Search results for: tension band wiring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1591

Search results for: tension band wiring

241 Hansen Solubility Parameter from Surface Measurements

Authors: Neveen AlQasas, Daniel Johnson

Abstract:

Membranes for water treatment are an established technology that attracts great attention due to its simplicity and cost effectiveness. However, membranes in operation suffer from the adverse effect of membrane fouling. Bio-fouling is a phenomenon that occurs at the water-membrane interface, and is a dynamic process that is initiated by the adsorption of dissolved organic material, including biomacromolecules, on the membrane surface. After initiation, attachment of microorganisms occurs, followed by biofilm growth. The biofilm blocks the pores of the membrane and consequently results in reducing the water flux. Moreover, the presence of a fouling layer can have a substantial impact on the membrane separation properties. Understanding the mechanism of the initiation phase of biofouling is a key point in eliminating the biofouling on membrane surfaces. The adhesion and attachment of different fouling materials is affected by the surface properties of the membrane materials. Therefore, surface properties of different polymeric materials had been studied in terms of their surface energies and Hansen solubility parameters (HSP). The difference between the combined HSP parameters (HSP distance) allows prediction of the affinity of two materials to each other. The possibilities of measuring the HSP of different polymer films via surface measurements, such as contact angle has been thoroughly investigated. Knowing the HSP of a membrane material and the HSP of a specific foulant, facilitate the estimation of the HSP distance between the two, and therefore the strength of attachment to the surface. Contact angle measurements using fourteen different solvents on five different polymeric films were carried out using the sessile drop method. Solvents were ranked as good or bad solvents using different ranking method and ranking was used to calculate the HSP of each polymeric film. Results clearly indicate the absence of a direct relation between contact angle values of each film and the HSP distance between each polymer film and the solvents used. Therefore, estimating HSP via contact angle alone is not sufficient. However, it was found if the surface tensions and viscosities of the used solvents are taken in to the account in the analysis of the contact angle values, a prediction of the HSP from contact angle measurements is possible. This was carried out via training of a neural network model. The trained neural network model has three inputs, contact angle value, surface tension and viscosity of solvent used. The model is able to predict the HSP distance between the used solvent and the tested polymer (material). The HSP distance prediction is further used to estimate the total and individual HSP parameters of each tested material. The results showed an accuracy of about 90% for all the five studied films

Keywords: surface characterization, hansen solubility parameter estimation, contact angle measurements, artificial neural network model, surface measurements

Procedia PDF Downloads 61
240 Detailed Analysis of Mechanism of Crude Oil and Surfactant Emulsion

Authors: Riddhiman Sherlekar, Umang Paladia, Rachit Desai, Yash Patel

Abstract:

A number of surfactants which exhibit ultra-low interfacial tension and an excellent microemulsion phase behavior with crude oils of low to medium gravity are not sufficiently soluble at optimum salinity to produce stable aqueous solutions. Such solutions often show phase separation after a few days at reservoir temperature, which does not suffice the purpose and the time is short when compared to the residence time in a reservoir for a surfactant flood. The addition of polymer often exacerbates the problem although the poor stability of the surfactant at high salinity remains a pivotal issue. Surfactants such as SDS, Ctab with large hydrophobes produce lowest IFT, but are often not sufficiently water soluble at desired salinity. Hydrophilic co-solvents and/or co-surfactants are needed to make the surfactant-polymer solution stable at the desired salinity. This study focuses on contrasting the effect of addition of a co-solvent in stability of a surfactant –oil emulsion. The idea is to use a co-surfactant to increase stability of an emulsion. Stability of the emulsion is enhanced because of creation of micro-emulsion which is verified both visually and with the help of particle size analyzer at varying concentration of salinity, surfactant and co-surfactant. A lab-experimental method description is provided and the method is described in detail to permit readers to emulate all results. The stability of the oil-water emulsion is visualized with respect to time, temperature, salinity of the brine and concentration of the surfactant. Nonionic surfactant TX-100 when used as a co-surfactant increases the stability of the oil-water emulsion. The stability of the prepared emulsion is checked by observing the particle size distribution. For stable emulsion in volume% vs particle size curve, the peak should be obtained for particle size of 5-50 nm while for the unstable emulsion a bigger sized particles are observed. The UV-Visible spectroscopy is also used to visualize the fraction of oil that plays important role in the formation of micelles in stable emulsion. This is important as the study will help us to decide applicability of the surfactant based EOR method for a reservoir that contains a specific type of crude. The use of nonionic surfactant as a co-surfactant would also increase the efficiency of surfactant EOR. With the decline in oil discoveries during the last decades it is believed that EOR technologies will play a key role to meet the energy demand in years to come. Taking this into consideration, the work focuses on the optimization of the secondary recovery(Water flooding) with the help of surfactant and/or co-surfactants by creating desired conditions in the reservoir.

Keywords: co-surfactant, enhanced oil recovery, micro-emulsion, surfactant flooding

Procedia PDF Downloads 222
239 DNA Fingerprinting of Some Major Genera of Subterranean Termites (Isoptera) (Anacanthotermes, Psammotermes and Microtermes) from Western Saudi Arabia

Authors: AbdelRahman A. Faragalla, Mohamed H. Alqhtani, Mohamed M. M.Ahmed

Abstract:

Saudi Arabia has currently been beset by a barrage of bizarre assemblages of subterranean termite fauna, inflicting heavy catastrophic havocs on human valued properties in various homes, storage facilities, warehouses, agricultural and horticultural crops including okra, sweet pepper, tomatoes, sorghum, date palm trees, citruses and many forest domains and green lush desert oases. The most pressing urgent priority is to use modern technologies to alleviate the painstaking obstacle of taxonomic identification of these injurious noxious pests that might lead to effective pest control in both infested agricultural commodities and field crops. Our study has indicated the use of DNA fingerprinting technologies, in order to generate basic information of the genetic similarity between 3 predominant families containing the most destructive termite species. The methodologies included extraction and DNA isolation from members of the major families and the use of randomly selected primers and PCR amplifications with the nucleotide sequences. GC content and annealing temperatures for all primers, PCR amplifications and agarose gel electrophoresis were also conducted in addition to the scoring and analysis of Random Amplification Polymorphic DNA-PCR (RAPDs). A phylogenetic analysis for different species using statistical computer program on the basis of RAPD-DNA results, represented as a dendrogram based on the average of band sharing ratio between different species. Our study aims to shed more light on this intriguing subject, which may lead to an expedited display of the kinship and relatedness of species in an ambitious undertaking to arrive at correct taxonomic classification of termite species, discover sibling species, so that a logistic rational pest management strategy could be delineated.

Keywords: DNA fingerprinting, Western Saudi Arabia, DNA primers, RAPD

Procedia PDF Downloads 396
238 Performance Assessment of Carrier Aggregation-Based Indoor Mobile Networks

Authors: Viktor R. Stoynov, Zlatka V. Valkova-Jarvis

Abstract:

The intelligent management and optimisation of radio resource technologies will lead to a considerable improvement in the overall performance in Next Generation Networks (NGNs). Carrier Aggregation (CA) technology, also known as Spectrum Aggregation, enables more efficient use of the available spectrum by combining multiple Component Carriers (CCs) in a virtual wideband channel. LTE-A (Long Term Evolution–Advanced) CA technology can combine multiple adjacent or separate CCs in the same band or in different bands. In this way, increased data rates and dynamic load balancing can be achieved, resulting in a more reliable and efficient operation of mobile networks and the enabling of high bandwidth mobile services. In this paper, several distinct CA deployment strategies for the utilisation of spectrum bands are compared in indoor-outdoor scenarios, simulated via the recently-developed Realistic Indoor Environment Generator (RIEG). We analyse the performance of the User Equipment (UE) by integrating the average throughput, the level of fairness of radio resource allocation, and other parameters, into one summative assessment termed a Comparative Factor (CF). In addition, comparison of non-CA and CA indoor mobile networks is carried out under different load conditions: varying numbers and positions of UEs. The experimental results demonstrate that the CA technology can improve network performance, especially in the case of indoor scenarios. Additionally, we show that an increase of carrier frequency does not necessarily lead to improved CF values, due to high wall-penetration losses. The performance of users under bad-channel conditions, often located in the periphery of the cells, can be improved by intelligent CA location. Furthermore, a combination of such a deployment and effective radio resource allocation management with respect to user-fairness plays a crucial role in improving the performance of LTE-A networks.

