira, Fernando A. B. Neto, Maria E. D. Rosa, Andre P. Trindade, Diana R. De Pina

Abstract:

Mammography is a worldwide image modality used to diagnose breast cancer, even in asymptomatic women. Due to its large availability, mammograms can be used to measure breast density and to predict cancer development. Women with increased mammographic density have a four- to sixfold increase in their risk of developing breast cancer. Therefore, studies have been made to accurately quantify mammographic breast density. In clinical routine, radiologists perform image evaluations through BIRADS (Breast Imaging Reporting and Data System) assessment. However, this method has inter and intraindividual variability. An automatic objective method to measure breast density could relieve radiologist’s workload by providing a first aid opinion. However, pectoral muscle is a high density tissue, with similar characteristics of fibroglandular tissues. It is consequently hard to automatically quantify mammographic breast density. Therefore, a pre-processing is needed to segment the pectoral muscle which may erroneously be quantified as fibroglandular tissue. The aim of this work was to develop an automatic algorithm to segment and extract pectoral muscle in digital mammograms. The database consisted of thirty medio-lateral oblique incidence digital mammography from São Paulo Medical School. This study was developed with ethical approval from the authors’ institutions and national review panels under protocol number 3720-2010. An algorithm was developed, in Matlab® platform, for the pre-processing of images. The algorithm uses image processing tools to automatically segment and extract the pectoral muscle of mammograms. Firstly, it was applied thresholding technique to remove non-biological information from image. Then, the Hough transform is applied, to find the limit of the pectoral muscle, followed by active contour method. Seed of active contour is applied in the limit of pectoral muscle found by Hough transform. An experienced radiologist also manually performed the pectoral muscle segmentation. Both methods, manual and automatic, were compared using the Jaccard index and Bland-Altman statistics. The comparison between manual and the developed automatic method presented a Jaccard similarity coefficient greater than 90% for all analyzed images, showing the efficiency and accuracy of segmentation of the proposed method. The Bland-Altman statistics compared both methods in relation to area (mm²) of segmented pectoral muscle. The statistic showed data within the 95% confidence interval, enhancing the accuracy of segmentation compared to the manual method. Thus, the method proved to be accurate and robust, segmenting rapidly and freely from intra and inter-observer variability. It is concluded that the proposed method may be used reliably to segment pectoral muscle in digital mammography in clinical routine. The segmentation of the pectoral muscle is very important for further quantifications of fibroglandular tissue volume present in the breast.

Keywords: active contour, fibroglandular tissue, hough transform, pectoral muscle

Procedia PDF Downloads 324
190 Application of Multiwall Carbon Nanotubes with Anionic Surfactant to Cement Paste

Authors: Maciej Szelag

Abstract:

The discovery of the carbon nanotubes (CNT), has led to a breakthrough in the material engineering. The CNT is characterized by very large surface area, very high Young's modulus (about 2 TPa), unmatched durability, high tensile strength (about 50 GPa) and bending strength. Their diameter usually oscillates in the range from 1 to 100 nm, and the length from 10 nm to 10-2 m. The relatively new approach is the CNT’s application in the concrete technology. The biggest problem in the use of the CNT to cement composites is their uneven dispersion and low adhesion to the cement paste. Putting the nanotubes alone into the cement matrix does not produce any effect because they tend to agglomerate, due to their large surface area. Most often, the CNT is used as an aqueous suspension in the presence of a surfactant that has previously been sonicated. The paper presents the results of investigations of the basic physical properties (apparent density, shrinkage) and mechanical properties (compression and tensile strength) of cement paste with the addition of the multiwall carbon nanotubes (MWCNT). The studies were carried out on four series of specimens (made of two different Portland Cement). Within each series, samples were made with three w/c ratios – 0.4, 0.5, 0.6 (water/cement). Two series were an unmodified cement matrix. In the remaining two series, the MWCNT was added in amount of 0.1% by cement’s weight. The MWCNT was used as an aqueous dispersion in the presence of a surfactant – SDS – sodium dodecyl sulfate (C₁₂H₂₅OSO₂ONa). So prepared aqueous solution was sonicated for 30 minutes. Then the MWCNT aqueous dispersion and cement were mixed using a mechanical stirrer. The parameters were tested after 28 days of maturation. Additionally, the change of these parameters was determined after samples temperature loading at 250°C for 4 hours (thermal shock). Measurement of the apparent density indicated that cement paste with the MWCNT addition was about 30% lighter than conventional cement matrix. This is due to the fact that the use of the MWCNT water dispersion in the presence of surfactant in the form of SDS resulted in the formation of air pores, which were trapped in the volume of the material. SDS as an anionic surfactant exhibits characteristics specific to blowing agents – gaseous and foaming substances. Because of the increased porosity of the cement paste with the MWCNT, they have obtained lower compressive and tensile strengths compared to the cement paste without additive. It has been observed, however, that the smallest decreases in the compressive and tensile strength after exposure to the elevated temperature achieved samples with the MWCNT. The MWCNT (well dispersed in the cement matrix) can form bridges between hydrates in a nanoscale of the material’s structure. Thus, this may result in an increase in the coherent cohesion of the cement material subjected to a thermal shock. The obtained material could be used for the production of an aerated concrete or using lightweight aggregates for the production of a lightweight concrete.

