Search results for: supply chain integration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5764

Search results for: supply chain integration

64 Organization Structure of Towns and Villages System in County Area Based on Fractal Theory and Gravity Model: A Case Study of Suning, Hebei Province, China

Authors: Liuhui Zhu, Peng Zeng

Abstract:

With the rapid development in China, the urbanization has entered the transformation and promotion stage, and its direction of development has shifted to overall regional synergy. China has a large number of towns and villages, with comparative small scale and scattered distribution, which always support and provide resources to cities leading to urban-rural opposition, so it is difficult to achieve common development in a single town or village. In this context, the regional development should focus more on towns and villages to form a synergetic system, joining the regional association with cities. Thus, the paper raises the question about how to effectively organize towns and villages system to regulate the resource allocation and improve the comprehensive value of the regional area. To answer the question, it is necessary to find a suitable research unit and analysis of its present situation of towns and villages system for optimal development. By combing relevant researches and theoretical models, the county is the most basic administrative unit in China, which can directly guide and regulate the development of towns and villages, so the paper takes county as the research unit. Following the theoretical concept of ‘three structures and one network’, the paper concludes the research framework to analyse the present situation of towns and villages system, including scale structure, functional structure, spatial structure, and organization network. The analytical methods refer to the fractal theory and gravity model, using statistics and spatial data. The scale structure analyzes rank-size dimensions and uses the principal component method to calculate the comprehensive scale of towns and villages. The functional structure analyzes the functional types and industrial development of towns and villages. The spatial structure analyzes the aggregation dimension, network dimension, and correlation dimension of spatial elements to represent the overall spatial relationships. In terms of organization network, from the perspective of entity and ono-entity, the paper analyzes the transportation network and gravitational network. Based on the present situation analysis, the optimization strategies are proposed in order to achieve a synergetic relationship between towns and villages in the county area. The paper uses Suning county in the Beijing-Tianjin-Hebei region as a case study to apply the research framework and methods and then proposes the optimization orientations. The analysis results indicate that: (1) The Suning county is lack of medium-scale towns to transfer effect from towns to villages. (2) The distribution of gravitational centers is uneven, and the effect of gravity is limited only for nearby towns and villages. The gravitational network is not complete, leading to economic activities scattered and isolated. (3) The overall development of towns and villages system is immature, staying at ‘single heart and multi-core’ stage, and some specific optimization strategies are proposed. This study provides a regional view for the development of towns and villages and concludes the research framework and methods of towns and villages system for forming an effective synergetic relationship between them, contributing to organize resources and stimulate endogenous motivation, and form counter magnets to join the urban-rural integration.

Keywords: towns and villages system, organization structure, county area, fractal theory, gravity model

Procedia PDF Downloads 110
63 Hydrogen Production Using an Anion-Exchange Membrane Water Electrolyzer: Mathematical and Bond Graph Modeling

Authors: Hugo Daneluzzo, Christelle Rabbat, Alan Jean-Marie

Abstract:

Water electrolysis is one of the most advanced technologies for producing hydrogen and can be easily combined with electricity from different sources. Under the influence of electric current, water molecules can be split into oxygen and hydrogen. The production of hydrogen by water electrolysis favors the integration of renewable energy sources into the energy mix by compensating for their intermittence through the storage of the energy produced when production exceeds demand and its release during off-peak production periods. Among the various electrolysis technologies, anion exchange membrane (AEM) electrolyser cells are emerging as a reliable technology for water electrolysis. Modeling and simulation are effective tools to save time, money, and effort during the optimization of operating conditions and the investigation of the design. The modeling and simulation become even more important when dealing with multiphysics dynamic systems. One of those systems is the AEM electrolysis cell involving complex physico-chemical reactions. Once developed, models may be utilized to comprehend the mechanisms to control and detect flaws in the systems. Several modeling methods have been initiated by scientists. These methods can be separated into two main approaches, namely equation-based modeling and graph-based modeling. The former approach is less user-friendly and difficult to update as it is based on ordinary or partial differential equations to represent the systems. However, the latter approach is more user-friendly and allows a clear representation of physical phenomena. In this case, the system is depicted by connecting subsystems, so-called blocks, through ports based on their physical interactions, hence being suitable for multiphysics systems. Among the graphical modelling methods, the bond graph is receiving increasing attention as being domain-independent and relying on the energy exchange between the components of the system. At present, few studies have investigated the modelling of AEM systems. A mathematical model and a bond graph model were used in previous studies to model the electrolysis cell performance. In this study, experimental data from literature were simulated using OpenModelica using bond graphs and mathematical approaches. The polarization curves at different operating conditions obtained by both approaches were compared with experimental ones. It was stated that both models predicted satisfactorily the polarization curves with error margins lower than 2% for equation-based models and lower than 5% for the bond graph model. The activation polarization of hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) were behind the voltage loss in the AEM electrolyzer, whereas ion conduction through the membrane resulted in the ohmic loss. Therefore, highly active electro-catalysts are required for both HER and OER while high-conductivity AEMs are needed for effectively lowering the ohmic losses. The bond graph simulation of the polarisation curve for operating conditions at various temperatures has illustrated that voltage increases with temperature owing to the technology of the membrane. Simulation of the polarisation curve can be tested virtually, hence resulting in reduced cost and time involved due to experimental testing and improved design optimization. Further improvements can be made by implementing the bond graph model in a real power-to-gas-to-power scenario.