Keywords: comparative factor, carrier aggregation, indoor mobile network, resource allocation

Procedia PDF Downloads 155
237 Multifunctional Plasmonic Ag-TiO2 Nano-biocompoistes: Surface Enhanced Raman Scattering and Anti-microbial Properties

Authors: Jai Prakash, Promod Kumar, Chantel Swart, J. H. Neethling, A. Janse van Vuuren, H. C. Swart

Abstract:

Ag nanoparticles (NPs) have been used as functional nanomaterials due to their optical and antibacterial properties. Similarly, TiO2 photocatalysts have also been used as suitable nanomaterials for killing cancer cells, viruses and bacteria. Here, we report on multifunctional plasmonic Ag-TiO2 nano-biocomposite synthesized by the sol-gel technique and their optical, surface enhanced Raman scattering (SERS) and antibacterial activities. The as-prepared composites of Ag–TiO2 with different silver content and TiO2 nanopowder were characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersed X-ray analysis (EDX), UV-vis and Raman spectroscopy. The Ag NPs were found to be uniformly distributed and strongly attached to the TiO2 matrix. The novel optical response of the Ag-TiO2 nanocomposites is due to the strong electric field from the surface plasmon excitation of the Ag NPs. The Raman spectrum of Ag-TiO2 nanocomposite was found to be enhanced as compared to TiO2. The enhancement of the low frequency band is evident. This indicates the SERS effect of the TiO2 NPs in close vicinity of Ag NPs. In addition, nanocomposites showed enhancement in the SERS signals of methyl orange (MO) dye molecules with increasing Ag content. The localized electromagnetic field from the surface plasmon excitation of the Ag NPs was responsible for the SERS signals of the TiO2 NPs and MO molecules. The antimicrobial effect of the Ag–TiO2 nanocomposites with different silver content and TiO2 nanopowder were carried out against the bacterium Staphylococcus aureus. The Ag–TiO2 composites showed antibacterial activity towards S. aureus with increasing Ag content as compared to the TiO2 nanopowder. These results foresee promising applications of the functional plasmonic metal−semiconductor based nanobiocomposites for both chemical and biological samples.

Keywords: metal-Semiconductor, nano-Biocomposites, anti-microbial activity, surface enhanced Raman scattering

Procedia PDF Downloads 210
236 Structural Properties of Surface Modified PVA: Zn97Pr3O Polymer Nanocomposite Free Standing Films

Authors: Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian, Héctor D. Mansilla, José Ruiz

Abstract:

Rare earth ions doped semiconductor nanostructures gained much attention due to their novel physical and chemical properties which lead to potential applications in laser technology as inexpensive luminescent materials. Doping of rare earth ions into ZnO semiconductor alter its electronic structure and emission properties. Surface modification (polymer covering) is one of the simplest techniques to modify the emission characteristics of host materials. The present work reports the synthesis and structural properties of PVA:Zn97Pr3O polymer nanocomposite free standing films. To prepare Pr3+ doped ZnO nanostructures and PVA:Zn97Pr3O polymer nanocomposite free standing films, the colloidal chemical and solution casting techniques were adopted, respectively. The formation of PVA:Zn97Pr3O films were confirmed through X-ray diffraction (XRD), absorption and Fourier transform infrared (FTIR) spectroscopy analyses. XRD measurements confirm the prepared materials are crystalline having hexagonal wurtzite structure. Polymer composite film exhibits the diffraction peaks of both PVA and ZnO structures. TEM images reveal the pure and Pr3+ doped ZnO nanostructures exhibit sheet like morphology. Optical absorption spectra show free excitonic absorption band of ZnO at 370 nm and, the PVA:Zn97Pr3O polymer film shows absorption bands at ~282 and 368 nm and these arise due to the presence of carbonyl containing structures connected to the PVA polymeric chains, mainly at the ends and free excitonic absorption of ZnO nanostructures, respectively. Transmission spectrum of as prepared film shows 57 to 69% of transparency in the visible and near IR region. FTIR spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.

Keywords: rare earth doped ZnO, polymer composites, structural characterization, surface modification

Procedia PDF Downloads 342
235 Level Set Based Extraction and Update of Lake Contours Using Multi-Temporal Satellite Images

Authors: Yindi Zhao, Yun Zhang, Silu Xia, Lixin Wu

Abstract:

The contours and areas of water surfaces, especially lakes, often change due to natural disasters and construction activities. It is an effective way to extract and update water contours from satellite images using image processing algorithms. However, to produce optimal water surface contours that are close to true boundaries is still a challenging task. This paper compares the performances of three different level set models, including the Chan-Vese (CV) model, the signed pressure force (SPF) model, and the region-scalable fitting (RSF) energy model for extracting lake contours. After experiment testing, it is indicated that the RSF model, in which a region-scalable fitting (RSF) energy functional is defined and incorporated into a variational level set formulation, is superior to CV and SPF, and it can get desirable contour lines when there are “holes” in the regions of waters, such as the islands in the lake. Therefore, the RSF model is applied to extracting lake contours from Landsat satellite images. Four temporal Landsat satellite images of the years of 2000, 2005, 2010, and 2014 are used in our study. All of them were acquired in May, with the same path/row (121/036) covering Xuzhou City, Jiangsu Province, China. Firstly, the near infrared (NIR) band is selected for water extraction. Image registration is conducted on NIR bands of different temporal images for information update, and linear stretching is also done in order to distinguish water from other land cover types. Then for the first temporal image acquired in 2000, lake contours are extracted via the RSF model with initialization of user-defined rectangles. Afterwards, using the lake contours extracted the previous temporal image as the initialized values, lake contours are updated for the current temporal image by means of the RSF model. Meanwhile, the changed and unchanged lakes are also detected. The results show that great changes have taken place in two lakes, i.e. Dalong Lake and Panan Lake, and RSF can actually extract and effectively update lake contours using multi-temporal satellite image.

Keywords: level set model, multi-temporal image, lake contour extraction, contour update

Procedia PDF Downloads 340
234 A Systematic Approach to Defeat Regional Terrorism and Political Violence in Pakistan: Prospects of Youth Employment through China-Pakistan Economic Corridor

Authors: Muhammad Imran

Abstract:

In recent times, terrorism has been a major area of concern globally. Terrorism is ranked the number one concern across many countries, followed by political violence and poverty. The natural response to terrorism and violence across the countries is to increase expenditure on counterterrorism. This project study aims to explore the importance of job creation through the China-Pakistan Economic Corridor (a leading mega-project of the Belt and Road Initiative) to help Pakistan’s socio-economic situation and lead to minimize terrorism and violence across the country and help Chinese companies complete their multi-billion dollar projects peacefully. During the last two decades, Pakistan has been through severe insurgencies, political violence, and terrorism, which also caused a disturbance in delaying many developmental projects, including the CPEC project, and killed dozens of Chinese citizens working in Pakistan. One major area of debate is whether or not economic factors have any role to play in determining the extent of political violence and terrorism in Pakistan. The notion of a China-Pakistan economic corridor across the Karakorum Mountains to Gawadar faces severe challenges. Counterterrorism concerns are likely to be a persistent source of tension across the CPEC projects in different regions across the CPEC route in Pakistan. China’s promise to help industrialize Pakistan will ultimately lead to youth employment and prosperity. We hypothesize that youth unemployment can explain incidences of terrorism in Pakistan in the recent past. One of the main causes of these adverse situations is the unemployment of youth, who can become readily accessible to militant organizations for recruitment and training. This research project builds on existing research investigating the root causes of political violence and terrorism by considering youth unemployment as a measure of economic deprivation. We focus on the terrorism incident count data for 2001–2022, using negative binomial regression models. Literature suggests that, in the exogenous model, youth unemployment tends to increase political violence and domestic terrorism. Given concerns about the endogeneity of youth unemployment in these models, we will use two kinds of corrections: instrumental variables and lagged variables. To control for endogeneity, we intend to incorporate total population, military expenditure, foreign direct investment, and CPEC investment as instrumental variables.