Keywords: cement paste, elevated temperature, mechanical parameters, multiwall carbon nanotubes, physical parameters, SDS

Procedia PDF Downloads 331
189 Isolation and Transplantation of Hepatocytes in an Experimental Model

Authors: Inas Raafat, Azza El Bassiouny, Waldemar L. Olszewsky, Nagui E. Mikhail, Mona Nossier, Nora E. I. El-Bassiouni, Mona Zoheiry, Houda Abou Taleb, Noha Abd El-Aal, Ali Baioumy, Shimaa Attia

Abstract:

Background: Orthotopic liver transplantation is an established treatment for patients with severe acute and end-stage chronic liver disease. The shortage of donor organs continues to be the rate-limiting factor for liver transplantation throughout the world. Hepatocyte transplantation is a promising treatment for several liver diseases and can, also, be used as a "bridge" to liver transplantation in cases of liver failure. Aim of the work: This study was designed to develop a highly efficient protocol for isolation and transplantation of hepatocytes in experimental Lewis rat model to provide satisfactory guidelines for future application on humans.Materials and Methods: Hepatocytes were isolated from the liver by double perfusion technique and bone marrow cells were isolated by centrifugation of shafts of tibia and femur of donor Lewis rats. Recipient rats were subjected to sub-lethal dose of irradiation 2 days before transplantation. In a laparotomy operation the spleen was injected by freshly isolated hepatocytes and bone marrow cells were injected intravenously. The animals were sacrificed 45 day latter and splenic sections were prepared and stained with H & E, PAS AFP and Prox1. Results: The data obtained from this study showed that the double perfusion technique is successful in separation of hepatocytes regarding cell number and viability. Also the method used for bone marrow cells separation gave excellent results regarding cell number and viability. Intrasplenic engraftment of hepatocytes and live tissue formation within the splenic tissue were found in 70% of cases. Hematoxylin and eosin stained splenic sections from 7 rats showed sheets and clusters of cells among the splenic tissues. Periodic Acid Schiff stained splenic sections from 7 rats showed clusters of hepatocytes with intensely stained pink cytoplasmic granules denoting the presence of glycogen. Splenic sections from 7 rats stained with anti-α-fetoprotein antibody showed brownish cytoplasmic staining of the hepatocytes denoting positive expression of AFP. Splenic sections from 7 rats stained with anti-Prox1 showed brownish nuclear staining of the hepatocytes denoting positive expression of Prox1 gene on these cells. Also, positive expression of Prox1 gene was detected on lymphocytes aggregations in the spleens. Conclusions: Isolation of liver cells by double perfusion technique using collagenase buffer is a reliable method that has a very satisfactory yield regarding cell number and viability. The intrasplenic route of transplantation of the freshly isolated liver cells in an immunocompromised model was found to give good results regarding cell engraftment and tissue formation. Further studies are needed to assess function of engrafted hepatocytes by measuring prothrombin time, serum albumin and bilirubin levels.

Keywords: Lewis rats, hepatocytes, BMCs, transplantation, AFP, Prox1

Procedia PDF Downloads 287
188 Poly(Methyl Methacrylate) Degradation Products and Its in vitro Cytotoxicity Evaluation in NIH3T3 Cells

Authors: Lesly Y Carmona-Sarabia, Luisa Barraza-Vergara, Vilmalí López-Mejías, Wandaliz Torres-García, Maribella Domenech-Garcia, Madeline Torres-Lugo

Abstract:

Biosensors are used in many applications providing real-time monitoring to treat long-term conditions. Thus, understanding the physicochemical properties and biological side effects on the skin of polymers (e. g., poly(methyl methacrylate), PMMA) employed in the fabrication of wearable biosensors is crucial for the selection of manufacturing materials within this field. The PMMA (hydrophobic and thermoplastic polymer) is commonly employed as a coating material or substrate in the fabrication of wearable devices. The cytotoxicityof PMMA (including residual monomers or degradation products) on the skin, in terms of cells and tissue, is required to prevent possible adverse effects (cell death, skin reactions, sensitization) on human health. Within this work, accelerated aging of PMMA (Mw ~ 15000) through thermal and photochemical degradation was under-taken. The accelerated aging of PMMA was carried out by thermal (200°C, 1h) and photochemical degradation (UV-Vis, 8-15d) adapted employing ISO protocols (ISO-10993-12, ISO-4892-1:2016, ISO-877-1:2009, ISO-188: 2011). In addition, in vitro cytotoxicity evaluation of PMMA degradation products was performed using NIH3T3 fibroblast cells to assess the response of skin tissues (in terms of cell viability) exposed with polymers utilized to manufacture wearable biosensors, such as PMMA. The PMMA (Mw ~ 15000) before and after accelerated aging experiments was characterized by thermal gravimetric analysis (TGA), differential scanning calorimetric (DSC), powder X-ray diffractogram (PXRD), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) to determine and verify the successful degradation of this polymer under the specific conditions previously mention. The degradation products were characterized through nuclear magnetic resonance (NMR) to identify possible byproducts generated after the accelerated aging. Results demonstrated a percentage (%) weight loss between 1.5-2.2% (TGA thermographs) for PMMA after accelerated aging. The EDS elemental analysis reveals a 1.32 wt.% loss of carbon for PMMA after thermal degradation. These results might be associated with the amount (%) of PMMA degrade after the accelerated aging experiments. Furthermore, from the thermal degradation products was detected the presence of the monomer and methyl formate (low concentrations) and a low molecular weight radical (·COOCH3) in higher concentrations by NMR. In the photodegradation products, methyl formate was detected in higher concentrations. These results agree with the proposed thermal or photochemical degradation mechanisms found in the literature.1,2 Finally, significant cytotoxicity on the NIH3T3 cells was obtained for the thermal and photochemical degradation products. A decrease in cell viability by > 90% (stock solutions) was observed. It is proposed that the presence of byproducts (e.g. methyl formate or radicals such as ·COOCH₃) from the PMMA degradation might be responsible for the cytotoxicity observed in the NIH3T3 fibroblast cells. Additionally, experiments using skin models will be employed to compare with the NIH3T3 fibroblast cells model.

Keywords: biosensors, polymer, skin irritation, degradation products, cell viability

Procedia PDF Downloads 110
187 Epididymis in the Agouti (Dasyprocta azarae): Light Microscope Study

Authors: Bruno C. Schimming, Leandro L. Martins, PatríCia F. F. Pinheiro, Raquel F. Domeniconi, FabríCio S. Oliveira

Abstract:

The agouti is a wildlife rodent that can be used as an alternative source of animal protein and this species has been raised in captivity in Brazil with the aim of providing meat. Thus, the knowledge of their reproductive biology and morphology of the reproductive organs is important. The objective of this study was to describe the morphology of epididymis in the Azara’s agouti, by light microscopy. Samples of epididymis were obtained from five adult Azara’s agouti (Dasyprocta azarae) during castration surgery performed at the Municipal Zoo of Catanduva, Brazil. Fragments of the epididymal regions (initial segment, caput, corpus and cauda) were collected. The biological samples were immediately fixed in paraformaldehyde for 24 hours, followed by histologic procedures comprising embedding in ParaplastTM (Sigma, St. Louis, MO, USA), sections of 5 µm, and staining with HE and Masson’s trichrome. The epididymis was a highly convoluted tubule that links the testis to the vas deferens. The epithelium lining was pseudostratified columnar surrounded by a periductal stroma. The epithelium contains several cell types: principal, basal, apical, clear, and hallo cells. Principal cells were the most abundant cell type. There were observed also migratory cells named halo cells. The caput epididymis was divided into two different regions: initial segment and caput. The initial segment has a very wide lumen, a high epithelium with conspicuous microvilli and the lumen was wide with exfoliated material. The other region of the caput epididymis, showed a lower epithelium when compared with the initial segment, large amounts of spermatozoa in the lumen, and a cytoplasmic vacuolization. This region presented many narrows cells. Many spermatozoa appeared in the lumen of corpus epididymis. The cauda region had a lower epithelium than the other epididymal regions in the agouti. The cauda epithelium presented plicae protruding into the lumen. Large amounts of spermatozoa are also present in the lumen. Small microvilli uniformly arranged so as to form a kind of “brush border” are observed on the apical surface of the cauda epithelium. The pattern of the epithelium lining the duct of the agouti epididymis does not differ greatly from that reported to other mammals, such as domestic and wildlife animals. These findings can cooperate with future investigations especially those related to rational exploration of these animals. All experimental procedures were approved by the institutional ethics committee (CEUA 796/2015). This study was supported by FAPESP (Grants 2015/23822-1).