Keywords: hydrogen production, anion-exchange membrane, electrolyzer, mathematical modeling, multiphysics modeling

Procedia PDF Downloads 52
62 Sensorless Machine Parameter-Free Control of Doubly Fed Reluctance Wind Turbine Generator

Authors: Mohammad R. Aghakashkooli, Milutin G. Jovanovic

Abstract:

The brushless doubly-fed reluctance generator (BDFRG) is an emerging, medium-speed alternative to a conventional wound rotor slip-ring doubly-fed induction generator (DFIG) in wind energy conversion systems (WECS). It can provide competitive overall performance and similar low failure rates of a typically 30% rated back-to-back power electronics converter in 2:1 speed ranges but with the following important reliability and cost advantages over DFIG: the maintenance-free operation afforded by its brushless structure, 50% synchronous speed with the same number of rotor poles (allowing the use of a more compact, and more efficient two-stage gearbox instead of a vulnerable three-stage one), and superior grid integration properties including simpler protection for the low voltage ride through compliance of the fractional converter due to the comparatively higher leakage inductances and lower fault currents. Vector controlled pulse-width-modulated converters generally feature a much lower total harmonic distortion relative to hysteresis counterparts with variable switching rates and as such have been a predominant choice for BDFRG (and DFIG) wind turbines. Eliminating a shaft position sensor, which is often required for control implementation in this case, would be desirable to address the associated reliability issues. This fact has largely motivated the recent growing research of sensorless methods and developments of various rotor position and/or speed estimation techniques for this purpose. The main limitation of all the observer-based control approaches for grid-connected wind power applications of the BDFRG reported in the open literature is the requirement for pre-commissioning procedures and prior knowledge of the machine inductances, which are usually difficult to accurately identify by off-line testing. A model reference adaptive system (MRAS) based sensor-less vector control scheme to be presented will overcome this shortcoming. The true machine parameter independence of the proposed field-oriented algorithm, offering robust, inherently decoupled real and reactive power control of the grid-connected winding, is achieved by on-line estimation of the inductance ratio, the underlying rotor angular velocity and position MRAS observer being reliant upon. Such an observer configuration will be more practical to implement and clearly preferable to the existing machine parameter dependent solutions, and especially bearing in mind that with very little modifications it can be adapted for commercial DFIGs with immediately obvious further industrial benefits and prospects of this work. The excellent encoder-less controller performance with maximum power point tracking in the base speed region will be demonstrated by realistic simulation studies using large-scale BDFRG design data and verified by experimental results on a small laboratory prototype of the WECS emulation facility.

Keywords: brushless doubly fed reluctance generator, model reference adaptive system, sensorless vector control, wind energy conversion

Procedia PDF Downloads 34
61 Canadian Undergraduate and Graduate Nursing Students: Interest in Education in Medical and Recreational Cannabis for Practice and Career Development

Authors: Margareth S. Zanchetta, Kateryna Metersky, Valerie Tan, Charissa Cordon, Stephanie Lucchese, Yana Siganevich, Prasha Sivasundaram, Truong Binh Nguyen, Imran Qureshi

Abstract:

Due to a new area of practice, Canadian nurses possess knowledge gaps regarding the use of cannabis-based therapies by clients/patients. Education related to medical cannabis (MC) and recreational cannabis (RC) is required to promote nurses’ competency and confidence in supporting clients/patients using MC/RC toward the improvement of health outcomes. A team composed of nursing researchers and undergraduate/graduate students implemented a national survey to explore this theme with the population of undergraduate, graduate (MN and NP), and Post-Diploma (RN Bridging) nursing students enrolled in Canadian Universities Nursing Programs. Upon Research Ethics Board approval, survey recruitment was supported by major nursing stakeholders. The research questions were : (a) Which are the most preferred sources of information on MC/RC for nursing students? (b) Which are the factors and preferred learning modalities that could increase interest in learning about MC/RC, and (c) What are the future career plans among nursing students, and how would they consider the prospective use of cannabis in their practice? The survey was available from Sept. 2022 to Feb. 2023, hosted by a remote platform. An original questionnaire (English-French) was composed of 18 multiple choice questions and 2 open-ended questions. Sociodemographic information and closed-ended responses were compiled as descriptive statistics, while narrative accounts will be analysed through thematic analysis. Respondents (n=153) were from 7 Canadian provinces, national (99%) and international students (1%); the majority of respondents (61%) were in the age range of 21-30 years old. Results indicated that respondents perceive a gap in the undergraduate curriculum on the topics of MC/RC (91%) and that their learning needs include regulations (90%), data on effectiveness (88%), dosing best practices (86%), contraindications (83%), and clinical and medical indications (76%). Respondents reported motivation to learn more about MC/RC through online lectures/videos (65%), e-learning modules or online interactive training (61%), workshops (51%), webinars (36%), and social media (35%). Their primary career-related motivations regarding MC/RC knowledge include enhancing nursing practice (76%), learning about this growing scope of practice (61%), keeping up-to-date responding to scientific curiosity (59%), learning about evidence-based practice (59%), and utilizing alternative forms of medical treatment (37%). Respondents indicated that the integration of topics on cannabis in any course in the undergraduate and/or graduate curriculum would increase their desire to learn about MC/RC as equally as exposure within a clinical setting (75%). The emerging trend in the set of narrative responses (n=130) suggests that respondents believe educational MC/RC content should be integrated into core nursing courses. Respondents also urged educators to be well-informed about evidence-based practice related to MC/RC and to reflect upon stigma and biases surrounding its use. Future knowledge dissemination and translation activities include scholarly products and presentations to stimulate discussion amongst nursing faculty and students, as well as nurses in clinical settings. The goal is to mobilise talents and build collaboration for the development of a socially responsive curriculum on MC/RC competency to address the education-related expectations of all these social actors.