Keywords: regional terrorism, political violence, youth employment, CPEC, belt and road initiative, Pakistan, China

Procedia PDF Downloads 26
233 Lexical Knowledge of Verb Particle Constructions with the Particle on by Mexican English Learners

Authors: Sarai Alvarado Pineda, Ricardo Maldonado Soto

Abstract:

The acquisition of Verb Particle Constructions is a challenge for Spanish speakers learning English. The acquisition is particularly difficult for speakers of languages with no verb particle constructions. The purpose of the current study is to define the procedural steps in the acquisition of constructions with the particle on. There are three outstanding meanings for the particle on; Surface: The movie is based on a true story, Activation: John turn on the light, Continuity: The band played on all night. The central aim of this study is to measure how Mexican Spanish participants respond to both the three meanings mentioned above and the degree of meaning transparency/opacity of on verb particle constructions. Forty Mexican Spanish learners of English (20 basic and 20 advanced) are compared against a control group of 20 American native English speakers through a reaction time test (PsychoPy2 2015). The participants were asked to discriminate 90 items based on their knowledge of these constructions. There are 30 items per meaning divided into two groups of transparent and opaque meaning. Results revealed three major findings: Advanced students have a reaction time similar to that of native speakers (advanced 4.5s versus native 3.7s), while students with a lower level of English proficiency, show a high reaction time (7s). Likewise, there is a shorter reaction time in constructions with lower opacity in the three groups of participants, with differences between each level (basic 6.7s, advanced 4.3s, and native 3.4s). Finally, a difference in reaction time can be identified according to the meaning provided by the construction. The reaction time for the activation category (5.27s) is greater than continuity (5.04s), and this category is also slower than the surface (4.94s). The study shows that the level of sensitivity of English learners increases significantly aiming towards native speaker patterns as determined by the level of transparency of meaning of each construction as well as the degree of entrenchment of each constructional meaning.

Keywords: meaning of the particle, opacity, reaction time, verb particle constructions

Procedia PDF Downloads 243
232 Analysis and Modeling of Graphene-Based Percolative Strain Sensor

Authors: Heming Yao

Abstract:

Graphene-based percolative strain gauges could find applications in many places such as touch panels, artificial skins or human motion detection because of its advantages over conventional strain gauges such as flexibility and transparency. These strain gauges rely on a novel sensing mechanism that depends on strain-induced morphology changes. Once a compression or tension strain is applied to Graphene-based percolative strain gauges, the overlap area between neighboring flakes becomes smaller or larger, which is reflected by the considerable change of resistance. Tiny strain change on graphene-based percolative strain sensor can act as an important leverage to tremendously increase resistance of strain sensor, which equipped graphene-based percolative strain gauges with higher gauge factor. Despite ongoing research in the underlying sensing mechanism and the limits of sensitivity, neither suitable understanding has been obtained of what intrinsic factors play the key role in adjust gauge factor, nor explanation on how the strain gauge sensitivity can be enhanced, which is undoubtedly considerably meaningful and provides guideline to design novel and easy-produced strain sensor with high gauge factor. We here simulated the strain process by modeling graphene flakes and its percolative networks. We constructed the 3D resistance network by simulating overlapping process of graphene flakes and interconnecting tremendous number of resistance elements which were obtained by fractionizing each piece of graphene. With strain increasing, the overlapping graphenes was dislocated on new stretched simulation graphene flake simulation film and a new simulation resistance network was formed with smaller flake number density. By solving the resistance network, we can get the resistance of simulation film under different strain. Furthermore, by simulation on possible variable parameters, such as out-of-plane resistance, in-plane resistance, flake size, we obtained the changing tendency of gauge factor with all these variable parameters. Compared with the experimental data, we verified the feasibility of our model and analysis. The increase of out-of-plane resistance of graphene flake and the initial resistance of sensor, based on flake network, both improved gauge factor of sensor, while the smaller graphene flake size gave greater gauge factor. This work can not only serve as a guideline to improve the sensitivity and applicability of graphene-based strain sensors in the future, but also provides method to find the limitation of gauge factor for strain sensor based on graphene flake. Besides, our method can be easily transferred to predict gauge factor of strain sensor based on other nano-structured transparent optical conductors, such as nanowire and carbon nanotube, or of their hybrid with graphene flakes.

Keywords: graphene, gauge factor, percolative transport, strain sensor

Procedia PDF Downloads 393
231 A Comparative Analysis of Various Companding Techniques Used to Reduce PAPR in VLC Systems

Authors: Arushi Singh, Anjana Jain, Prakash Vyavahare

Abstract:

Recently, Li-Fi(light-fiedelity) has been launched based on VLC(visible light communication) technique, 100 times faster than WiFi. Now 5G mobile communication system is proposed to use VLC-OFDM as the transmission technique. The VLC system focused on visible rays, is considered for efficient spectrum use and easy intensity modulation through LEDs. The reason of high speed in VLC is LED, as they flicker incredibly fast(order of MHz). Another advantage of employing LED is-it acts as low pass filter results no out-of-band emission. The VLC system falls under the category of ‘green technology’ for utilizing LEDs. In present scenario, OFDM is used for high data-rates, interference immunity and high spectral efficiency. Inspite of the advantages OFDM suffers from large PAPR, ICI among carriers and frequency offset errors. Since, the data transmission technique used in VLC system is OFDM, the system suffers the drawbacks of OFDM as well as VLC, the non-linearity dues to non-linear characteristics of LED and PAPR of OFDM due to which the high power amplifier enters in non-linear region. The proposed paper focuses on reduction of PAPR in VLC-OFDM systems. Many techniques are applied to reduce PAPR such as-clipping-introduces distortion in the carrier; selective mapping technique-suffers wastage of bandwidth; partial transmit sequence-very complex due to exponentially increased number of sub-blocks. The paper discusses three companding techniques namely- µ-law, A-law and advance A-law companding technique. The analysis shows that the advance A-law companding techniques reduces the PAPR of the signal by adjusting the companding parameter within the range. VLC-OFDM systems are the future of the wireless communication but non-linearity in VLC-OFDM is a severe issue. The proposed paper discusses the techniques to reduce PAPR, one of the non-linearities of the system. The companding techniques mentioned in this paper provides better results without increasing the complexity of the system.

Keywords: non-linear companding techniques, peak to average power ratio (PAPR), visible light communication (VLC), VLC-OFDM

Procedia PDF Downloads 264
230 Comparison of Trunk and Hip Muscle Activities and Anterior Pelvic Tilt Angle during Three Different Bridging Exercises in Subjects with Chronic Low Back Pain

Authors: Da-Eun Kim, Heon-Seock Cynn, Sil-Ah Choi, A-Reum Shin

Abstract:

Bridging exercise in supine position with the hips and knees flexed have been commonly performed as one of the therapeutic exercises and is a comfortable and pain-free position to most individuals with chronic low back pain (CLBP). Many previous studies have investigated the beneficial way of performing bridging exercises to improve activation of abdominal and gluteal muscle and reduce muscle activity of hamstrings (HAM) and erector spinae (ES) and compensatory lumbopelvic motion. The purpose of this study was to compare the effects of three different bridging exercises on the HAM, ES, gluteus maximus (Gmax), gluteus medius (Gmed), and transverse abdominis/internal abdominis oblique (TrA/IO) activities and anterior pelvic tilt angle in subjects with CLBP. Seventeen subjects with CLBP participated in this study. They performed bridging under three different conditions (with 30° hip abduction, isometric hip abduction, and isometric hip adduction). Surface electromyography was used to measure muscle activity, and the ImageJ software was used to calculate anterior pelvic tilt angle. One-way repeated-measures analysis of variance was used to assess the statistical significance of the measured variables. HAM activity was significantly lower in bridging with 30° hip abduction and isometric hip abduction than in bridging with isometric hip adduction. Gmax and Gmed activities were significantly greater in bridging with isometric hip abduction than in bridging with 30° hip abduction and isometric hip adduction. TrA/IO muscle activity was significantly greater and anterior pelvic tilt angle was significantly lower in bridging with isometric hip adduction than in bridging with 30° hip abduction and isometric hip abduction. Bridging with isometric hip abduction using Thera-Band can effectively reduce HAM activity, and increase Gmax and Gmed activities in subjects with CLBP. Bridging with isometric hip adduction using a pressure biofeedback unit can be a beneficial exercise to improve TrA/IO activity and minimize anterior pelvic tilt in subjects with CLBP.

