Search results for: synergistic potential
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11194

Search results for: synergistic potential

11194 Synergistic Extraction Study of Cobalt (II) from Sulfate Medium by Mixtures of Capric Acid and Tri-N-Octylphosphine Oxide in Chloroform

Authors: F. Adjel, S. Almi, D. Barkat

Abstract:

The synergistic solvent extraction of cobalt (II) from 0.33 mol dm-3 Na2SO4 aqueous solutions with capric acid (HL) in the absence and presence of tri-n-octylphosphine oxide (TOPO) in chloroform at 25°C, has been studied. The extracted species when the capric acid compound was used alone, is CoL2(HL)2. In the presence of TOPO, a remarkable enhancement on the extraction of nickel (II) with 0.02 mol dm-3 capric acid was observed upon the addition of 0.0025 to 0.01 mol dm-3 TOPO in chloroform. From an synergistic extraction- equilibrium study, the synergistic enhancement was ascribed to the adduct formation CoL2(HL)2 n(TOPO). The TOPO-HL interaction strongly influences the synergistic extraction efficiency. The synergistic extraction stoichiometry of cobalt (II) with capric acid and TOPO is studied with the methods of slope analysis. The equilibrium constants were determined.

Keywords: solvent extraction, cobalt (II), capric acid, TOPO, synergism

Procedia PDF Downloads 500
11193 Synergistic Extraction of Cobalt (II) from Sulfate Medium by Mixtures of Capric Acid and Methyl Isobutyl Cétone in Chloroform

Authors: F. Adjel, C. Bensmail, S. Almi, D. Barkat

Abstract:

The synergistic solvent extraction of cobalt (II) from 0.33 mol dm^-3 Na2SO4 aqueous solutions with capric acid (HL) in the absence and presence of methyl isobutyl cétone (MIBK) in chloroform at 25°C, has been studied. The extracted species when the capric acid compound was used alone, is CoL2(HL)2. In the presence of MIBK, a remarkable enhancement on the extraction of nickel (II) with 0.02 mol dm^-3 capric acid was observed upon the addition of 0.0025 to 0.01 mol dm^-3 MIBK in chloroform. From a synergistic extraction-equilibrium study, the synergistic enhancement was ascribed to the adduct formation CoL2(HL)2 n(MIBK). The MIBK-HL interaction strongly influences the synergistic extraction efficiency. The synergistic extraction stoichiometry of cobalt (II) with capric acid and MIBK is studied with the methods of slope analysis. The equilibrium constants were determined.

Keywords: solvent extraction, cobalt (II), capric acid, MIBK, synergism

Procedia PDF Downloads 458
11192 Synergistic Extraction Study of Nickel (II) from Sulfate Medium by Mixtures of Capric Acid and Tri-N-Octylphosphine Oxide in Chloroform

Authors: F. Adjel, S. Almi, D. Barkat

Abstract:

The synergistic solvent extraction of nickel ion from 0.33 mol dm^-3 Na2SO4 aqueous solutions with capric acid (HL) in the absence and presence of Tri-n-octylphosphine oxide (TOPO) in chloroform at 25°C, has been studied. The extracted species when the capric acid compound was used alone, is NiL2 and NiL2(HL). In the presence of TOPO, a remarkable enhancement on the extraction of nickel (II) with 0.02 mol dm^-3 capric acid was observed upon the addition of 0.00125 and 0.0025 mol dm^-3 TOPO in chloroform. From a synergistic extraction- equilibrium study, the synergistic enhancement was ascribed to the adduct formation NiL2(TOPO) and NiL2(HL)(TOPO). The TOPO-HL interaction strongly influences the synergistic extraction efficiency. The synergistic extraction stoichiometry of nickel (II) with capric acid and TOPO is studied with the methods of slope analysis. The equilibrium constants were determined.

Keywords: solvent extraction, nickel(II), capric acid, TOPO, synergism

Procedia PDF Downloads 568
11191 Evaluation of Chemical Compositions and Biological Activities of Five Essential Oils

Authors: G. Ozturk, B. Demirci

Abstract:

It is well known that essential oils used for therapeutic purposes for many years. In this study, five different Pharmacopoeia grade essential oils (Achillea millefolium L., Pimpinella anisum L., Matricaria recutita L., Eucalyptus globulus L., Salvia officinalis L.) which obtained from commercial sources were evaluated for chemical compositions, synergistic antimicrobial activities, and lipoxygenase enzyme inhibitions. Volatile components were determined by gas chromatography/flame ionization detector and gas chromatography/mass spectrometer, simultaneously. The potential antimicrobial activity of essential oils was tested against oral pathogenic standard strains such as Streptococcus mutans, Streptococcus sanguinis, Staphylococcus aureus, Corynebacterium striatum, Candida albicans and Candida krusei by broth microdilution methods. Ciprofloxacin and ketoconazole were used positive controls. It has been observed that the essential oils tested have average inhibitory antimicrobial activity against oral pathogens with a Minimum Inhibition Concentration of 20-0.625 mg/mL. The active essential oils have been combined with antibiotics and synergistic effects have been evaluated by Checkerboard method. ƩFIC values were determined. In combination with antibiotics M. recutita essential oil has been shown to have a synergistic effect against S. aureus in combination with tetracycline (ƩFIC 0.46). In addition, 5-LOX inhibitory activity was measured by modifying the spectrophotometric method developed by Baylac and Racine. As a result, 5-LOX % inhibition of S. officinalis, E. globulus and M. recutita were calculated as 34.0 ± 6.66, 72.7 ± 2.78 and 27.7 ± 0.60, respectively.