Keywords: Canada, medical cannabis, nursing education, nursing graduate student, nursing undergraduate student, online survey, recreational cannabis

Procedia PDF Downloads 60
60 Multibody Constrained Dynamics of Y-Method Installation System for a Large Scale Subsea Equipment

Authors: Naeem Ullah, Menglan Duan, Mac Darlington Uche Onuoha

Abstract:

The lowering of subsea equipment into the deep waters is a challenging job due to the harsh offshore environment. Many researchers have introduced various installation systems to deploy the payload safely into the deep oceans. In general practice, dual floating vessels are not employed owing to the prevalent safety risks and hazards caused by ever-increasing dynamical effects sourced by mutual interaction between the bodies. However, while keeping in the view of the optimal grounds, such as economical one, the Y-method, the two conventional tugboats supporting the equipment by the two independent strands connected to a tri-plate above the equipment, has been employed to study multibody dynamics of the dual barge lifting operations. In this study, the two tugboats and the suspended payload (Y-method) are deployed for the lowering of subsea equipment into the deep waters as a multibody dynamic system. The two-wire ropes are used for the lifting and installation operation by this Y-method installation system. 6-dof (degree of freedom) for each body are considered to establish coupled 18-dof multibody model by embedding technique or velocity transformation technique. The fundamental and prompt advantage of this technique is that the constraint forces can be eliminated directly, and no extra computational effort is required for the elimination of the constraint forces. The inertial frame of reference is taken at the surface of the water as the time-independent frame of reference, and the floating frames of reference are introduced in each body as the time-dependent frames of reference in order to formulate the velocity transformation matrix. The local transformation of the generalized coordinates to the inertial frame of reference is executed by applying the Euler Angle approach. The spherical joints are articulated amongst the multibody as the kinematic joints. The hydrodynamic force, the two-strand forces, the hydrostatic force, and the mooring forces are taken into consideration as the external forces. The radiation force of the hydrodynamic force is obtained by employing the Cummins equation. The wave exciting part of the hydrodynamic force is obtained by using force response amplitude operators (RAOs) that are obtained by the commercial solver ‘OpenFOAM’. The strand force is obtained by considering the wire rope as an elastic spring. The nonlinear hydrostatic force is obtained by the pressure integration technique at each time step of the wave movement. The mooring forces are evaluated by using Faltinsen analytical approach. ‘The Runge Kutta Method’ of Fourth-Order is employed to evaluate the coupled equations of motion obtained for 18-dof multibody model. The results are correlated with the simulated Orcaflex Model. Moreover, the results from Orcaflex Model are compared with the MOSES Model from previous studies. The MBDS of single barge lifting operation from the former studies are compared with the MBDS of the established dual barge lifting operation. The dynamics of the dual barge lifting operation are found larger in magnitude as compared to the single barge lifting operation. It is noticed that the traction at the top connection point of the cable decreases with the increase in the length, and it becomes almost constant after passing through the splash zone.

Keywords: dual barge lifting operation, Y-method, multibody dynamics, shipbuilding, installation of subsea equipment, shipbuilding

Procedia PDF Downloads 173
59 Solymorph: Design and Fabrication of AI-Driven Kinetic Facades with Soft Robotics for Optimized Building Energy Performance

Authors: Mohammadreza Kashizadeh, Mohammadamin Hashemi

Abstract:

Solymorph, a kinetic building facade designed for optimal energy capture and architectural expression, is explored in this paper. The system integrates photovoltaic panels with soft robotic actuators for precise solar tracking, resulting in enhanced electricity generation compared to static facades. Driven by the growing interest in dynamic building envelopes, the exploration of novel facade systems is necessitated. Increased energy generation and regulation of energy flow within buildings are potential benefits offered by integrating photovoltaic (PV) panels as kinetic elements. However, incorporating these technologies into mainstream architecture presents challenges due to the complexity of coordinating multiple systems. To address this, Solymorph leverages soft robotic actuators, known for their compliance, resilience, and ease of integration. Additionally, the project investigates the potential for employing Large Language Models (LLMs) to streamline the design process. The research methodology involved design development, material selection, component fabrication, and system assembly. Grasshopper (GH) was employed within the digital design environment for parametric modeling and scripting logic, and an LLM was experimented with to generate Python code for the creation of a random surface with user-defined parameters. Various techniques, including casting, 3D printing, and laser cutting, were utilized to fabricate the physical components. Finally, a modular assembly approach was adopted to facilitate installation and maintenance. A case study focusing on the application of Solymorph to an existing library building at Politecnico di Milano is presented. The facade system is divided into sub-frames to optimize solar exposure while maintaining a visually appealing aesthetic. Preliminary structural analyses were conducted using Karamba3D to assess deflection behavior and axial loads within the cable net structure. Additionally, Finite Element (FE) simulations were performed in Abaqus to evaluate the mechanical response of the soft robotic actuators under pneumatic pressure. To validate the design, a physical prototype was created using a mold adapted for a 3D printer's limitations. Casting Silicone Rubber Sil 15 was used for its flexibility and durability. The 3D-printed mold components were assembled, filled with the silicone mixture, and cured. After demolding, nodes and cables were 3D-printed and connected to form the structure, demonstrating the feasibility of the design. Solymorph demonstrates the potential of soft robotics and Artificial Intelligence (AI) for advancements in sustainable building design and construction. The project successfully integrates these technologies to create a dynamic facade system that optimizes energy generation and architectural expression. While limitations exist, Solymorph paves the way for future advancements in energy-efficient facade design. Continued research efforts will focus on cost reduction, improved system performance, and broader applicability.

Keywords: artificial intelligence, energy efficiency, kinetic photovoltaics, pneumatic control, soft robotics, sustainable building

Procedia PDF Downloads 18
58 IoT Continuous Monitoring Biochemical Oxygen Demand Wastewater Effluent Quality: Machine Learning Algorithms

Authors: Sergio Celaschi, Henrique Canavarro de Alencar, Claaudecir Biazoli

Abstract:

Effluent quality is of the highest priority for compliance with the permit limits of environmental protection agencies and ensures the protection of their local water system. Of the pollutants monitored, the biochemical oxygen demand (BOD) posed one of the greatest challenges. This work presents a solution for wastewater treatment plants - WWTP’s ability to react to different situations and meet treatment goals. Delayed BOD5 results from the lab take 7 to 8 analysis days, hindered the WWTP’s ability to react to different situations and meet treatment goals. Reducing BOD turnaround time from days to hours is our quest. Such a solution is based on a system of two BOD bioreactors associated with Digital Twin (DT) and Machine Learning (ML) methodologies via an Internet of Things (IoT) platform to monitor and control a WWTP to support decision making. DT is a virtual and dynamic replica of a production process. DT requires the ability to collect and store real-time sensor data related to the operating environment. Furthermore, it integrates and organizes the data on a digital platform and applies analytical models allowing a deeper understanding of the real process to catch sooner anomalies. In our system of continuous time monitoring of the BOD suppressed by the effluent treatment process, the DT algorithm for analyzing the data uses ML on a chemical kinetic parameterized model. The continuous BOD monitoring system, capable of providing results in a fraction of the time required by BOD5 analysis, is composed of two thermally isolated batch bioreactors. Each bioreactor contains input/output access to wastewater sample (influent and effluent), hydraulic conduction tubes, pumps, and valves for batch sample and dilution water, air supply for dissolved oxygen (DO) saturation, cooler/heater for sample thermal stability, optical ODO sensor based on fluorescence quenching, pH, ORP, temperature, and atmospheric pressure sensors, local PLC/CPU for TCP/IP data transmission interface. The dynamic BOD system monitoring range covers 2 mg/L < BOD < 2,000 mg/L. In addition to the BOD monitoring system, there are many other operational WWTP sensors. The CPU data is transmitted/received to/from the digital platform, which in turn performs analyses at periodic intervals, aiming to feed the learning process. BOD bulletins and their credibility intervals are made available in 12-hour intervals to web users. The chemical kinetics ML algorithm is composed of a coupled system of four first-order ordinary differential equations for the molar masses of DO, organic material present in the sample, biomass, and products (CO₂ and H₂O) of the reaction. This system is solved numerically linked to its initial conditions: DO (saturated) and initial products of the kinetic oxidation process; CO₂ = H₂0 = 0. The initial values for organic matter and biomass are estimated by the method of minimization of the mean square deviations. A real case of continuous monitoring of BOD wastewater effluent quality is being conducted by deploying an IoT application on a large wastewater purification system located in S. Paulo, Brazil.