Keywords: bridging exercise, electromyography, low back pain, lower limb exercise

Procedia PDF Downloads 190
229 Dynamic Wetting and Solidification

Authors: Yulii D. Shikhmurzaev

Abstract:

The modelling of the non-isothermal free-surface flows coupled with the solidification process has become the topic of intensive research with the advent of additive manufacturing, where complex 3-dimensional structures are produced by successive deposition and solidification of microscopic droplets of different materials. The issue is that both the spreading of liquids over solids and the propagation of the solidification front into the fluid and along the solid substrate pose fundamental difficulties for their mathematical modelling. The first of these processes, known as ‘dynamic wetting’, leads to the well-known ‘moving contact-line problem’ where, as shown recently both experimentally and theoretically, the contact angle formed by the free surfac with the solid substrate is not a function of the contact-line speed but is rather a functional of the flow field. The modelling of the propagating solidification front requires generalization of the classical Stefan problem, which would be able to describe the onset of the process and the non-equilibrium regime of solidification. Furthermore, given that both dynamic wetting and solification occur concurrently and interactively, they should be described within the same conceptual framework. The present work addresses this formidable problem and presents a mathematical model capable of describing the key element of additive manufacturing in a self-consistent and singularity-free way. The model is illustrated simple examples highlighting its main features. The main idea of the work is that both dynamic wetting and solidification, as well as some other fluid flows, are particular cases in a general class of flows where interfaces form and/or disappear. This conceptual framework allows one to derive a mathematical model from first principles using the methods of irreversible thermodynamics. Crucially, the interfaces are not considered as zero-mass entities introduced using Gibbsian ‘dividing surface’ but the 2-dimensional surface phases produced by the continuum limit in which the thickness of what physically is an interfacial layer vanishes, and its properties are characterized by ‘surface’ parameters (surface tension, surface density, etc). This approach allows for the mass exchange between the surface and bulk phases, which is the essence of the interface formation. As shown numerically, the onset of solidification is preceded by the pure interface formation stage, whilst the Stefan regime is the final stage where the temperature at the solidification front asymptotically approaches the solidification temperature. The developed model can also be applied to the flow with the substrate melting as well as a complex flow where both types of phase transition take place.

Keywords: dynamic wetting, interface formation, phase transition, solidification

Procedia PDF Downloads 42
228 Synthesis of TiO₂/Graphene Nanocomposites with Excellent Visible-Light Photocatalytic Activity Based on Chemical Exfoliation Method

Authors: Nhan N. T. Ton, Anh T. N. Dao, Kouichirou Katou, Toshiaki Taniike

Abstract:

Facile electron-hole recombination and the broad band gap are two major drawbacks of titanium dioxide (TiO₂) when applied in visible-light photocatalysis. Hybridization of TiO₂ with graphene is a promising strategy to lessen these pitfalls. Recently, there have been many reports on the synthesis of TiO₂/graphene nanocomposites, in most of which graphene oxide (GO) was used as a starting material. However, the reduction of GO introduced a large number of defects on the graphene framework. In addition, the sensitivity of titanium alkoxide to water (GO usually contains) significantly obstructs the uniform and controlled growth of TiO₂ on graphene. Here, we demonstrate a novel technique to synthesize TiO₂/graphene nanocomposites without the use of GO. Graphene dispersion was obtained through the chemical exfoliation of graphite in titanium tetra-n-butoxide with the aid of ultrasonication. The dispersion was directly used for the sol-gel reaction in the presence of different catalysts. A TiO₂/reduced graphene oxide (TiO₂/rGO) nanocomposite, which was prepared by a solvothermal method from GO, and the commercial TiO₂-P25 were used as references. It was found that titanium alkoxide afforded the graphene dispersion of a high quality in terms of a trace amount of defects and a few layers of dispersed graphene. Moreover, the sol-gel reaction from this dispersion led to TiO₂/graphene nanocomposites featured with promising characteristics for visible-light photocatalysts including: (I) the formation of a TiO₂ nano layer (thickness ranging from 1 nm to 5 nm) that uniformly and thinly covered graphene sheets, (II) a trace amount of defects on the graphene framework (low ID/IG ratio: 0.21), (III) a significant extension of the absorption edge into the visible light region (a remarkable extension of the absorption edge to 578 nm beside the usual edge at 360 nm), and (IV) a dramatic suppression of electron-hole recombination (the lowest photoluminescence intensity compared to reference samples). These advantages were successfully demonstrated in the photocatalytic decomposition of methylene blue under visible light irradiation. The TiO₂/graphene nanocomposites exhibited 15 and 5 times higher activity than TiO₂-P25 and the TiO₂/rGO nanocomposite, respectively.

Keywords: chemical exfoliation, photocatalyst, TiO₂/graphene, sol-gel reaction

Procedia PDF Downloads 134
227 Charge Transport of Individual Thermoelectric Bi₂Te₃ Core-Poly(3,4-Ethylenedioxythiophene):Polystyrenesulfonate Shell Nanowires Determined Using Conductive Atomic Force Microscopy and Spectroscopy

Authors: W. Thongkham, K. Sinthiptharakoon, K. Tantisantisom, A. Klamchuen, P. Khanchaitit, K. Jiramitmongkon, C. Lertsatitthanakorn, M. Liangruksa

Abstract:

Due to demands of sustainable energy, thermoelectricity converting waste heat into electrical energy has become one of the intensive fields of worldwide research. However, such harvesting technology has shown low device performance in the temperature range below 150℃. In this work, a hybrid nanowire of inorganic bismuth telluride (Bi₂Te₃) and organic poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) synthesized using a simple in-situ one-pot synthesis, enhancing efficiency of the nanowire-incorporated PEDOT:PSS-based thermoelectric converter is highlighted. Since the improvement is ascribed to the increased electrical conductivity of the thermoelectric host material, the individual hybrid nanowires are investigated using voltage-dependent conductive atomic force microscopy (CAFM) and spectroscopy (CAFS) considering that the electrical transport measurement can be performed either on insulating or conducting areas of the sample. Correlated with detailed chemical information on the crystalline structure and compositional profile of the nanowire core-shell structure, an electrical transporting pathway through the nanowire and the corresponding electronic-band structure have been determined, in which the native oxide layer on the Bi₂Te₃ surface is not considered, and charge conduction on the topological surface states of Bi₂Te₃ is suggested. Analyzing the core-shell nanowire synthesized using the conventional mixing of as-prepared Bi₂Te₃ nanowire with PEDOT:PSS for comparison, the oxide-removal effect of the in-situ encapsulating polymeric layer is further supported. The finding not only provides a structural information for mechanistic determination of the thermoelectricity, but it also encourages new approach toward more appropriate encapsulation and consequently higher efficiency of the nanowire-based thermoelectric generation.