Keywords: antimicrobial activity, essential oils, synergistic activity, 5-lipoxygenase inhibition

Procedia PDF Downloads 83
11190 Synergistic Effects of Chrysin-Curcumin Loaded in PLGA-PEG Nanoparticles on Inhibiting Breast Cancer Cell Line Growth

Authors: N. Zarghami, M. Mohammadinejad, A. Akbarzadeh, Y. Pilehvar-Soltanahmadi, F. Zarghami

Abstract:

Breast cancer is known to be the most common cancer in women. Cyclin D1 is a proto-oncogene and over expression of cyclin D1 is directly associated with tumorgenesis. Cyclin D1 is overexpressed in more than 50% of breast cancer cases. Curcumin is derived from turmeric (curcuma longa) and chrysin is a component that could be extracted from many plants and honey. These two plants derived compounds are believed to assist in inhibition of the cancer cells growth and reducing cyclin D1 expression. In this work, the hypothesis is to combine curcumin and chrysin in order to analyze the potential synergistic effect in inhibition of cell proliferation and down regulation of cyclin D1. In addition, use of PLGA-PEG to improve bioavailability of pure curcumin and chrysin, while reinforcing the potential effect of this combination. PLGA-PEG nanoparticles were synthesized and characterized with FT-IR and 1HNMR methods. Although morphological features were analyzed by SEM. Afterward curcumin and chrysin were encapsulated with synthesized PLGA-PEG and MTT-assay was performed to measure cytotoxicity effect of these plant constitutes. T-47D cells were treated with proper concentration of these constituents and Real-time PCR was carried out to evaluate cyclin D1 expression levels. Curcumin, chrysin and combination of curcumin –chrysin in intact and nano-capsulated form affected T-47D cells in time and dose dependent manner and the combination of these compounds had synergistic effects. Real-time PCR results, revealed that curcumin, chrysin and combination of curcumin-chrysin in pure and encapsulated form inhibited cyclin D1 expression. Compared to pure components, different concentrations of nano-curcumin, nano chrysin and nano-combination caused further decline in cyclin D12 expression by 5-11%, 8-22% and 6-18% respectively. Our results demonstrated that, combination of chrysin-curcumin had synergistic effect and nano capsulated form of this component had grater inhibition on cyclin D1 expression.

Keywords: breast cancer, cyclin D1, curcumin, chrysin, nanoparticles

Procedia PDF Downloads 255
11189 Synergistic Effect between Titanium Oxide and Silver Nanoparticles in Polymeric Binary Systems

Authors: Raquel C. A. G. Mota, Livia R. Menezes, Emerson O. da Silva

Abstract:

Both silver nanoparticles and titanium dioxide have been extensively used in tissue engineering since they’ve been approved by the Food and Drug Administration (FDA), and present a bactericide effect when added to a polymeric matrix. In this work, the focus is on fabricating binary systems with both nanoparticles so that the synergistic effect can be investigated. The systems were tested by Nuclear Magnetic Resonance (NMR), Thermogravimetric Analysis (TGA), Fourier-Transformed Infrared (FTIR), and Differential Scanning Calorimetry (DSC), and X-ray Diffraction (XRD), and had both their bioactivity and bactericide effect tested. The binary systems presented different properties than the individual systems, enhancing both the thermal and biological properties as was to be expected. The crystallinity was also affected, as indicated by the finding of the DSC and XDR techniques, and the NMR showed a good dispersion of both nanoparticles in the polymer matrix. These findings indicate the potential of combining TiO₂ and silver nanoparticles in biomedicine.

Keywords: metallic nanoparticles, nanotechnology, polymer nanocomposites, polymer science

Procedia PDF Downloads 112
11188 Unveiling the Potential of PANI@MnO2@rGO Ternary Nanocomposite in Energy Storage and Gas Sensing

Authors: Ahmad Umar, Sheikh Akbar, Ahmed A. Ibrahim, Mohsen A. Alhamami

Abstract:

The development of advanced materials for energy storage and gas sensing applications has gained significant attention in recent years. In this study, we synthesized and characterized PANI@MnO2@rGO ternary nanocomposites (NCs) to explore their potential in supercapacitors and gas sensing devices. The ternary NCs were synthesized through a multi-step process involving the hydrothermal synthesis of MnO2 nanoparticles, preparation of PANI@rGO composites and the assembly to the ternary PANI@MnO2@rGO ternary NCs. The structural, morphological, and compositional characteristics of the materials were thoroughly analyzed using techniques such as XRD, FESEM, TEM, FTIR, and Raman spectroscopy. In the realm of gas sensing, the ternary NCs exhibited excellent performance as NH3 gas sensors. The optimized operating temperature of 100 °C yielded a peak response of 15.56 towards 50 ppm NH3. The nanocomposites demonstrated fast response and recovery times of 6 s and 10 s, respectively, and displayed remarkable selectivity for NH3 gas over other tested gases. For supercapacitor applications, the electrochemical performance of the ternary NCs was evaluated using cyclic voltammetry and galvanostatic charge-discharge techniques. The composites exhibited pseudocapacitive behavior, with the capacitance reaching up to 185 F/g at 1 A/g and excellent capacitance retention of approximately 88.54% over 4000 charge-discharge cycles. The unique combination of rGO, PANI, and MnO2 nanoparticles in these ternary NCs offer synergistic advantages, showcasing their potential to address challenges in energy storage and gas sensing technologies.