Keywords: effluent treatment, biochemical oxygen demand, continuous monitoring, IoT, machine learning

Procedia PDF Downloads 44
57 Traditional Wisdom of Indigenous Vernacular Architecture as Tool for Climate Resilience Among PVTG Indigenous Communities in Jharkhand, India

Authors: Ankush, Harshit Sosan Lakra, Rachita Kuthial

Abstract:

Climate change poses significant challenges to vulnerable communities, particularly indigenous populations in ecologically sensitive regions. Jharkhand, located in the heart of India, is home to several indigenous communities, including the Particularly Vulnerable Tribal Groups (PVTGs). The Indigenous architecture of the region functions as a significant reservoir of climate adaptation wisdom. It explores the architectural analysis encompassing the construction materials, construction techniques, design principles, climate responsiveness, cultural relevance, adaptation, integration with the environment and traditional wisdom that has evolved through generations, rooted in cultural and socioeconomic traditions, and has allowed these communities to thrive in a variety of climatic zones, including hot and dry, humid, and hilly terrains to withstand the test of time. Despite their historical resilience to adverse climatic conditions, PVTG tribal communities face new and amplified challenges due to the accelerating pace of climate change. There is a significant research void that exists in assimilating their traditional practices and local wisdom into contemporary climate resilience initiatives. Most of the studies place emphasis on technologically advanced solutions, often ignoring the invaluable Indigenous Local knowledge that can complement and enhance these efforts. This research gap highlights the need to bridge the disconnect between indigenous knowledge and contemporary climate adaptation strategies. The study aims to explore and leverage indigenous knowledge of vernacular architecture as a strategic tool for enhancing climatic resilience among PVTGs of the region. The first objective is to understand the traditional wisdom of vernacular architecture by analyzing and documenting distinct architectural practices and cultural significance of PVTG communities, emphasizing construction techniques, materials and spatial planning. The second objective is to develop culturally sensitive climatic resilience strategies based on findings of vernacular architecture by employing a multidisciplinary research approach that encompasses ethnographic fieldwork climate data assessment considering multiple variables such as temperature variations, precipitation patterns, extreme weather events and climate change reports. This will be a tailor-made solution integrating indigenous knowledge with modern technology and sustainable practices. With the involvement of indigenous communities in the process, the research aims to ensure that the developed strategies are practical, culturally appropriate, and accepted. To foster long-term resilience against the global issue of climate change, we can bridge the gap between present needs and future aspirations with Traditional wisdom, offering sustainable solutions that will empower PVTG communities. Moreover, the study emphasizes the significance of preserving and reviving traditional Architectural wisdom for enhancing climatic resilience. It also highlights the need for cooperative endeavors of communities, stakeholders, policymakers, and researchers to encourage integrating traditional Knowledge into Modern sustainable design methods. Through these efforts, this research will contribute not only to the well-being of PVTG communities but also to the broader global effort to build a more resilient and sustainable future. Also, the Indigenous communities like PVTG in the state of Jharkhand can achieve climatic resilience while respecting and safeguarding the cultural heritage and peculiar characteristics of its native population.

Keywords: vernacular architecture, climate change, resilience, PVTGs, Jharkhand, indigenous people, India

Procedia PDF Downloads 46
56 Transport Hubs as Loci of Multi-Layer Ecosystems of Innovation: Case Study of Airports

Authors: Carolyn Hatch, Laurent Simon

Abstract:

Urban mobility and the transportation industry are undergoing a transformation, shifting from an auto production-consumption model that has dominated since the early 20th century towards new forms of personal and shared multi-modality [1]. This is shaped by key forces such as climate change, which has induced a shift in production and consumption patterns and efforts to decarbonize and improve transport services through, for instance, the integration of vehicle automation, electrification and mobility sharing [2]. Advanced innovation practices and platforms for experimentation and validation of new mobility products and services that are increasingly complex and multi-stakeholder-oriented are shaping this new world of mobility. Transportation hubs – such as airports - are emblematic of these disruptive forces playing out in the mobility industry. Airports are emerging as the core of innovation ecosystems on and around contemporary mobility issues, and increasingly recognized as complex public/private nodes operating in many societal dimensions [3,4]. These include urban development, sustainability transitions, digital experimentation, customer experience, infrastructure development and data exploitation (for instance, airports generate massive and often untapped data flows, with significant potential for use, commercialization and social benefit). Yet airport innovation practices have not been well documented in the innovation literature. This paper addresses this gap by proposing a model of airport innovation that aims to equip airport stakeholders to respond to these new and complex innovation needs in practice. The methodology involves: 1 – a literature review bringing together key research and theory on airport innovation management, open innovation and innovation ecosystems in order to evaluate airport practices through an innovation lens; 2 – an international benchmarking of leading airports and their innovation practices, including such examples as Aéroports de Paris, Schipol in Amsterdam, Changi in Singapore, and others; and 3 – semi-structured interviews with airport managers on key aspects of organizational practice, facilitated through a close partnership with the Airport Council International (ACI), a major stakeholder in this research project. Preliminary results find that the most successful airports are those that have shifted to a multi-stakeholder, platform ecosystem model of innovation. The recent entrance of new actors in airports (Google, Amazon, Accor, Vinci, Airbnb and others) have forced the opening of organizational boundaries to share and exchange knowledge with a broader set of ecosystem players. This has also led to new forms of governance and intermediation by airport actors to connect complex, highly distributed knowledge, along with new kinds of inter-organizational collaboration, co-creation and collective ideation processes. Leading airports in the case study have demonstrated a unique capacity to force traditionally siloed activities to “think together”, “explore together” and “act together”, to share data, contribute expertise and pioneer new governance approaches and collaborative practices. In so doing, they have successfully integrated these many disruptive change pathways and forced their implementation and coordination towards innovative mobility outcomes, with positive societal, environmental and economic impacts. This research has implications for: 1 - innovation theory, 2 - urban and transport policy, and 3 - organizational practice - within the mobility industry and across the economy.