Keywords: electrical transport measurement, hybrid Bi₂Te₃-PEDOT:PSS nanowire, nanoencapsulation, thermoelectricity, topological insulator

Procedia PDF Downloads 179
226 Assessment of Rangeland Condition in a Dryland System Using UAV-Based Multispectral Imagery

Authors: Vistorina Amputu, Katja Tielboerger, Nichola Knox

Abstract:

Primary productivity in dry savannahs is constraint by moisture availability and under increasing anthropogenic pressure. Thus, considering climate change and the unprecedented pace and scale of rangeland deterioration, methods for assessing the status of such rangelands should be easy to apply, yield reliable and repeatable results that can be applied over large spatial scales. Global and local scale monitoring of rangelands through satellite data and labor-intensive field measurements respectively, are limited in accurately assessing the spatiotemporal heterogeneity of vegetation dynamics to provide crucial information that detects degradation in its early stages. Fortunately, newly emerging techniques such as unmanned aerial vehicles (UAVs), associated miniaturized sensors and improving digital photogrammetric software provide an opportunity to transcend these limitations. Yet, they have not been extensively calibrated in natural systems to encompass their complexities if they are to be integrated for long-term monitoring. Limited research using drone technology has been conducted in arid savannas, for example to assess the health status of this dynamic two-layer vegetation ecosystem. In our study, we fill this gap by testing the relationship between UAV-estimated cover of rangeland functional attributes and field data collected in discrete sample plots in a Namibian dryland savannah along a degradation gradient. The first results are based on a supervised classification performed on the ultra-high resolution multispectral imagery to distinguish between rangeland functional attributes (bare, non-woody, and woody), with a relatively good match to the field observations. Integrating UAV-based observations to improve rangeland monitoring could greatly assist in climate-adapted rangeland management.

Keywords: arid savannah, degradation gradient, field observations, narrow-band sensor, supervised classification

Procedia PDF Downloads 99
225 Effect of Temperature and Deformation Mode on Texture Evolution of AA6061

Authors: M. Ghosh, A. Miroux, L. A. I. Kestens

Abstract:

At molecular or micrometre scale, practically all materials are neither homogeneous nor isotropic. The concept of texture is used to identify the structural features that cause the properties of a material to be anisotropic. For metallic materials, the anisotropy of the mechanical behaviour originates from the crystallographic nature of plastic deformation, and is therefore controlled by the crystallographic texture. Anisotropy in mechanical properties often constitutes a disadvantage in the application of materials, as it is often illustrated by the earing phenomena during drawing. However, advantages may also be attained when considering other properties (e.g. optimization of magnetic behaviour to a specific direction) by controlling texture through thermo-mechanical processing). Nevertheless, in order to have better control over the final properties it is essential to relate texture with materials processing route and subsequently optimise their performance. However, up to date, few studies have been reported about the evolution of texture in 6061 aluminium alloy during warm processing (from room temperature to 250ºC). In present investigation, recrystallized 6061 aluminium alloy samples were subjected to tensile and plane strain compression (PSC) at room and warm temperatures. The gradual change of texture following both deformation modes were measured and discussed. Tensile tests demonstrate the mechanism at low strain while PSC does the same at high strain and eventually simulate the condition of rolling. Cube dominated texture of the initial rolled and recrystallized AA6061 sheets were replaced by domination of S and R components after PSC at room temperature, warm temperature (250ºC) though did not reflect any noticeable deviation from room temperature observation. It was also noticed that temperature has no significant effect on the evolution of grain morphology during PSC. The band contrast map revealed that after 30% deformation the substructure inside the grain is mainly made of series of parallel bands. A tendency for decrease of Cube and increase of Goss was noticed after tensile deformation compared to as-received material. Like PSC, texture does not change after deformation at warm temperature though. n-fibre was noticed for all the three textures from Goss to Cube.

Keywords: AA 6061, deformation, temperature, tensile, PSC, texture

Procedia PDF Downloads 461
224 Analyze the Properties of Different Surgical Sutures

Authors: Doaa H. Elgohary, Tamer F. Khalifa, Mona M. Salem, M. A. Saad, Ehab Haider Sherazy

Abstract:

Textiles have conquered new areas over the past three decades, including agriculture, transportation, filtration, military, and medicine. The use of textiles in the medical field has increased significantly in recent years and covers almost everything. Medical textiles represent a huge market as they are widely used not only in hospitals, hygiene, and healthcare but also in hotels and other environments where hygiene is required. However, not all fibers are suitable for the manufacture of medical textile products. Some special properties are required for the manufactured materials, e.g. Strength, elasticity, spinnability, etc. In addition to the usual properties of medical fibers, non-toxicity, sterilizability, biocompatibility, biodegradability, good absorbability, softness, and freedom from additives, etc., desirable properties include impurities. Stitching is one of the most common practices in the medical field. as it is a biomaterial device, either natural or synthetic, used to connect blood vessels and connect tissues. In addition to being very strong, suture material should easily dissolve in bodily fluids and lose strength as the tissue gains strength. In this work, a study to select the most used materials for sutures, it was found that silk, VICRYL and polypropylene were the most used materials in varying numbers. The research involved the analysis of 36 samples from three different materials (mostly commonly used), the tests were carried out on 36 imported samples for four different companies. Each company supplied three different materials (silk, VICRYL and polypropylene) with three different gauges (4, 3.5 and 3 metric). The results of the study were tabulated, presented, and discussed. Practical statistical science serves to support the practical analysis of experimental work products and the various relationships between variables to achieve the best sampling performance with the functional purpose generated for it. Analysis of the imported sutures shows that VICRYL sutures had the highest tensile strength, toughness, knot tensile strength and knot toughness, followed by polypropylene and silk. As yarn counts, weight and diameter increase, its tensile strength and toughness increase while its elongation and knot tension decrease. The multifilament yarn construction (silk and VICRYL) scores higher compared to the monofilament construction (polypropylene), resulting in increases in tenacity, toughness, knot tensile strength and knot toughness.

Keywords: biodegradable yarns, braided sutures, irritation, knot tying, medical textiles, surgical sutures, wound healing

Procedia PDF Downloads 39
223 Investigation of External Pressure Coefficients on Large Antenna Parabolic Reflector Using Computational Fluid Dynamics

Authors: Varun K, Pramod B. Balareddy

Abstract:

Estimation of wind forces plays a significant role in the in the design of large antenna parabolic reflectors. Reflector surface accuracies are very sensitive to the gain of the antenna system at higher frequencies. Hence accurate estimation of wind forces becomes important, which is primary input for design and analysis of the reflector system. In the present work, numerical simulation of wind flow using Computational Fluid Dynamics (CFD) software is used to investigate the external pressure coefficients. An extensive comparative study has been made between the CFD results and the published wind tunnel data for different wind angle of attacks (α) acting over concave to convex surfaces respectively. Flow simulations using CFD are carried out to estimate the coefficients of Drag, Lift and Moment for the parabolic reflector. Coefficients of pressures (Cp) over the front and the rear face of the reflector are extracted over surface of the reflector to study the net pressure variations. These resultant pressure variations are compared with the published wind tunnel data for different angle of attacks. It was observed from the CFD simulations, both convex and concave face of reflector system experience a band of pressure variations for the positive and negative angle of attacks respectively. In the published wind tunnel data, Pressure variations over convex surfaces are assumed to be uniform and vice versa. Chordwise and spanwise pressure variations were calculated and compared with the published experimental data. In the present work, it was observed that the maximum pressure coefficients for α ranging from +30° to -90° and α=+90° was lower. For α ranging from +45° to +75°, maximum pressure coefficients were higher as compared to wind tunnel data. This variation is due to non-uniform pressure distribution observed over front and back faces of reflector. Variations in Cd, Cl and Cm over α=+90° to α=-90° was in close resemblance with the experimental data.