Keywords: paniI@mnO2@rGO ternary NCs, synergistic effects, supercapacitors, gas sensing, energy storage

Procedia PDF Downloads 46
11187 In vitro Evaluation of the Synergistic Antiviral Activity of Amantadine Coupled with Magnesium Lithospermate B against Enterovirus 71 Infection

Authors: Wen-Yu Lin, Yi-Ching Chung, Jhao-Ren Lin, Tzyy-Rong Jinn

Abstract:

It is well known that enterovirus 71(EV71) causes recurring outbreaks of hand, foot and mouth disease and encephalitis leading to complications or death in young children. And, several enterovirus 71 (EV71) of hand foot and mouth disease (HFMD) with high mortalities occurred in Asia country, such as Hong Kung (1985), Malaysia (1997), Taiwan (1998) and China (2008) that EV71 results in severe neurological complications and sudden death in infants and young children. However, there are still no effective drugs and vaccines to reduce and inhibit EV71 infection. Therefore, the development of specific and effective antiviral strategies against EV71 has become an urgent issue for the protection of children from the hazards of the HFMD. As reported, amantadine is effective in prophylaxis and treatment of the EV71 infections. Thus, the aim of this study was to further evaluate the synergistic antiviral activity of amantadine coupled with magnesium lithospermate B (MLB) against enterovirus 71 infection. In a preliminary test, it is shown that the infected RD cells were treated with amantadine after virus absorption, at concentrations of 3 and 5µM of amantadine suppressed EV71-induced CPE to 13% and 23%, respectively at MOI of 3. Alternatively, at concentrations of 5µg/ml of MLB combined with 3 and 5 µM of amantadine apparently suppressed EV71-induced CPE to 45% and 63%, respectively at MOI of 3. Thus, amantadine coupled with MLB may have the potential for further study to development as the chemopreventive reagents against EV71 infection.

Keywords: amantadine, Enterovirus 71, magnesium lithospermate B, RD cells, synergistic effects

Procedia PDF Downloads 222
11186 Synergistic Effect of Eugenol Acetate with Betalactam Antibiotic on Betalactamase and Its Bioinformatics Analysis

Authors: Vinod Nair, C. Sadasivan

Abstract:

Beta-lactam antibiotics are the most frequently prescribed medications in modern medicine. The antibiotic resistance by the production of enzyme beta-lactamase is an important mechanism seen in microorganisms. Resistance to beta-lactams mediated by beta-lactamases can be overcome successfully with the use of beta-lactamase inhibitors. New generations of the antibiotics contain mostly synthetic compounds, and many side effects have been reported for them. Combinations of beta-lactam and beta-lactamase inhibitors have become one of the most successful antimicrobial strategies in the current scenario of bacterial infections. Plant-based drugs are very cheap and having lesser adverse effect than synthetic compounds. The synergistic effect of eugenol acetate with beta-lactams restores the activity of beta-lactams, allowing their continued clinical use. It is reported here the enhanced inhibitory effect of phytochemical, eugenol acetate, isolated from the plant Syzygium aromaticum with beta-lactams on beta-lactamase. The compound was found to have synergistic effect with the antibiotic amoxicillin against antibiotic-resistant strain of S.aureus. The enzyme was purified from the organism and incubated with the compound. The assay showed that the compound could inhibit the enzymatic activity of beta-lactamase. Modeling and molecular docking studies indicated that the compound can fit into the active site of beta-lactamase and can mask the important residue for hydrolysis of beta-lactams. The synergistic effects of eugenol acetate with beta-lactam antibiotics may justify, the use of these plant compounds for the preparation of β-lactamase inhibitors against β-lactam resistant S.aureus.

Keywords: betalactamase, eugenol acetate, synergistic effect, molecular modeling

Procedia PDF Downloads 227
11185 Synergistic Impacts and Optimization of Gas Flow Rate, Concentration of CO2, and Light Intensity on CO2 Biofixation in Wastewater Medium by Chlorella vulgaris

Authors: Ahmed Arkoazi, Hussein Znad, Ranjeet Utikar

Abstract:

The synergistic impact and optimization of gas flow rate, concentration of CO2, and light intensity on CO2 biofixation rate were investigated using wastewater as a medium to cultivate Chlorella vulgaris under different conditions (gas flow rate 1-8 L/min), CO2 concentration (0.03-7%), and light intensity (150-400 µmol/m2.s)). Response Surface Methodology and Box-Behnken experimental Design were applied to find optimum values for gas flow rate, CO2 concentration, and light intensity. The optimum values of the three independent variables (gas flow rate, concentration of CO2, and light intensity) and desirability were 7.5 L/min, 3.5%, and 400 µmol/m2.s, and 0.904, respectively. The highest amount of biomass produced and CO2 biofixation rate at optimum conditions were 5.7 g/L, 1.23 gL-1d-1, respectively. The synergistic effect between gas flow rate and concentration of CO2, and between gas flow rate and light intensity was significant on the three responses, while the effect between CO2 concentration and light intensity was less significant on CO2 biofixation rate. The results of this study could be highly helpful when using microalgae for CO2 biofixation in wastewater treatment.

Keywords: bubble column reactor, gas holdup, hydrodynamics, sparger

Procedia PDF Downloads 117
11184 Study on the Mechanism of CO₂-Viscoelastic Fluid Synergistic Oil Displacement in Tight Sandstone Reservoirs

Authors: Long Long Chen, Xinwei Liao, Shanfa Tang, Shaojing Jiang, Ruijia Tang, Rui Wang, Shu Yun Feng, Si Yao Wang

Abstract:

Tight oil reservoirs have poor physical properties, insufficient formation energy, and low natural productivity; it is necessary to effectively improve their crude oil recovery. CO₂ flooding is an important technical means to enhance oil recovery and achieve effective CO₂ storage in tight oil reservoirs, but its heterogeneity is strong, which makes CO₂ flooding prone to gas channeling and poor recovery. Aiming at the problem of gas injection channeling, combined with the excellent performance of low interfacial tension viscoelastic fluid (GOBTK), the research on CO₂-low interfacial tension viscoelastic fluid synergistic oil displacement in tight reservoirs was carried out, and the synergy of CO₂ and low interfacial tension viscoelastic fluid was discussed. Oil displacement mechanism. Experiments show that GOBTK has good injectability in tight oil reservoirs (Kg=0.141~0.793mD); CO₂-0.4% GOBTK synergistic flooding can improve the recovery factor of low permeability layers (31.41%) under heterogeneous (gradient difference of 10) conditions the) effect is better than that of CO₂ flooding (0.56%) and 0.4% GOBT-water flooding (20.99%); CO₂-GOBT synergistic oil displacement mechanism includes: 1) The formation of CO₂ foam increases the flow resistance of viscoelastic fluid, forcing the displacement fluid to flow 2) GOBTK can emulsify and disperse residual oil into small oil droplets, and smoothly pass through narrow pores to produce; 3) CO₂ dissolved in GOBTK synergistically enhances the water wettability of the core, and the use of viscosity Elastomeric fluid injection and stripping of residual oil; 4) CO₂-GOBTK synergy superimposes multiple mechanisms, effectively improving the swept volume and oil washing efficiency of the injected fluid to the reservoir.