Keywords: wildlife, testis excurrent ducts, epididymis, morphology

Procedia PDF Downloads 209
186 Correlation between Visual Perception and Social Function in Patients with Schizophrenia

Authors: Candy Chieh Lee

Abstract:

Objective: The purpose of this study is to investigate the relationship between visual perception and social function in patients with schizophrenia. The specific aims are: 1) To explore performances in visual perception and social function in patients with schizophrenia 2) to examine the correlation between visual perceptual skills and social function in patients with schizophrenia The long-term goal is to be able to provide the most adequate intervention program for promoting patients’ visual perceptual skills and social function, as well as compensatory techniques. Background: Perceptual deficits in schizophrenia have been well documented in the visual system. Clinically, a considerable portion (up to 60%) of schizophrenia patients report distorted visual experiences such as visual perception of motion, color, size, and facial expression. Visual perception is required for the successful performance of most activities of daily living, such as dressing, making a cup of tea, driving a car and reading. On the other hand, patients with schizophrenia usually exhibit psychotic symptoms such as auditory hallucination and delusions which tend to alter their perception of reality and affect their quality of interpersonal relationship and limit their participation in various social situations. Social function plays an important role in the prognosis of patients with schizophrenia; lower social functioning skills can lead to poorer prognosis. Investigations on the relationship between social functioning and perceptual ability in patients with schizophrenia are relatively new but important as the results could provide information for effective intervention on visual perception and social functioning in patients with schizophrenia. Methods: We recruited 50 participants with schizophrenia in the mental health hospital (Taipei City Hospital, Songde branch, Taipei, Taiwan) acute ward. Participants who have signed consent forms, diagnosis of schizophrenia and having no organic vision deficits were included. Participants were administered the test of visual-perceptual skills (non-motor), third edition (TVPS-3) and the personal and social performance scale (PSP) for assessing visual perceptual skill and social function. The assessments will take about 70-90 minutes to complete. Data Analysis: The IBM SPSS 21.0 will be used to perform the statistical analysis. First, descriptive statistics will be performed to describe the characteristics and performance of the participants. Lastly, Pearson correlation will be computed to examine the correlation between PSP and TVPS-3 scores. Results: Significant differences were found between the means of participants’ TVPS-3 raw scores of each subtest with the age equivalent raw score provided by the TVPS-3 manual. Significant correlations were found between all 7 subtests of TVPS-3 and PSP total score. Conclusions: The results showed that patients with schizophrenia do exhibit visual perceptual deficits and is correlated social functions. Understanding these facts of patients with schizophrenia can assist health care professionals in designing and implementing adequate rehabilitative treatment according to patients’ needs.

Keywords: occupational therapy, social function, schizophrenia, visual perception

Procedia PDF Downloads 111
185 Harnessing Nature's Fury: Hyptis Suaveolens Loaded Bioactive Liposome for Photothermal Therapy of Lung Cancer

Authors: Sajmina Khatun, Monika Pebam, Aravind Kumar Rengan

Abstract:

Photothermal therapy, a subset of nanomedicine, takes advantage of light-absorbing agents to generate localized heat, selectively eradicating cancer cells. This innovative approach minimizes damage to healthy tissues and offers a promising avenue for targeted cancer treatment. Unlike conventional therapies, photothermal therapy harnesses the power of light to combat malignancies precisely and effectively, showcasing its potential to revolutionize cancer treatment paradigms. The combined strengths of nanomedicine and photothermal therapy signify a transformative shift toward more effective, targeted, and tolerable cancer treatments in the medical landscape. Utilizing natural products becomes instrumental in formulating diverse bioactive medications owing to their various pharmacological properties attributed to the existence of phenolic structures, triterpenoids, and similar compounds. Hyptis suaveolens, commonly known as pignut, stands as an aromatic herb within the Lamiaceae family and represents a valuable therapeutic plant. Flourishing in swamps and alongside tropical and subtropical roadsides, these noxious weeds impede the development of adjacent plants. Hyptis suaveolens ranks among the most globally distributed alien invasive species. The present investigation revealed that a versatile, biodegradable liposome nanosystem (HIL NPs), incorporating bioactive molecules from Hyptis suaveolens, exhibits effective bioavailability to cancer cells, enabling tumor ablation upon near-infrared (NIR) laser exposure. The components within the nanosystem, specifically the bioactive molecules from Hyptis, function as anticancer agents, aiding in the photothermal ablation of highly metastatic lung cancer cells. Despite being a prolific weed impeding neighboring plant growth, Hyptis suaveolens showcases therapeutic benefits through its bioactive compounds. The obtained HIL NPs, characterized as a photothermally active liposome nanosystem, demonstrate a pronounced fluorescence absorption peak in the NIR range and achieve a high photothermal conversion efficiency under NIR laser irradiation. Transmission electron microscopy (TEM) and particle size analysis reveal that HIL NPs possess a spherical shape with a size of 141 ± 30 nm. Moreover, in vitro assessments of HIL NPs against lung cancer cell lines (A549) indicate effective anticancer activity through a combined cytotoxic effect and hyperthermia. Tumor ablation is facilitated by apoptosis induced by the overexpression of ɣ-H2AX, arresting cancer cell proliferation. Consequently, the multifunctional and biodegradable nanosystem (HIL NPs), incorporating bioactive compounds from Hyptis, provides valuable perspectives for developing an innovative therapeutic strategy originating from a challenging weed. This approach holds promise for potential applications in both bioimaging and the combined use of phyto-photothermal therapy for cancer treatment.

Keywords: bioactive liposome, hyptis suaveolens, photothermal therapy, lung cancer

Procedia PDF Downloads 59
184 A Dynamic Mechanical Thermal T-Peel Test Approach to Characterize Interfacial Behavior of Polymeric Textile Composites

Authors: J. R. Büttler, T. Pham

Abstract:

Basic understanding of interfacial mechanisms is of importance for the development of polymer composites. For this purpose, we need techniques to analyze the quality of interphases, their chemical and physical interactions and their strength and fracture resistance. In order to investigate the interfacial phenomena in detail, advanced characterization techniques are favorable. Dynamic mechanical thermal analysis (DMTA) using a rheological system is a sensitive tool. T-peel tests were performed with this system, to investigate the temperature-dependent peel behavior of woven textile composites. A model system was made of polyamide (PA) woven fabric laminated with films of polypropylene (PP) or PP modified by grafting with maleic anhydride (PP-g-MAH). Firstly, control measurements were performed with solely PP matrixes. Polymer melt investigations, as well as the extensional stress, extensional viscosity and extensional relaxation modulus at -10°C, 100 °C and 170 °C, demonstrate similar viscoelastic behavior for films made of PP-g-MAH and its non-modified PP-control. Frequency sweeps have shown that PP-g-MAH has a zero phase viscosity of around 1600 Pa·s and PP-control has a similar zero phase viscosity of 1345 Pa·s. Also, the gelation points are similar at 2.42*104 Pa (118 rad/s) and 2.81*104 Pa (161 rad/s) for PP-control and PP-g-MAH, respectively. Secondly, the textile composite was analyzed. The extensional stress of PA66 fabric laminated with either PP-control or PP-g-MAH at -10 °C, 25 °C and 170 °C for strain rates of 0.001 – 1 s-1 was investigated. The laminates containing the modified PP need more stress for T-peeling. However, the strengthening effect due to the modification decreases by increasing temperature and at 170 °C, just above the melting temperature of the matrix, the difference disappears. Independent of the matrix used in the textile composite, there is a decrease of extensional stress by increasing temperature. It appears that the more viscous is the matrix, the weaker the laminar adhesion. Possibly, the measurement is influenced by the fact that the laminate becomes stiffer at lower temperatures. Adhesive lap-shear testing at room temperature supports the findings obtained with the T-peel test. Additional analysis of the textile composite at the microscopic level ensures that the fibers are well embedded in the matrix. Atomic force microscopy (AFM) imaging of a cross section of the composite shows no gaps between the fibers and matrix. Measurements of the water contact angle show that the MAH grafted PP is more polar than the virgin-PP, and that suggests a more favorable chemical interaction of PP-g-MAH with PA, compared to the non-modified PP. In fact, this study indicates that T-peel testing by DMTA is a technique to achieve more insights into polymeric textile composites.