Keywords: angle of attack, drag coefficient, lift coefficient, pressure coefficient

Procedia PDF Downloads 228
222 Effect of Electropolymerization Method in the Charge Transfer Properties and Photoactivity of Polyaniline Photoelectrodes

Authors: Alberto Enrique Molina Lozano, María Teresa Cortés Montañez

Abstract:

Polyaniline (PANI) photoelectrodes were electrochemically synthesized through electrodeposition employing three techniques: chronoamperometry (CA), cyclic voltammetry (CV), and potential pulse (PP) methods. The substrate used for electrodeposition was a fluorine-doped tin oxide (FTO) glass with dimensions of 2.5 cm x 1.3 cm. Subsequently, structural and optical characterization was conducted utilizing Fourier-transform infrared (FTIR) spectroscopy and UV-visible (UV-vis) spectroscopy, respectively. The FTIR analysis revealed variations in the molar ratio of benzenoid to quinonoid rings within the PANI polymer matrix, indicative of differing oxidation states arising from the distinct electropolymerization methodologies employed. In the optical characterization, differences in the energy band gap (Eg) values and positions of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were observed, attributable to variations in doping levels and structural irregularities introduced during the electropolymerization procedures. To assess the charge transfer properties of the PANI photoelectrodes, electrochemical impedance spectroscopy (EIS) experiments were carried out within a 0.1 M sodium sulfate (Na₂SO₄) electrolyte. The results displayed a substantial decrease in charge transfer resistance with the PANI coatings compared to uncoated substrates, with PANI obtained through cyclic voltammetry (CV) presenting the lowest charge transfer resistance, contrasting PANI obtained via chronoamperometry (CA) and potential pulses (PP). Subsequently, the photoactive response of the PANI photoelectrodes was measured through linear sweep voltammetry (LSV) and chronoamperometry. The photoelectrochemical measurements revealed a discernible photoactivity in all PANI-coated electrodes. However, PANI electropolymerized through CV displayed the highest photocurrent. Interestingly, PANI derived from chronoamperometry (CA) exhibited the highest degree of stable photocurrent over an extended temporal interval.

Keywords: PANI, photocurrent, photoresponse, charge separation, recombination

Procedia PDF Downloads 26
221 Gold-Bearing Alteration Zones in South Eastern Desert of Egypt: Geology and Remote Sensing Analysis

Authors: Mohamed F. Sadek, Safaa M. Hassan, Safwat S. Gabr

Abstract:

Several alteration zones hosting gold mineralization are wide spreading in the South Eastern Desert of Egypt where gold has been mined from many localities since the time of the Pharaohs. The Sukkari is the only mine currently producing gold in the Eastern Desert of Egypt. Therefore, it is necessary to conduct more detailed studies on these locations using modern exploratory methods. The remote sensing plays an important role in lithological mapping and detection of associated hydrothermal mineralization particularly the exploration of gold mineralization. This study is focused on three localities in South Eastern Desert of Egypt, namely Beida, Defiet and Hoteib-Eiqat aiming to detect the gold-bearing hydrothermal alteration zones using the integrated data of remote sensing, field study and mineralogical investigation. Generally, these areas are dominated by Precambrian basement rocks including metamorphic and magmatic assemblages. They comprise ophiolitic serpentinite-talc carbonate, island-arc metavolcanics which were intruded by syn to late orogenic mafic and felsic intrusions mainly gabbro, granodiorite and monzogranite. The processed data of Advanced Spaceborne Thermal Emission and Reflection (ASTER) and Landsat-8 images are used in the present study to map the gold bearing-hydrothermal alteration zones. Band rationing and principal component analysis techniques are used to discriminate the different lithologic units exposed in the studied three areas. Field study and mineralogical investigation have been used to verify the remote sensing data. This study concluded that, the integrated remote sensing data with geological, field and mineralogical investigations are very effective in lithological discrimination, detailed geological mapping and detection of the gold-bearing hydrothermal alteration zones. More detailed exploration for gold mineralization with the help of remote sensing techniques is recommended to evaluate its potentiality in the study areas.

Keywords: pan-african, Egypt, landsat-8; ASTER, gold, alteration zones

Procedia PDF Downloads 102
220 Creativity in the Dark: A Qualitative Study of Cult’s Members Battle between True and False Self in Heterotopia

Authors: Shirly Bar-Lev, Michal Morag

Abstract:

Cults are usually thought of as suppressive organizations, where creativity is systematically stifled. Except for few scholars, creativity in cults remains an uncharted terrain (Boeri and Pressley, 2010). This paperfocuses on how cult members sought real and imaginary spaces to express themselves and even used their bodies as canvases on which to assert their individuality, resistance, devotion, pain, and anguish. We contend that cult members’ creativity paves their way out of the cult. This paper is part of a larger study into the experiences of former members of cults and cult-like NewReligiousMmovements (NRM). The research is based on in-depth interviews conducted with thirtyIsraeli men and women, aged 24 to 50, who either joined an NRM or were born into one. Their stories reveal that creativity is both emplaced and embedded in power relations. That is why Foucault’s idea of Heterotopia and Winnicott’s idea of the battle between True and False self canbenefit our understanding of how cult members creatively assert their autonomy over their bodies and thoughts while in the cult. Cults’ operate on a complex tension between submission and autonomy. On the one hand, they act as heterotopias byallowing for a ‘simultaneousmythic and real contestation of the space in which we live. Ascounter-hegemonic sites, they serve as‘the greatest reserve of theimagination’, to use Foucault’s words. Cults definitely possesselements of mystery, danger, and transgression where an alternative social ordering can emerge. On the other hand, cults are set up to format alternative identities. Often, the individuals who inhibit these spaces look for spiritual growth, self-reflection, and self-actualization. They might willingly relinquish autonomy over vast aspects of their lives in pursuit of self-improvement. In any case, cultsclaim the totality of their members’ identities and absolute commitment and compliance with the cult’s regimes. It, therefore, begs the question how the paradox between autonomy and submissioncan spur instances of creativity. How can cult members escape processes of performative regulation to assert their creative self? Both Foucault and Winnicott recognize the possibility of an authentic self – one that is spontaneous and creative. Both recognize that only the true self can feel real andmust never comply. Both note the disciplinary regimes that push the true self into hiding, as well as the social and psychological mechanisms that individuals develop to protect their true self. But while Foucault spoke of the power of critic as a way of salvaging the true self, Winnicott spoke of recognition and empathy - feeling known by others. Invitinga dialogue between the two theorists can yield a productive discussion on how cult members assert their ‘true self’ to cultivate a creative self within the confines of the cult.

Keywords: cults, creativity, heterotopia, true and false self

Procedia PDF Downloads 64
219 Design and Manufacture of Removable Nosecone Tips with Integrated Pitot Tubes for High Power Sounding Rocketry

Authors: Bjorn Kierulf, Arun Chundru

Abstract:

Over the past decade, collegiate rocketry teams have emerged across the country with various goals: space, liquid-fueled flight, etc. A critical piece of the development of knowledge within a club is the use of so-called "sounding rockets," whose goal is to take in-flight measurements that inform future rocket design. Common measurements include acceleration from inertial measurement units (IMU's), and altitude from barometers. With a properly tuned filter, these measurements can be used to find velocity, but are susceptible to noise, offset, and filter settings. Instead, velocity can be measured more directly and more instantaneously using a pitot tube, which operates by measuring the stagnation pressure. At supersonic speeds, an additional thermodynamic property is necessary to constrain the upstream state. One possibility is the stagnation temperature, measured by a thermocouple in the pitot tube. The routing of the pitot tube from the nosecone tip down to a pressure transducer is complicated by the nosecone's structure. Commercial-off-the-shelf (COTS) nosecones come with a removable metal tip (without a pitot tube). This provides the opportunity to make custom tips with integrated measurement systems without making the nosecone from scratch. The main design constraint is how the nosecone tip is held down onto the nosecone, using the tension in a threaded rod anchored to a bulkhead below. Because the threaded rod connects into a threaded hole in the center of the nosecone tip, the pitot tube follows a winding path, and the pressure fitting is off-center. Two designs will be presented in the paper, one with a curved pitot tube and a coaxial design that eliminates the need for the winding path by routing pressure through a structural tube. Additionally, three manufacturing methods will be presented for these designs: bound powder filament metal 3D printing, stereo-lithography (SLA) 3D printing, and traditional machining. These will employ three different materials, copper, steel, and proprietary resin. These manufacturing methods and materials are relatively low cost, thus accessible to student researchers. These designs and materials cover multiple use cases, based on how fast the sounding rocket is expected to travel and how important heating effects are - to measure and to avoid melting. This paper will include drawings showing key features and an overview of the design changes necessitated by the manufacture. It will also include a look at the successful use of these nosecone tips and the data they have gathered to date.