Keywords: tight oil reservoir, CO₂ flooding, low interfacial tension viscoelastic fluid flooding, synergistic oil displacement, EOR mechanism

Procedia PDF Downloads 154
11183 Screening of Antagonistic/Synergistic Effect between Lactic Acid Bacteria (LAB) and Yeast Strains Isolated from Kefir

Authors: Mihriban Korukluoglu, Goksen Arik, Cagla Erdogan, Selen Kocakoglu

Abstract:

Kefir is a traditional fermented refreshing beverage which is known for its valuable and beneficial properties for human health. Mainly yeast species, lactic acid bacteria (LAB) strains and fewer acetic acid bacteria strains live together in a natural matrix named “kefir grain”, which is formed from various proteins and polysaccharides. Different microbial species live together in slimy kefir grain and it has been thought that synergetic effect could take place between microorganisms, which belong to different genera and species. In this research, yeast and LAB were isolated from kefir samples obtained from Uludag University Food Engineering Department. The cell morphology of isolates was screened by microscopic examination. Gram reactions of bacteria isolates were determined by Gram staining method, and as well catalase activity was examined. After observing the microscopic/morphological and physical, enzymatic properties of all isolates, they were divided into the groups as LAB and/or yeast according to their physicochemical responses to the applied examinations. As part of this research, the antagonistic/synergistic efficacy of the identified five LAB and five yeast strains to each other were determined individually by disk diffusion method. The antagonistic or synergistic effect is one of the most important properties in a co-culture system that different microorganisms are living together. The synergistic effect should be promoted, whereas the antagonistic effect is prevented to provide effective culture for fermentation of kefir. The aim of this study was to determine microbial interactions between identified yeast and LAB strains, and whether their effect is antagonistic or synergistic. Thus, if there is a strain which inhibits or retards the growth of other strains found in Kefir microflora, this circumstance shows the presence of antagonistic effect in the medium. Such negative influence should be prevented, whereas the microorganisms which have synergistic effect on each other should be promoted by combining them in kefir grain. Standardisation is the most desired property for industrial production. Each microorganism found in the microbial flora of a kefir grain should be identified individually. The members of the microbial community found in the glue-like kefir grain may be redesigned as a starter culture regarding efficacy of each microorganism to another in kefir processing. The main aim of this research was to shed light on more effective production of kefir grain and to contribute a standardisation of kefir processing in the food industry.

Keywords: antagonistic effect, kefir, lactic acid bacteria (LAB), synergistic, yeast

Procedia PDF Downloads 256
11182 Regional Advantages Analysis: An Interactive Approach of Comparative and Competitive Advantages

Authors: Abdolrasoul Ghasemi, Ali Arabmazar Yazdi, Yasaman Boroumand, Aliasghar Banouei

Abstract:

In regional studies, choosing an appropriate approach to analyze regional success or failure has always been a challenge. Hence, this study introduces an innovative approach to establish a link between regional success and failure in the past as well as the potential success of a region in the future. The former can be sought in the historical evaluation of comparative advantages, while the latter is portrayed as competitive advantage analysis with a forward-looking approach. Based on the interaction of comparative and competitive advantages, activities are classified into four groups, including activities with no advantage, hidden advantage, fragile advantage and synergistic advantage. In analyzing the comparative advantage of activities, the location quotient method is applied, and in analyzing their competitive advantage, Porter`s diamond model using the survey method is applied. According to the results, the share of no advantage, fragile advantage, hidden advantage and synergic advantage activities are respectively 10%, 42%, 16%, and 32%. Also, to achieve economic development in regional activities, our model provides various levels of priority. First, the activities with synergistic advantage should be prioritized, then the ones with hidden advantage, and finally the activities with fragile advantage.

Keywords: regional advantage, comparative advantage, competitive advantage, Porter's diamond model

Procedia PDF Downloads 334
11181 The Biomechanical Consequences of Pes Planus

Authors: Mariette Swanepoel, Terry Ellapen, Henriette Hammil, Juandre Williams, Timothy Qumbu

Abstract:

The biomechanical consequence of pes planus is a topic seldom reviewed in regards to energy expenditure and predisposition to injury. However its comprehension in the field of foot rehabilitation, pre-and post-surgery is fundamental to successful patient management. This short communication unites the present literature to provide the reader with better insight on the consequence of pes planus, foot mechanics and its predisposition to injury at the foot and tibiofemoral joint. Further, the consideration of synergistic dominance of the foot invertors to compensate for the ineffective torque production of the fibularis longus due pes planus is presented.

Keywords: pes planus, fibularis longus, synergistic dominance, injury

Procedia PDF Downloads 266
11180 Antimicrobial Activity of Different Essential Oils in Synergy with Amoxicillin against Clinical Isolates of Methicillin-Resistant Staphylococcus aureus

Authors: Naheed Niaz, Nimra Naeem, Bushra Uzair, Riffat Tahira

Abstract:

Antibacterial activity of different traditional plants essential oils against clinical isolates of Methicillin-resistant Staphylococcus aureus (MRSA) through disk diffusion method was evaluated. All the tested essential oils, in different concentrations, inhibited growth of S. aureus to varying degrees. Cinnamon and Thyme essential oils were observed to be the “best” against test pathogen. Even at lowest concentration of these essential oils i.e. 25 µl/ml, clear zone of inhibition was recorded 9+0.085mm and 8+0.051mm respectively, and at higher concentrations there was a total reduction in growth of MRSA. The study also focused on analyzing the synergistic effects of essential oils in combination with amoxicillin. Results showed that oregano and pennyroyal mint essential oils which were not very effective alone turned out to be strong synergistic enhancers. The activity increased with increase in concentration of the essential oils. It may be concluded from present results that cinnamon and thyme essential oils could be used as potential antimicrobial source for the treatment of infections caused by Methicillin-resistant Staphylococcus aureus (MRSA).