Keywords: dynamic mechanical thermal analysis, interphase, polyamide, polypropylene, textile composite

Procedia PDF Downloads 107
183 The Relationship between Osteoporosis-Related Knowledge and Physical Activity among Women Age over 50 Years

Authors: P. Tardi, B. Szilagyi, A. Makai, P. Acs, M. Hock, M. Jaromi

Abstract:

Osteoporosis is becoming a major public health problem, particularly in postmenopausal women, as the incidence of this disease is getting higher. Nowadays, one of the most common chronic musculoskeletal diseases is osteoporosis. Osteoporosis-related knowledge is an important contributor to prevent or to treat osteoporosis. The most important strategies to prevent or treat the disease are increasing the level of physical activity at all ages, cessation of smoking, reduction of alcohol consumption, adequate dietary calcium, and vitamin D intake. The aim of the study was to measure the osteoporosis-related knowledge and physical activity among women age over 50 years. For the measurements, we used the osteoporosis questionnaire (OPQ) to examine the disease-specific knowledge and the global physical activity questionnaire (GPAQ) to measure the quantity and quality of the physical activity. The OPQ is a self-administered 20-item questionnaire with five categories: general information, risk factors, investigations, consequences, and treatment. There are four choices per question (one of them is the 'I do not know'). The filler gets +1 for a good answer, -1 point for a bad answer, and 0 for 'I do not know' answer. We contacted with 326 women (63.08 ± 9.36 year) to fill out the questionnaires. Descriptive analysis was carried out, and we calculated Spearman's correlation coefficient to examine the relationship between the variables. Data were entered into Microsoft Excel, and all statistical analyses were performed using SPSS (Version 24). The participants of the study (n=326) reached 8.76 ± 6.94 points on OPQ. Significant (p < 0.001) differences were found in the results of OPQ according to the highest level of education. It was observed that the score of the participants with osteoporosis (10.07 ± 6.82 points) was significantly (p=0.003) higher than participants without osteoporosis (9.38 ± 6.66 points) and the score of those women (6.49 ± 6.97 points) who did not know that osteoporosis exists in their case. The GPAQ results showed the sample physical activity in the dimensions of vigorous work (479.86 ± 684.02 min/week); moderate work (678.16 ± 804.5 min/week); travel (262.83 ± 380.27 min/week); vigorous recreation (77.71 ± 123.46 min/week); moderate recreation (115.15 ± 154.82 min/week) and total weekly physical activity (1645.99 ± 1432.88 min/week). Significant correlations were found between the osteoporosis-related knowledge and the physical activity in travel (R=0.21; p < 0.001), vigorous recreation (R=0.35; p < 0.001), moderate recreation (R=0.35; p < 0.001), total vigorous minutes/week (R=0.15; p=0.001) and total moderate minutes/week (R=0.13; p=0.04) dimensions. According to the results that were achieved, the highest level of education significantly determines osteoporosis-related knowledge. Physical activity is an important contributor to prevent or to treat osteoporosis, and it showed a significant correlation with osteoporosis-related knowledge. Based on the results, the development of osteoporosis-related knowledge may help to improve the level of physical activity, especially recreation. Acknowledgment: Supported by the ÚNKP-20-1 New National Excellence Program of The Ministry for Innovation and Technology from the Source of the National Research, Development and Innovation Fund.

Keywords: osteoporosis, osteoporosis-related knowledge, physical activity, prevention

Procedia PDF Downloads 87
182 Single Pass Design of Genetic Circuits Using Absolute Binding Free Energy Measurements and Dimensionless Analysis

Authors: Iman Farasat, Howard M. Salis

Abstract:

Engineered genetic circuits reprogram cellular behavior to act as living computers with applications in detecting cancer, creating self-controlling artificial tissues, and dynamically regulating metabolic pathways. Phenemenological models are often used to simulate and design genetic circuit behavior towards a desired behavior. While such models assume that each circuit component’s function is modular and independent, even small changes in a circuit (e.g. a new promoter, a change in transcription factor expression level, or even a new media) can have significant effects on the circuit’s function. Here, we use statistical thermodynamics to account for the several factors that control transcriptional regulation in bacteria, and experimentally demonstrate the model’s accuracy across 825 measurements in several genetic contexts and hosts. We then employ our first principles model to design, experimentally construct, and characterize a family of signal amplifying genetic circuits (genetic OpAmps) that expand the dynamic range of cell sensors. To develop these models, we needed a new approach to measuring the in vivo binding free energies of transcription factors (TFs), a key ingredient of statistical thermodynamic models of gene regulation. We developed a new high-throughput assay to measure RNA polymerase and TF binding free energies, requiring the construction and characterization of only a few constructs and data analysis (Figure 1A). We experimentally verified the assay on 6 TetR-homolog repressors and a CRISPR/dCas9 guide RNA. We found that our binding free energy measurements quantitatively explains why changing TF expression levels alters circuit function. Altogether, by combining these measurements with our biophysical model of translation (the RBS Calculator) as well as other measurements (Figure 1B), our model can account for changes in TF binding sites, TF expression levels, circuit copy number, host genome size, and host growth rate (Figure 1C). Model predictions correctly accounted for how these 8 factors control a promoter’s transcription rate (Figure 1D). Using the model, we developed a design framework for engineering multi-promoter genetic circuits that greatly reduces the number of degrees of freedom (8 factors per promoter) to a single dimensionless unit. We propose the Ptashne (Pt) number to encapsulate the 8 co-dependent factors that control transcriptional regulation into a single number. Therefore, a single number controls a promoter’s output rather than these 8 co-dependent factors, and designing a genetic circuit with N promoters requires specification of only N Pt numbers. We demonstrate how to design genetic circuits in Pt number space by constructing and characterizing 15 2-repressor OpAmp circuits that act as signal amplifiers when within an optimal Pt region. We experimentally show that OpAmp circuits using different TFs and TF expression levels will only amplify the dynamic range of input signals when their corresponding Pt numbers are within the optimal region. Thus, the use of the Pt number greatly simplifies the genetic circuit design, particularly important as circuits employ more TFs to perform increasingly complex functions.

Keywords: transcription factor, synthetic biology, genetic circuit, biophysical model, binding energy measurement

Procedia PDF Downloads 447
181 Anti-tuberculosis, Resistance Modulatory, Anti-pulmonary Fibrosis and Anti-silicosis Effects of Crinum Asiaticum Bulbs and Its Active Metabolite, Betulin

Authors: Theophilus Asante, Comfort Nyarko, Daniel Antwi

Abstract:

Drug-resistant tuberculosis, together with the associated comorbidities like pulmonary fibrosis and silicosis, has been one of the most serious global public health threats that requires immediate action to curb or mitigate it. This prolongs hospital stays, increases the cost of medication, and increases the death toll recorded annually. Crinum asiaticum bulb (CAE) and betulin (BET) are known for their biological and pharmacological effects. Pharmacological effects reported on CAE include antimicrobial, anti-inflammatory, anti-pyretic, anti-analgesic, and anti-cancer effects. Betulin has exhibited a multitude of powerful pharmacological properties ranging from antitumor, anti-inflammatory, anti-parasitic, anti-microbial, and anti-viral activities. This work sought to investigate the anti-tuberculosis and resistant modulatory effects and also assess their effects on mitigating pulmonary fibrosis and silicosis. In the anti-tuberculosis and resistant modulatory effects, both CAE and BET showed strong antimicrobial activities (31.25 ≤ MIC ≤ 500) µg/ml against the studied microorganisms and also produced significant anti-efflux pump and biofilm inhibitory effects (ρ < 0.0001) as well as exhibiting resistance modulatory and synergistic effects when combined with standard antibiotics. Crinum asiaticum bulbs extract and betulin were shown to possess anti-pulmonary fibrosis effects. There was an increased survival rate in the CAE and BET treatment groups compared to the BLM-induced group. There was a marked decrease in the levels of hydroxyproline and collagen I and III in the CAE and BET treatment groups compared to the BLM-treated group. The treatment groups of CAE and BET significantly downregulated the levels of pro-fibrotic and pro-inflammatory cytokine concentrations such as TGF-β1, MMP9, IL-6, IL-1β and TNF-alpha compared to an increase in the BLM-treated groups. The histological findings of the lungs suggested the curative effects of CAE and BET following BLM-induced pulmonary fibrosis in mice. The study showed improved lung functions with a wide focal area of viable alveolar spaces and few collagen fibers deposition on the lungs of the treatment groups. In the anti-silicosis and pulmonoprotective effects of CAE and BET, the levels of NF-κB, TNF-α, IL-1β, IL-6 and hydroxyproline, collagen types I and III were significantly reduced by CAE and BET (ρ < 0.0001). Both CAE and BET significantly (ρ < 0.0001) inhibited the levels of hydroxyproline, collagen I and III when compared with the negative control group. On BALF biomarkers such as macrophages, lymphocytes, monocytes, and neutrophils, CAE and BET were able to reduce their levels significantly (ρ < 0.0001). The CAE and BET were examined for anti-oxidant activity and shown to raise the levels of catalase (CAT) and superoxide dismutase (SOD) while lowering the level of malondialdehyde (MDA). There was an improvement in lung function when lung tissues were examined histologically. Crinum asiaticum bulbs extract and betulin were discovered to exhibit anti-tubercular and resistance-modulatory properties, as well as the capacity to minimize TB comorbidities such as pulmonary fibrosis and silicosis. In addition, CAE and BET may act as protective mechanisms, facilitating the preservation of the lung's physiological integrity. The outcomes of this study might pave the way for the development of leads for producing single medications for the management of drug-resistant tuberculosis and its accompanying comorbidities.