Keywords: additive manufacturing, machining, pitot tube, sounding rocketry

Procedia PDF Downloads 138
218 Investigation of the Relationship between Digital Game Playing, Internet Addiction and Perceived Stress Levels in University Students

Authors: Sevim Ugur, Cemile Kutmec Yilmaz, Omer Us, Sevdenur Koksaldi

Abstract:

Aim: This study aims to investigate the effect of digital game playing and Internet addiction on perceived stress levels in university students. Method: The descriptive study was conducted through face-to-face interview method with a total of 364 university students studying at Aksaray University between November 15 and December 30, 2017. The research data were collected using personal information form, a questionnaire to determine the characteristics of playing digital game, the Internet addiction scale and the perceived stress scale. In the evaluation of the data, Mann-Whitney U test was used for two-group comparison of the sample with non-normal distribution, Kruskal-Wallis H-test was used in the comparison of more than two groups, and the Spearman correlation test was used to determine the relationship between Internet addiction and the perceived stress level. Results: It was determined that the mean age of the students participated in the study was 20.13 ± 1.7 years, 67.6% was female, 35.7% was sophomore, and 62.1% had an income 500 TL or less. It was found that 83.5% of the students use the Internet every day and 70.6% uses the Internet for 5 hours or less per day. Of the students, 12.4% prefers digital games instead of spending time outdoors, 8% plays a game as the first activity in leisure time, 12.4% plays all day, 15.7% feels anger when he/she is prevented from playing, 14.8% prefers playing games to get away from his/her problems, 23.4% had his/her school achievement affected negatively because of game playing, and 8% argues with family members due to the time spent for gaming. Students who play games on the computer for a long time were found to feel back pain (30.8%), headache (28.6%), insomnia (26.9%), dryness and pain in the eyes (26.6%), pain in the wrist (21.2%), feeling excessive tension and anger (16.2%), humpback (12.9), vision loss (9.6%) and pain in the wrist and fingers (7.4%). In our study, students' Internet addiction scale mean score was found to be 45.47 ± 16.1 and mean perceived stress scale score was 28.56 ± 2.7. A significant and negative correlation (p=0.037) was found between the total score of the Internet addiction scale and the total score of the perceived stress scale (r=-0.110). Conclusion: It was found in the study that Internet addiction and perceived stress of the students were at a moderate level and that there was a negative correlation between Internet addiction and perceived stress levels. Internet addiction was found to increase with the increasing perceived stress levels of students, and students were found to have health problems such as back pain, dryness in the eyes, pain, insomnia, headache, and humpback. Therefore, it is recommended to inform students about different coping methods other than spending time on the Internet to cope with the stress they perceive.

Keywords: digital game, internet addiction, student, stress level

Procedia PDF Downloads 257
217 Antimicrobial Properties of SEBS Compounds with Copper Microparticles

Authors: Vanda Ferreira Ribeiro, Daiane Tomacheski, Douglas Naue Simões, Michele Pitto, Ruth Marlene Campomanes Santana

Abstract:

Indoor environments, such as car cabins and public transportation vehicles are places where users are subject to air quality. Microorganisms (bacteria, fungi, yeasts) enter these environments through windows, ventilation systems and may use the organic particles present as a growth substrate. In addition, atmospheric pollutants can act as potential carbon and nitrogen sources for some microorganisms. Compounds base SEBS copolymers, poly(styrene-b-(ethylene-co-butylene)-b-styrene, are a class of thermoplastic elastomers (TPEs), fully recyclable and largely used in automotive parts. Metals, such as cooper and silver, have biocidal activities and the production of the SEBS compounds by melting blending with these agents can be a good option for producing compounds for use in plastic parts of ventilation systems and automotive air-conditioning, in order to minimize the problems caused by growth of pathogenic microorganisms. In this sense, the aim of this work was to evaluate the effect of copper microparticles as antimicrobial agent in compositions based on SEBS/PP/oil/calcite. Copper microparticles were used in weight proportion of 0%, 1%, 2% and 4%. The compounds were prepared using a co-rotating double screw extruder (L/D ratio of 40/1 and 16 mm screw diameter). The processing parameters were 300 rpm of screw rotation rate, with a temperature profile between 150 to 190°C. SEBS based TPE compounds were injection molded. The compounds emission were characterized by gravimetric fogging test. Compounds were characterized by physical (density and staining by contact), mechanical (hardness and tension properties) and rheological properties (melt volume rate – MVR). Antibacterial properties were evaluated against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) strains. To avaluate the abilities toward the fungi have been chosen Aspergillus niger (A. niger), Candida albicans (C. albicans), Cladosporium cladosporioides (C. cladosporioides) and Penicillium chrysogenum (P. chrysogenum). The results of biological tests showed a reduction on bacteria in up to 88% in E.coli and up to 93% in S. aureus. The tests with fungi showed no conclusive results because the sample without copper also demonstrated inhibition of the development of these microorganisms. The copper addition did not cause significant variations in mechanical properties, in the MVR and the emission behavior of the compounds. The density increases with the increment of copper in compounds.

Keywords: air conditioner, antimicrobial, cooper, SEBS

Procedia PDF Downloads 253
216 Micromechanism of Ionization Effects on Metal/Gas Mixing Instabilty at Extreme Shock Compressing Conditions

Authors: Shenghong Huang, Weirong Wang, Xisheng Luo, Xinzhu Li, Xinwen Zhao

Abstract:

Understanding of material mixing induced by Richtmyer-Meshkov instability (RMI) at extreme shock compressing conditions (high energy density environment: P >> 100GPa, T >> 10000k) is of great significance in engineering and science, such as inertial confinement fusion(ICF), supersonic combustion, etc. Turbulent mixing induced by RMI is a kind of complex fluid dynamics, which is closely related with hydrodynamic conditions, thermodynamic states, material physical properties such as compressibility, strength, surface tension and viscosity, etc. as well as initial perturbation on interface. For phenomena in ordinary thermodynamic conditions (low energy density environment), many investigations have been conducted and many progresses have been reported, while for mixing in extreme thermodynamic conditions, the evolution may be very different due to ionization as well as large difference of material physical properties, which is full of scientific problems and academic interests. In this investigation, the first principle based molecular dynamic method is applied to study metal Lithium and gas Hydrogen (Li-H2) interface mixing in micro/meso scale regime at different shock compressing loading speed ranging from 3 km/s to 30 km/s. It's found that, 1) Different from low-speed shock compressing cases, in high-speed shock compresing (>9km/s) cases, a strong acceleration of metal/gas interface after strong shock compression is observed numerically, leading to a strong phase inverse and spike growing with a relative larger linear rate. And more specially, the spike growing rate is observed to be increased with shock loading speed, presenting large discrepancy with available empirical RMI models; 2) Ionization is happened in shock font zone at high-speed loading cases(>9km/s). An additional local electric field induced by the inhomogeneous diffusion of electrons and nuclei after shock font is observed to occur near the metal/gas interface, leading to a large acceleration of nuclei in this zone; 3) In conclusion, the work of additional electric field contributes to a mechanism of RMI in micro/meso scale regime at extreme shock compressing conditions, i.e., a Rayleigh-Taylor instability(RTI) is induced by additional electric field during RMI mixing process and thus a larger linear growing rate of interface spike.