Keywords: Staphylococcus aureus, essential oils, antibiotics, combination therapy, minimum inhibitory concentration

Procedia PDF Downloads 423
11179 'When 2 + 2 = 5: Synergistic Effects of HRM Practices on the Organizational Performance'

Authors: Qura-tul-aain Khair, Mohtsham Saeed

Abstract:

Synergy is a main characteristic of human resource management (HRM) system. It highlights the hidden characteristics of HRM system. This research paper has empirically tested that internally consistent and complementary HR practices/components in the HR system are more able to predict and enhance the organizational performance than the sum of individual practice. The data was collected from the sample of 109 firm respondents of service industry through convenience sampling technique. The major finding of this research highlighted that configurational approach to synergy or the HRM system as a whole has an ability to enhance the organizational performance more than by the sum of individual HRM practices of HRM system. Hence, confirming that the whole is greater than the sum of individual parts.

Keywords: internally consistant HRM practices, synergistic effects, horizontal fit, vertical fit

Procedia PDF Downloads 330
11178 The Synergistic Effects of Blockchain and AI on Enhancing Data Integrity and Decision-Making Accuracy in Smart Contracts

Authors: Sayor Ajfar Aaron, Sajjat Hossain Abir, Ashif Newaz, Mushfiqur Rahman

Abstract:

Investigating the convergence of blockchain technology and artificial intelligence, this paper examines their synergistic effects on data integrity and decision-making within smart contracts. By implementing AI-driven analytics on blockchain-based platforms, the research identifies improvements in automated contract enforcement and decision accuracy. The paper presents a framework that leverages AI to enhance transparency and trust while blockchain ensures immutable record-keeping, culminating in significantly optimized operational efficiencies in various industries.

Keywords: artificial intelligence, blockchain, data integrity, smart contracts

Procedia PDF Downloads 17
11177 Synergistic Studies of Multi-Flame Retarders Using Silica Nanoparticles, and Nitrogen and Phosphorus-Based Compounds for Polystyrene Using Response Surface Methodology

Authors: Florencio D. De Los Reyes, Magdaleno R. Vasquez Jr., Mark Daniel G. De Luna, Peerasak Paoprasert

Abstract:

The effect of adding silica nanoparticles (SiNPs) obtained from rice husk, and phosphorus and nitrogen based compounds namely 9,10-dihydro-9-oxa-10-phosphaphenantrene-10-oxide (DOPO) and melamine, respectively, on the flammability of polystyrene (PS) was studied using response surface methodology (RSM). The flammability of PS was reduced as the limiting oxygen index (LOI) values increased when the flame retardant additives were added. DOPO exhibited the best retarding property increasing the LOI value of PS by 42.4%. A quadratic model for LOI was obtained from the RSM results, with percent loading of SiNPs, DOPO, and melamine, as independent variables. The observed increase in the LOI value as the percent loading of the flame retardant additives is increased, was attributed both to the main effects and synergistic effects of the parameters, as the LOI response of SiNPs is greatly enhanced by the addition of DOPO and melamine, as shown by the response surface plots. This indicates the potential of producing a cheaper, effective, and non-toxic multi-flame retardant system for the polymeric system via different flame retarding mechanisms.

Keywords: flame retardancy, polystyrene, response surface methodology, rice husk, silica nanoparticle

Procedia PDF Downloads 261
11176 A Feasibility Study of Waste (d) Potential: Synergistic Effect Evaluation by Co-digesting Organic Wastes and Kinetics of Biogas Production

Authors: Kunwar Paritosh, Sanjay Mathur, Monika Yadav, Paras Gandhi, Subodh Kumar, Nidhi Pareek, Vivekanand Vivekanand

Abstract:

A significant fraction of energy is wasted every year managing the biodegradable organic waste inadequately as development and sustainability are the inherent enemies. The management of these waste is indispensable to boost its optimum utilization by converting it to renewable energy resource (here biogas) through anaerobic digestion and to mitigate greenhouse gas emission. Food and yard wastes may prove to be appropriate and potential feedstocks for anaerobic co-digestion for biogas production. The present study has been performed to explore the synergistic effect of co-digesting food waste and yard trimmings from MNIT campus for enhanced biogas production in different ratios in batch tests (37±10C, 90 rpm, 45 days). The results were overwhelming and showed that blending two different organic waste in proper ratio improved the biogas generation considerably, with the highest biogas yield (2044±24 mLg-1VS) that was achieved at 75:25 of food waste to yard waste ratio on volatile solids (VS) basis. The yield was 1.7 and 2.2 folds higher than the mono-digestion of food or yard waste (1172±34, 1016±36mLg-1VS) respectively. The increase in biogas production may be credited to optimum C/N ratio resulting in higher yield. Also Adding TiO2 nanoparticles showed virtually no effect on biogas production as sometimes nanoparticles enhance biogas production. ICP-MS, FTIR analysis was carried out to gain an insight of feedstocks. Modified Gompertz and logistics models were applied for the kinetic study of biogas production where modified Gompertz model showed goodness-of-fit (R2=0.9978) with the experimental results.