Keywords: fibrosis, crinum, tuberculosis, antiinflammation, drug resistant

Procedia PDF Downloads 57
180 Implementation of Synthesis and Quality Control Procedures of ¹⁸F-Fluoromisonidazole Radiopharmaceutical

Authors: Natalia C. E. S. Nascimento, Mercia L. Oliveira, Fernando R. A. Lima, Leonardo T. C. do Nascimento, Marina B. Silveira, Brigida G. A. Schirmer, Andrea V. Ferreira, Carlos Malamut, Juliana B. da Silva

Abstract:

Tissue hypoxia is a common characteristic of solid tumors leading to decreased sensitivity to radiotherapy and chemotherapy. In the clinical context, tumor hypoxia assessment employing the positron emission tomography (PET) tracer ¹⁸F-fluoromisonidazole ([¹⁸F]FMISO) is helpful for physicians for planning and therapy adjusting. The aim of this work was to implement the synthesis of 18F-FMISO in a TRACERlab® MXFDG module and also to establish the quality control procedure. [¹⁸F]FMISO was synthesized at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN/Brazil) using an automated synthesizer (TRACERlab® MXFDG, GE) adapted for the production of [¹⁸F]FMISO. The FMISO chemical standard was purchased from ABX. 18O- enriched water was acquired from Center of Molecular Research. Reagent kits containing eluent solution, acetonitrile, ethanol, 2.0 M HCl solution, buffer solution, water for injections and [¹⁸F]FMISO precursor (dissolved in 2 ml acetonitrile) were purchased from ABX. The [¹⁸F]FMISO samples were purified by Solid Phase Extraction method. The quality requirements of [¹⁸F]FMISO are established in the European Pharmacopeia. According to that reference, quality control of [¹⁸F]FMISO should include appearance, pH, radionuclidic identity and purity, radiochemical identity and purity, chemical purity, residual solvents, bacterial endotoxins, and sterility. The duration of the synthesis process was 53 min, with radiochemical yield of (37.00 ± 0.01) % and the specific activity was more than 70 GBq/µmol. The syntheses were reproducible and showed satisfactory results. In relation to the quality control analysis, the samples were clear and colorless at pH 6.0. The spectrum emission, measured by using a High-Purity Germanium Detector (HPGe), presented a single peak at 511 keV and the half-life, determined by the decay method in an activimeter, was (111.0 ± 0.5) min, indicating no presence of radioactive contaminants, besides the desirable radionuclide (¹⁸F). The samples showed concentration of tetrabutylammonium (TBA) < 50μg/mL, assessed by visual comparison to TBA standard applied in the same thin layer chromatographic plate. Radiochemical purity was determined by high performance liquid chromatography (HPLC) and the results were 100%. Regarding the residual solvents tested, ethanol and acetonitrile presented concentration lower than 10% and 0.04%, respectively. Healthy female mice were injected via lateral tail vein with [¹⁸F]FMISO, microPET imaging studies (15 min) were performed after 2 h post injection (p.i), and the biodistribution was analyzed in five-time points (30, 60, 90, 120 and 180 min) after injection. Subsequently, organs/tissues were assayed for radioactivity with a gamma counter. All parameters of quality control test were in agreement to quality criteria confirming that [¹⁸F]FMISO was suitable for use in non-clinical and clinical trials, following the legal requirements for the production of new radiopharmaceuticals in Brazil.

Keywords: automatic radiosynthesis, hypoxic tumors, pharmacopeia, positron emitters, quality requirements

Procedia PDF Downloads 170