Keywords: ionization, micro/meso scale, material mixing, shock

Procedia PDF Downloads 203
215 A Simple Chemical Precipitation Method of Titanium Dioxide Nanoparticles Using Polyvinyl Pyrrolidone as a Capping Agent and Their Characterization

Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar

Abstract:

In this paper, a simple chemical precipitation route for the preparation of titanium dioxide nanoparticles, synthesized by using titanium tetra isopropoxide as a precursor and polyvinyl pyrrolidone (PVP) as a capping agent, is reported. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) of the samples were recorded and the phase transformation temperature of titanium hydroxide, Ti(OH)4 to titanium oxide, TiO2 was investigated. The as-prepared Ti(OH)4 precipitate was annealed at 800°C to obtain TiO2 nanoparticles. The thermal, structural, morphological and textural characterizations of the TiO2 nanoparticle samples were carried out by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM) techniques. The as-prepared precipitate was characterized using DSC-TGA and confirmed the mass loss of around 30%. XRD results exhibited no diffraction peaks attributable to anatase phase, for the reaction products, after the solvent removal. The results indicate that the product is purely rutile. The vibrational frequencies of two main absorption bands of prepared samples are discussed from the results of the FTIR analysis. The formation of nanosphere of diameter of the order of 10 nm, has been confirmed by FESEM. The optical band gap was found by using UV-Visible spectrum. From photoluminescence spectra, a strong emission was observed. The obtained results suggest that this method provides a simple, efficient and versatile technique for preparing TiO2 nanoparticles and it has the potential to be applied to other systems for photocatalytic activity.

Keywords: TiO2 nanoparticles, chemical precipitation route, phase transition, Fourier Transform Infra-Red spectroscopy (FTIR), micro-Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence Spectroscopy (PL) and Field Effect Scanning electron microscopy (FESEM)

Procedia PDF Downloads 296
214 Limiting Freedom of Expression to Fight Radicalization: The 'Silencing' of Terrorists Does Not Always Allow Rights to 'Speak Loudly'

Authors: Arianna Vedaschi

Abstract:

This paper addresses the relationship between freedom of expression, national security and radicalization. Is it still possible to talk about a balance between the first two elements? Or, due to the intrusion of the third, is it more appropriate to consider freedom of expression as “permanently disfigured” by securitarian concerns? In this study, both the legislative and the judicial level are taken into account and the comparative method is employed in order to provide the reader with a complete framework of relevant issues and a workable set of solutions. The analysis moves from the finding according to which the tension between free speech and national security has become a major issue in democratic countries, whose very essence is continuously endangered by the ever-changing and multi-faceted threat of international terrorism. In particular, a change in terrorist groups’ recruiting pattern, attracting more and more people by way of a cutting-edge communicative strategy, often employing sophisticated technology as a radicalization tool, has called on law-makers to modify their approach to dangerous speech. While traditional constitutional and criminal law used to punish speech only if it explicitly and directly incited the commission of a criminal action (“cause-effect” model), so-called glorification offences – punishing mere ideological support for terrorism, often on the web – are becoming commonplace in the comparative scenario. Although this is direct, and even somehow understandable, consequence of the impending terrorist menace, this research shows many problematic issues connected to such a preventive approach. First, from a predominantly theoretical point of view, this trend negatively impacts on the already blurred line between permissible and prohibited speech. Second, from a pragmatic point of view, such legislative tools are not always suitable to keep up with ongoing developments of both terrorist groups and their use of technology. In other words, there is a risk that such measures become outdated even before their application. Indeed, it seems hard to still talk about a proper balance: what was previously clearly perceived as a balancing of values (freedom of speech v. public security) has turned, in many cases, into a hierarchy with security at its apex. In light of these findings, this paper concludes that such a complex issue would perhaps be better dealt with through a combination of policies: not only criminalizing ‘terrorist speech,’ which should be relegated to a last resort tool, but acting at an even earlier stage, i.e., trying to prevent dangerous speech itself. This might be done by promoting social cohesion and the inclusion of minorities, so as to reduce the probability of people considering terrorist groups as a “viable option” to deal with the lack of identification within their social contexts.

Keywords: radicalization, free speech, international terrorism, national security

Procedia PDF Downloads 177
213 Investigation of Fluid-Structure-Seabed Interaction of Gravity Anchor under Liquefaction and Scour

Authors: Vinay Kumar Vanjakula, Frank Adam, Nils Goseberg, Christian Windt

Abstract:

When a structure is installed on a seabed, the presence of the structure will influence the flow field around it. The changes in the flow field include, formation of vortices, turbulence generation, waves or currents flow breaking and pressure differentials around the seabed sediment. These changes allow the local seabed sediment to be carried off and results in Scour (erosion). These are a threat to the structure's stability. In recent decades, rapid developments of research work and the knowledge of scour On fixed structures (bridges and Monopiles) in rivers and oceans has been carried out, and very limited research work on scour and liquefaction for gravity anchors, particularly for floating Tension Leg Platform (TLP) substructures. Due to its importance and need for enhancement of knowledge in scour and liquefaction around marine structures, the MarTERA funded a three-year (2020-2023) research program called NuLIMAS (Numerical Modeling of Liquefaction Around Marine Structures). It’s a group consists of European institutions (Universities, laboratories, and consulting companies). The objective of this study is to build a numerical model that replicates the reality, which indeed helps to simulate (predict) underwater flow conditions and to study different marine scour and Liquefication situations. It helps to design a heavyweight anchor for the TLP substructure and to minimize the time and expenditure on experiments. And also, the achieved results and the numerical model will be a basis for the development of other design and concepts For marine structures. The Computational Fluid Dynamics (CFD) numerical model will build in OpenFOAM. A conceptual design of heavyweight anchor for TLP substructure is designed through taking considerations of available state-of-the-art knowledge on scour and Liquefication concepts and references to Previous existing designs. These conceptual designs are validated with the available similar experimental benchmark data and also with the CFD numerical benchmark standards (CFD quality assurance study). CFD optimization model/tool is designed as to minimize the effect of fluid flow, scour, and Liquefication. A parameterized model is also developed to automate the calculation process to reduce user interactions. The parameters such as anchor Lowering Process, flow optimized outer contours, seabed interaction study, and FSSI (Fluid-Structure-Seabed Interactions) are investigated and used to carve the model as to build an optimized anchor.

Keywords: gravity anchor, liquefaction, scour, computational fluid dynamics

Procedia PDF Downloads 121
212 Series Connected GaN Resonant Tunneling Diodes for Multiple-Valued Logic

Authors: Fang Liu, JunShuai Xue, JiaJia Yao, XueYan Yang, ZuMao Li, GuanLin Wu, HePeng Zhang, ZhiPeng Sun

Abstract:

III-Nitride resonant tunneling diode (RTD) is one of the most promising candidates for multiple-valued logic (MVL) elements. Here, we report a monolithic integration of GaN resonant tunneling diodes to realize multiple negative differential resistance (NDR) regions for MVL application. GaN RTDs, composed of a 2 nm quantum well embedded in two 1 nm quantum barriers, are grown by plasma-assisted molecular beam epitaxy on free-standing c-plane GaN substrates. Negative differential resistance characteristic with a peak current density of 178 kA/cm² in conjunction with a peak-to-valley current ratio (PVCR) of 2.07 is observed. Statistical properties exhibit high consistency showing a peak current density standard deviation of almost 1%, laying the foundation for the monolithic integration. After complete electrical isolation, two diodes of the designed same area are connected in series. By solving the Poisson equation and Schrodinger equation in one dimension, the energy band structure is calculated to explain the transport mechanism of the differential negative resistance phenomenon. Resonant tunneling events in a sequence of the series-connected RTD pair (SCRTD) form multiple NDR regions with nearly equal peak current, obtaining three stable operating states corresponding to ternary logic. A frequency multiplier circuit achieved using this integration is demonstrated, attesting to the robustness of this multiple peaks feature. This article presents a monolithic integration of SCRTD with multiple NDR regions driven by the resonant tunneling mechanism, which can be applied to a multiple-valued logic field, promising a fast operation speed and a great reduction of circuit complexity and demonstrating a new solution for nitride devices to break through the limitations of binary logic.

Keywords: GaN resonant tunneling diode, multiple-valued logic system, frequency multiplier, negative differential resistance, peak-to-valley current ratio

Procedia PDF Downloads 54