Keywords: anaerobic co-digestion, biogas, kinetics, nanoparticle, organic waste

Procedia PDF Downloads 363
11175 Stabilization of y-Sterilized Food, Packaging Materials by Synergistic Mixtures of Food-Contact Approval Stabilizers

Authors: Sameh A. S. Thabit Alariqi

Abstract:

Food is widely packaged with plastic materials to prevent microbial contamination and spoilage. Ionizing radiation is widely used to sterilize the food-packaging materials. Sterilization by γ-radiation causes degradation for the plastic packaging materials such as embrittlement, stiffening, softening, discoloration, odour generation, and decrease in molecular weight. Many antioxidants can prevent γ-degradation but most of them are toxic. The migration of antioxidants to its environment gives rise to major concerns in case of food packaging plastics. In this attempt, we have aimed to utilize synergistic mixtures of stabilizers which are approved for food-contact applications. Ethylene-propylene-diene terpolymer (EPDM) have been melt-mixed with hindered amine stabilizers (HAS), phenolic antioxidants and organo-phosphites (hydroperoxide decomposer). Results were discussed by comparing the stabilizing efficiency of mixtures with and without phenol system. Among phenol containing systems where we mostly observed discoloration due to the oxidation of hindered phenol, the combination of secondary HAS, tertiary HAS, organo-phosphite and hindered phenol exhibited improved stabilization efficiency than single or binary additive systems. The mixture of secondary HAS and tertiary HAS, has shown antagonistic effect of stabilization. However, the combination of organo-phosphite with secondary HAS, tertiary HAS and phenol antioxidants have been found to give synergistic even at higher doses of -sterilization. The effects have been explained through the interaction between the stabilizers. After γ-irradiation, the consumption of oligomeric stabilizer significantly depends on the components of stabilization mixture. The effect of the organo-phosphite antioxidant on the overall stability has been discussed.

Keywords: ethylene-propylene-diene terpolymer, synergistic mixtures, gamma sterilization, gamma stabilization

Procedia PDF Downloads 415
11174 Unlocking Synergy: Exploring the Impact of Integrating Knowledge Management and Competitive Intelligence for Synergistic Advantage for Efficient, Inclusive and Optimum Organizational Performance

Authors: Godian Asami Mabindah

Abstract:

The convergence of knowledge management (KM) and competitive intelligence (CI) has gained significant attention in recent years as organizations seek to enhance their competitive advantage in an increasingly complex and dynamic business environment. This research study aims to explore and understand the synergistic relationship between KM and CI and its impact on organizational performance. By investigating how the integration of KM and CI practices can contribute to decision-making, innovation, and competitive advantage, this study seeks to unlock the potential benefits and challenges associated with this integration. The research employs a mixed-methods approach to gather comprehensive data. A quantitative analysis is conducted using survey data collected from a diverse sample of organizations across different industries. The survey measures the extent of integration between KM and CI practices and examines the perceived benefits and challenges associated with this integration. Additionally, qualitative interviews are conducted with key organizational stakeholders to gain deeper insights into their experiences, perspectives, and best practices regarding the synergistic relationship. The findings of this study are expected to reveal several significant outcomes. Firstly, it is anticipated that organizations that effectively integrate KM and CI practices will outperform those that treat them as independent functions. The study aims to highlight the positive impact of this integration on decision-making, innovation, organizational learning, and competitive advantage. Furthermore, the research aims to identify critical success factors and enablers for achieving constructive interaction between KM and CI, such as leadership support, culture, technology infrastructure, and knowledge-sharing mechanisms. The implications of this research are far-reaching. Organizations can leverage the findings to develop strategies and practices that facilitate the integration of KM and CI, leading to enhanced competitive intelligence capabilities and improved knowledge management processes. Additionally, the research contributes to the academic literature by providing a comprehensive understanding of the synergistic relationship between KM and CI and proposing a conceptual framework that can guide future research in this area. By exploring the synergies between KM and CI, this study seeks to help organizations harness their collective power to gain a competitive edge in today's dynamic business landscape. The research provides practical insights and guidelines for organizations to effectively integrate KM and CI practices, leading to improved decision-making, innovation, and overall organizational performance.

Keywords: Competitive Intelligence, Knowledge Management, Organizational Performance, Incusivity, Optimum Performance

Procedia PDF Downloads 57
11173 Synthesis, Antibacterial Activities, and Synergistic Effects of Novel Juglone and Naphthazarin Derivatives Against Clinical Methicillin-Resistant Staphylococcus aureus Strains

Authors: Zohra Benfodda, Valentin Duvauchelle, Chaimae Majdi, David Bénimélis, Catherine Dunyach-Remy, Patrick Meffre

Abstract:

New antibiotics are necessary to treat microbial pathogens, especially ESKAPE pathogens that are becoming increasingly resistant to available treatment. Despite the medical need, the number of newly approved drugs continues to decline. The majority of antibiotics under clinical development are natural products or derivatives thereof. 43 juglone/naphthazarin derivatives were synthesized using Minisci-type direct C–H alkylation and evaluated for their antibacterial properties against various clinical and reference Gram-positive MSSA, clinical Gram-positive MRSA. Different compounds of the synthesized series showed promising activity against clinical and reference MSSA (MIC: 1–8 μg/ml) and good efficacy against clinical MRSA (MIC: 2–8 μg/ml) strains. The synergistic effects of active compounds were evaluated with reference antibiotics (vancomycin and cloxacillin), and it was found that the antibiotic combination with those active compounds efficiently enhanced the antimicrobial activity and consequently the MIC values of reference antibiotics were lowered up to 1/16th of the original MIC. These synthesized compounds did not present hemolytic activity on sheep red blood cells. In addition to the in silico prediction of ADME profile parameter which is promising and encouraging for further development.

Keywords: juglone, naphthazarin, antibacterial, clinical MRSA, synergistic studies, MIC determination

Procedia PDF Downloads 98
11172 Mechanical Properties and Microstructure of Ultra-High Performance Concrete Containing Fly Ash and Silica Fume

Authors: Jisong Zhang, Yinghua Zhao

Abstract:

The present study investigated the mechanical properties and microstructure of Ultra-High Performance Concrete (UHPC) containing supplementary cementitious materials (SCMs), such as fly ash (FA) and silica fume (SF), and to verify the synergistic effect in the ternary system. On the basis of 30% fly ash replacement, the incorporation of either 10% SF or 20% SF show a better performance compared to the reference sample. The efficiency factor (k-value) was calculated as a synergistic effect to predict the compressive strength of UHPC with these SCMs. The SEM of micrographs and pore volume from BJH method indicate a high correlation with compressive strength. Further, an artificial neural networks model was constructed for prediction of the compressive strength of UHPC containing these SCMs.

Keywords: artificial neural network, fly ash, mechanical properties, ultra-high performance concrete

Procedia PDF Downloads 387
11171 Synergistic Sorption of Cr(VI) and Cu(II) onto Sweet Potato Vine from Binary Mixtures Cr(VI)-Cu(II)

Authors: Chang Liu, Nuria Fiol, Isabel Villaescusa, Jordi Poch

Abstract:

Over the last decades, biosorption has been an alternative to costly wastewaters treatment for metal removal. Most of the literature on metal biosorption was devoted to studying of single metal ions but nowadays studies on multi-components biosorption are booming. Hexavalent chromium is usually found in mixtures with divalent metal ions in industries wastewaters. However, studies on the simultaneous removal of Cr(VI) and divalent metals are hardly found and the cooperative or competitive mechanism governing each metal ions sorption is still unclear. In this work, simultaneous sorption of Cr(VI) and Cu(II) from their binary mixtures by using sweet potato vine (SPV) was investigated. Sweet potato is one of the four major grain crops in China. Each year about 2000 tons of SPV are generated as by-products. SPV could be a low-cost biosorbent for metal ions due to its rich in cellulose and lignin. In this work, the sorption of Cr(VI) and Cu(II) from their binary mixtures solutions was studied by using SPV sorbent. Equilibrium studies were carried out in binary mixtures in which Cr(VI) and Cu(II) concentration was both varied between 0.1 mM and 0.3 mM, Cr(VI) and Cu(II) single solutions were also prepared as comparison. All the experiments were performed at pH 3±0.05 under 30±2°C for 7 days to make sure sorption achieved equilibrium. Results showed that (i) chromium was partially (10.93%-42.04%) eliminated under studied conditions through reduction and sorption of hexavalent and trivalent forms. The presence of Cu(II) exerts a synergistic effect on the overall sorption process in all the cases of the 0.1-0.3 mM binary mixtures concentration range. (ii) Cr(VI) removal by SPV is favoured by the presence of Cu(II) in solution, because more protons needed for Cr(VI) reduction are available due to Cu(II)-proton competition; however sorption of the formed Cr(III) is unfavoured as a result of the competition between Cr(III) and Cu(II) for protons and sorbent active sites. (iii) Copper was partially (9.26%-13.91%) sorbed onto SPV under studied conditions. The presence of Cr(VI) in binary mixtures also exerts a synergistic effect on the Cu(II) removal in all the cases of the 0.1-0.3 mM binary mixtures concentration range. The results of the present work indicate that sweet potato vine can be successfully employed for the simultaneously removal of Cr(VI) and Cu(II) in binary mixtures, taking advantage of the synergistic effect provoked by one of the metal ion to each other, even though the acquisition of higher removal yields has to be further investigated. Acknowledgements—This work has been financially supported by Ministry of Human Resources and Social Security of PRC (Anhui15), Education Department of Anhui Province (KJ2016A270) and Anhui Normal University (2015rcpy33, 2014bsqdjj53).

Keywords: sweet potato vine, chromium reduction, divalent metal, synergistic sorption

Procedia PDF Downloads 150
11170 Influence of Synergistic/Antagonistic Mixtures of Oligomeric Stabilizers on the Biodegradation of γ-Sterilized Polyolefins

Authors: Sameh A. S. Thabit Alariqi

Abstract:

Our previous studies aimed to investigate the biodegradation of γ-sterilized polyolefins in composting and microbial culture environments at different doses and γ-dose rates. It was concluded from the previous studies that the pretreatment of γ-irradiation can accelerate the biodegradation of neat polymer matrix in biotic conditions significantly. A similar work was carried out to study the stabilization of γ-sterilized polyolefins using different mixtures of stabilizers which are approved for food-contact applications. Ethylene-propylene (EP) copolymer has been melt-mixed with hindered amine stabilizers (HAS), phenolic antioxidants and hydroperoxide decomposers. Results were discussed by comparing the stabilizing efficiency, combination and consumption of stabilizers and the synergistic and antagonistic effects was explained through the interaction between the stabilizers. In this attempt, we have aimed to study the influence of the synergistic and antagonistic mixtures of oligomeric stabilizers on the biodegradation of the γ-irradiated polyolefins in composting and microbial culture. Neat and stabilized films of EP copolymer irradiated under γ-radiation and incubated in compost and fungal culture environments. The changes in functional groups, surface morphology, mechanical properties and intrinsic viscosity in polymer chains were characterized by FT-IR spectroscopy, SEM, instron, and viscometric measurements respectively. Results were discussed by comparing the effect of different stabilizers, stabilizers mixtures on the biodegradation of the γ-irradiated polyolefins. It was found that the biodegradation significantly depends on the components of stabilization system, mobility, interaction, and consumption of stabilizers.

Keywords: biodegradation, γ-irradiation, polyolefins, stabilization

Procedia PDF Downloads 370
11169 The Prospects of Leveraging (Big) Data for Accelerating a Just Sustainable Transition around Different Contexts

Authors: Sombol Mokhles

Abstract:

This paper tries to show the prospects of utilising (big)data for enabling just the transition of diverse cities. Our key purpose is to offer a framework of applications and implications of utlising (big) data in comparing sustainability transitions across different cities. Relying on the cosmopolitan comparison, this paper explains the potential application of (big) data but also its limitations. The paper calls for adopting a data-driven and just perspective in including different cities around the world. Having a just and inclusive approach at the front and centre ensures a just transition with synergistic effects that leave nobody behind.

Keywords: big data, just sustainable transition, cosmopolitan city comparison, cities

Procedia PDF Downloads 80
11168 Optimization of Synergism Extraction of Toxic Metals (Lead, Copper) from Chlorides Solutions with Mixture of Cationic and Solvating Extractants

Authors: F. Hassaine-Sadi, S. Chelouaou

Abstract:

In recent years, environmental contamination by toxic metals such as Pb, Cu, Ni, Zn ... has become a worldwide crucial problem, particularly in some areas where the population depends on groundwater for drinking daily consumption. Thus, the sources of metal ions come from the metal manufacturing industry, fertilizers, batteries, paints, pigments and so on. Solvent extraction of metal ions has given an important role in the development of metal purification processes such as the synergistic extraction of some divalent cations metals ( M²⁺), the ions metals from various sources. This work consists of a water purification technique that involves the lead and copper systems: Pb²⁺, H₃O+, Cl⁻ and Cu²⁺, H₃O⁺, Cl⁻ for diluted solutions by a mixture of tri-n-octylphosphine oxide (TOPO) or Tri-n-butylphosphate(TBP) and di (2-ethyl hexyl) phosphoric acid (HDEHP) dissolved in kerosene. The study of the fundamental parameters influencing the extraction synergism: cation exchange/extraction solvent have been examined.

Keywords: synergistic extraction, lead, copper, environment

Procedia PDF Downloads 420
11167 In vitro Studies on Antimycobacterial and Efflux Pump Inhibition of C. roseus and P. nigrum against Clinical Isolates of Ofloxacin Resistant M. tuberculosis

Authors: Raja Arunprasath, P. Gajalakshmi

Abstract:

Antimycobacterial activity of C. roseus rosea and piperine was evaluated against ofloxacin resistant M. tuberculosis. Among the 68 suspected sputum samples, 32 were AFB positive belongs to age group of 40-50years. Susceptibility of M. tuberculosis was evaluated against ofloxacin and streptomycin by colorimetric assay. Of these 32 positive samples, 20 isolates were resistant to ofloxacin, 12 were resistant to Streptomycin and none of them were found to be multidrug resistant. The sensitivity pattern of ofloxacin resistant M. tuberculosis against two tested plant extracts showed potent tubercular activity. Antimycobacterial activity of C. roseus was 22 + 2.21mm and piperine was found to be 20 + 1.08 mm. The percentage of relative inhibitory zone of C. roseus was 133 % and piperine was found to be 111 %. The MIC of C. roseus and piperine was found at 50 µg/ml. Based on the FICI value 0.37 confirms that both the tested phytochemicals were synergistically active against M. tuberculosis. The MIC of ofloxacin was reduced from 8 mg to 2 mg/l in the presence of piperine but not by C. roseus. This is the first report on Synergistic bioactivity of C. roseus rosea and piperine fractionation leads development of novel antimycobacterial prophylaxis in future.

Keywords: C. roseus, ofloxacin, piperine, synergistic

Procedia PDF Downloads 439
11166 Enrichment of the Antioxidant Activity of Decaffeinated Assam Green Tea by Herbal Plant: A Synergistic Effect

Authors: Abhijit Das, Runu Chakraborty

Abstract:

Tea is the most widely consumed beverage aside from water; it is grown in about 30 countries with a per capita worldwide consumption of approximately 0.12 liter per year. Green tea is of growing importance with its antioxidant contents associated with its health benefits. The various extraction methods can influence the polyphenol concentrations of green tea. The purpose of the study was to quantify the polyphenols, flavonoid and antioxidant activity of both caffeinated and decaffeinated form of tea manufactured commercially in Assam, North Eastern part of India. The results display that phenolic/flavonoid content well correlated with antioxidant activity which was performed by DPPH (2,2-diphenyl-1-picrylhydrazyl) and FRAP (Ferric reducing ability of plasma) assay. After decaffeination there is a decrease in the polyphenols concentration which also affects the antioxidant activity of green tea. For the enrichment of antioxidant activity of decaffeinated tea a herbal plant extract is used which shows a synergistic effect between green tea and herbal plant phenolic compounds.

Keywords: antioxidant activity, decaffeination, green tea, flavonoid content, phenolic content, plant extract

Procedia PDF Downloads 324
11165 Combined Treatment of PARP-1 Inhibitor and Carbon Ion or Gamma Exposure Reduces the Metastatic Potential in Cultured Human Cells

Authors: Priyanka Chowdhury, Asitikantha Sarma, Utpal Ghosh

Abstract:

Hadron therapy using high Linear Energy Transfer (LET) ion beam is producing promising clinical results worldwide. The major advantages are its ability to kill radio-resistant tumor and its anti-metastatic activity. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors have been widely used as radiosensitizer, but its role in metastasis is unknown. The purpose of our study was to investigate the effect of PARP-1 depletion in combination with either Carbon Ion Beam (CIB) or gamma irradiation on metastatic potential of cultured cancerous cells. A549 cells were irradiated with CIB (0-4Gy) or gamma (0, 2, 4, 6 and 10 Gy) with and without PARP-1 inhibition. The metastatic potential of the cells was determined by cell migratory assay, expression, and activity of MMP-2 and MMP-9, expression of Cadherin, Fibronectin, and Vimentin. CIB exposure reduced migratory property and activity of MMP-2 and MMP-9 significantly. CIB with PARP-1 inhibition reduced cell migration and Matrix Metalloproteinase (MMPs) activity in a synergistic manner. Expression of MMPs was also down-regulated in CIB and combined treatment. On the contrary, MMP- 2 and MMP-9 activity was significantly increased in gamma irradiated cells but decreased upon combined treatment of gamma and PARP-1 inhibitor. MMPs expression and migration was reduced when gamma irradiation was combined with PARP-1 inhibition. Thus, our study clearly demonstrates that PARP-1 inhibition in combination with either high or low LET can significantly suppress metastatic potential in cancer cells and thereby can be a promising tool in controlling metastatic cancers.

Keywords: high LET, low LET, matrix metalloproteinase (MMP), PARP-1

Procedia PDF Downloads 197