Keywords: airport management, ecosystem, innovation, mobility, platform, transport hubs

Procedia PDF Downloads 152
55 Fuzzy Multi-Objective Approach for Emergency Location Transportation Problem

Authors: Bidzina Matsaberidze, Anna Sikharulidze, Gia Sirbiladze, Bezhan Ghvaberidze

Abstract:

In the modern world emergency management decision support systems are actively used by state organizations, which are interested in extreme and abnormal processes and provide optimal and safe management of supply needed for the civil and military facilities in geographical areas, affected by disasters, earthquakes, fires and other accidents, weapons of mass destruction, terrorist attacks, etc. Obviously, these kinds of extreme events cause significant losses and damages to the infrastructure. In such cases, usage of intelligent support technologies is very important for quick and optimal location-transportation of emergency service in order to avoid new losses caused by these events. Timely servicing from emergency service centers to the affected disaster regions (response phase) is a key task of the emergency management system. Scientific research of this field takes the important place in decision-making problems. Our goal was to create an expert knowledge-based intelligent support system, which will serve as an assistant tool to provide optimal solutions for the above-mentioned problem. The inputs to the mathematical model of the system are objective data, as well as expert evaluations. The outputs of the system are solutions for Fuzzy Multi-Objective Emergency Location-Transportation Problem (FMOELTP) for disasters’ regions. The development and testing of the Intelligent Support System were done on the example of an experimental disaster region (for some geographical zone of Georgia) which was generated using a simulation modeling. Four objectives are considered in our model. The first objective is to minimize an expectation of total transportation duration of needed products. The second objective is to minimize the total selection unreliability index of opened humanitarian aid distribution centers (HADCs). The third objective minimizes the number of agents needed to operate the opened HADCs. The fourth objective minimizes the non-covered demand for all demand points. Possibility chance constraints and objective constraints were constructed based on objective-subjective data. The FMOELTP was constructed in a static and fuzzy environment since the decisions to be made are taken immediately after the disaster (during few hours) with the information available at that moment. It is assumed that the requests for products are estimated by homeland security organizations, or their experts, based upon their experience and their evaluation of the disaster’s seriousness. Estimated transportation times are considered to take into account routing access difficulty of the region and the infrastructure conditions. We propose an epsilon-constraint method for finding the exact solutions for the problem. It is proved that this approach generates the exact Pareto front of the multi-objective location-transportation problem addressed. Sometimes for large dimensions of the problem, the exact method requires long computing times. Thus, we propose an approximate method that imposes a number of stopping criteria on the exact method. For large dimensions of the FMOELTP the Estimation of Distribution Algorithm’s (EDA) approach is developed.

Keywords: epsilon-constraint method, estimation of distribution algorithm, fuzzy multi-objective combinatorial programming problem, fuzzy multi-objective emergency location/transportation problem

Procedia PDF Downloads 291
54 Dynamic Facades: A Literature Review on Double-Skin Façade with Lightweight Materials

Authors: Victor Mantilla, Romeu Vicente, António Figueiredo, Victor Ferreira, Sandra Sorte

Abstract:

Integrating dynamic facades into contemporary building design is shaping a new era of energy efficiency and user comfort. These innovative facades, often constructed using lightweight construction systems and materials, offer an opportunity to have a responsive and adaptive nature to the dynamic behavior of the outdoor climate. Therefore, in regions characterized by high fluctuations in daily temperatures, the ability to adapt to environmental changes is of paramount importance and a challenge. This paper presents a thorough review of the state of the art on double-skin facades (DSF), focusing on lightweight solutions for the external envelope. Dynamic facades featuring elements like movable shading devices, phase change materials, and advanced control systems have revolutionized the built environment. They offer a promising path for reducing energy consumption while enhancing occupant well-being. Lightweight construction systems are increasingly becoming the choice for the constitution of these facade solutions, offering benefits such as reduced structural loads and reduced construction waste, improving overall sustainability. However, the performance of dynamic facades based on low thermal inertia solutions in climatic contexts with high thermal amplitude is still in need of research since their ability to adapt is traduced in variability/manipulation of the thermal transmittance coefficient (U-value). Emerging technologies can enable such a dynamic thermal behavior through innovative materials, changes in geometry and control to optimize the facade performance. These innovations will allow a facade system to respond to shifting outdoor temperature, relative humidity, wind, and solar radiation conditions, ensuring that energy efficiency and occupant comfort are both met/coupled. This review addresses the potential configuration of double-skin facades, particularly concerning their responsiveness to seasonal variations in temperature, with a specific focus on addressing the challenges posed by winter and summer conditions. Notably, the design of a dynamic facade is significantly shaped by several pivotal factors, including the choice of materials, geometric considerations, and the implementation of effective monitoring systems. Within the realm of double skin facades, various configurations are explored, encompassing exhaust air, supply air, and thermal buffering mechanisms. According to the review places a specific emphasis on the thermal dynamics at play, closely examining the impact of factors such as the color of the facade, the slat angle's dimensions, and the positioning and type of shading devices employed in these innovative architectural structures.This paper will synthesize the current research trends in this field, with the presentation of case studies and technological innovations with a comprehensive understanding of the cutting-edge solutions propelling the evolution of building envelopes in the face of climate change, namely focusing on double-skin lightweight solutions to create sustainable, adaptable, and responsive building envelopes. As indicated in the review, flexible and lightweight systems have broad applicability across all building sectors, and there is a growing recognition that retrofitting existing buildings may emerge as the predominant approach.

Keywords: adaptive, control systems, dynamic facades, energy efficiency, responsive, thermal comfort, thermal transmittance

Procedia PDF Downloads 39
53 Sustainability Framework for Water Management in New Zealand's Canterbury Region

Authors: Bryan Jenkins

Abstract:

Introduction: The expansion of irrigation in the Canterbury region has led to the sustainability limits being reached for water availability and the cumulative effects of land use intensification. The institutional framework under New Zealand’s Resource Management Act was found to be an inadequate basis for managing water at sustainability limits. An alternative paradigm for water management was developed based on collaborative governance and nested adaptive systems. This led to the formulation and implementation of the Canterbury Water Management Strategy. Methods: The nested adaptive system approach was adopted. Sustainability issues were identified at multiple spatial and time scales and defined potential failure pathways for the water resource system. These included biophysical and socio-economic issues such as water availability, cumulative effects on water quality due to land use intensification, projected changes in climate, public health, institutional arrangements, economic outcomes and externalities, and, social effects of changing technology. This led to the derivation of sustainability strategies to address these failure pathways. The collaborative governance approach involved stakeholder participation and community engagement to decide on a regional strategy; regional and zone committees of community and rūnanga (Māori groups) members to develop implementation programmes for the strategy; and, farmer collectives for operational management. Findings: The strategy identified improvements in the efficiency of use of water already allocated was more effective in improving water availability than a reliance on increased storage alone. New forms of storage with less adverse impacts were introduced, such as managed aquifer recharge and off-river storage. Reductions of nutrients from land use intensification by improving management practices has been a priority. Solutions packages for addressing the degradation of vulnerable lakes and rivers have been prepared. Biodiversity enhancement projects have been initiated. Greater involvement of Māori has led to the incorporation of kaitiakitanga (resource stewardship) into implementation programmes. Emerging issues are the need for improved integration of surface water and groundwater interactions, increased use of modelling of water and financial outcomes to guide decision making, and, equity in allocation among existing users as well as between existing and future users. Conclusions: However, sustainability analysis indicates that the proposed levels of management interventions are not sufficient to achieve community targets for water management. There is a need for more proactive recovery and rehabilitation measures. Managing to environmental limits is not sufficient, rather managing adaptive cycles is needed. Better measurement and management of water use efficiency is required. Proposed implementation packages are not sufficient to deliver desired water quality outcomes. Greater attention to targets important to environmental and recreational interests is needed to maintain trust in the collaborative process. Implementation programmes don’t adequately address climate change adaptations and greenhouse gas mitigation. Affordability is a constraint on adaptive capacity of farmers and communities. More funding mechanisms are required to implement proactive measures. The legislative and institutional framework needs to be changed to incorporate water framework legislation, regional sustainability strategies and water infrastructure coordination.

Keywords: collaborative governance, irrigation management, nested adaptive systems, sustainable water management

Procedia PDF Downloads 127
52 Well Inventory Data Entry: Utilization of Developed Technologies to Progress the Integrated Asset Plan

Authors: Danah Al-Selahi, Sulaiman Al-Ghunaim, Bashayer Sadiq, Fatma Al-Otaibi, Ali Ameen

Abstract:

In light of recent changes affecting the Oil & Gas Industry, optimization measures have become imperative for all companies globally, including Kuwait Oil Company (KOC). To keep abreast of the dynamic market, a detailed Integrated Asset Plan (IAP) was developed to drive optimization across the organization, which was facilitated through the in-house developed software “Well Inventory Data Entry” (WIDE). This comprehensive and integrated approach enabled centralization of all planned asset components for better well planning, enhancement of performance, and to facilitate continuous improvement through performance tracking and midterm forecasting. Traditionally, this was hard to achieve as, in the past, various legacy methods were used. This paper briefly describes the methods successfully adopted to meet the company’s objective. IAPs were initially designed using computerized spreadsheets. However, as data captured became more complex and the number of stakeholders requiring and updating this information grew, the need to automate the conventional spreadsheets became apparent. WIDE, existing in other aspects of the company (namely, the Workover Optimization project), was utilized to meet the dynamic requirements of the IAP cycle. With the growth of extensive features to enhance the planning process, the tool evolved into a centralized data-hub for all asset-groups and technical support functions to analyze and infer from, leading WIDE to become the reference two-year operational plan for the entire company. To achieve WIDE’s goal of operational efficiency, asset-groups continuously add their parameters in a series of predefined workflows that enable the creation of a structured process which allows risk factors to be flagged and helps mitigation of the same. This tool dictates assigned responsibilities for all stakeholders in a method that enables continuous updates for daily performance measures and operational use. The reliable availability of WIDE, combined with its user-friendliness and easy accessibility, created a platform of cross-functionality amongst all asset-groups and technical support groups to update contents of their respective planning parameters. The home-grown entity was implemented across the entire company and tailored to feed in internal processes of several stakeholders across the company. Furthermore, the implementation of change management and root cause analysis techniques captured the dysfunctionality of previous plans, which in turn resulted in the improvement of already existing mechanisms of planning within the IAP. The detailed elucidation of the 2 year plan flagged any upcoming risks and shortfalls foreseen in the plan. All results were translated into a series of developments that propelled the tool’s capabilities beyond planning and into operations (such as Asset Production Forecasts, setting KPIs, and estimating operational needs). This process exemplifies the ability and reach of applying advanced development techniques to seamlessly integrated the planning parameters of various assets and technical support groups. These techniques enables the enhancement of integrating planning data workflows that ultimately lay the founding plans towards an epoch of accuracy and reliability. As such, benchmarks of establishing a set of standard goals are created to ensure the constant improvement of the efficiency of the entire planning and operational structure.

Keywords: automation, integration, value, communication

Procedia PDF Downloads 115
51 Supports for Student Learning Program: Exploring the Educational Terrain of Newcomer and Refugee Students in Canada

Authors: Edward Shizha, Edward Makwarimba

Abstract:

This literature review explores current research on the educational strengths and barriers of newcomer and refugee youth in Canada. Canada’s shift in immigration policy in the past three decades, from Europe to Asian and African countries as source continents of recent immigrants to Canada, has tremendously increased the ethnic, linguistic, cultural and religious diversity of the population, including that of students in its education system. Over 18% of the country’s population was born in another country, of which 70% are visible minorities. There has been an increase in admitted immigrants and refugees, with a total of 226,203 between July 2020 and June 2021. Newcomer parents and their children in all major destination countries, including Canada, face tremendous challenges, including racism and discrimination, lack of English language skills, poverty, income inequality, unemployment, and underemployment. They face additional challenges, including discrimination against those who cannot speak the official languages, English or French. The severity of the challenges depends on several intersectional factors, including immigrant status (asylum seeker, refugee, or immigrant), age, gender, level of education and others. Through the lens of intersectionality as an explanatory perspective, this literature review examines the educational attainment and outcomes of newcomer and refugee youth in Canada in order to understand their educational needs, educational barriers and strengths. Newcomer youths’ experiences are shaped by numerous intersectional and interconnected sociocultural, sociopolitical, and socioeconomic factors—including gender, migration status, racialized status, ethnicity, socioeconomic class, sexual minority status, age, race—that produce and perpetuate their disadvantage. According to research, immigrants and refugees from visible minority ethnic backgrounds experience exclusions more than newcomers from other backgrounds and groups from the mainstream population. For many immigrant parents, migration provides financial and educational opportunities for their children. Yet, when attending school, newcomer and refugee youth face unique challenges related to racism and discrimination, negative attitudes and stereotypes from teachers and other school authorities, language learning and proficiency, differing levels of acculturation, and different cultural views of the role of parents in relation to teachers and school, and unfamiliarity with the social or school context in Canada. Recognizing discrepancies in educational attainment of newcomer and refugee youth based on their race and immigrant status, the paper develops insights into existing research and data gaps related to educational strengths and challenges for visible minority newcomer youth in Canada. The paper concludes that the educational successes or failures of the newcomer and refugee youth and their settlement and integration into the school system in Canada may depend on where their families settle, the attitudes of the host community and the school officials (teachers, guidance counsellors and school administrators) after-school support programs and their own set of coping mechanisms. Conceivably a unique approach to after-school programming should provide learning supports and opportunities that consider newcomer and refugee youth’s needs, experiences, backgrounds and circumstances. This support is likely to translate into significant academic and psychological well-being of newcomer students.

Keywords: deficit discourse, discrimination, educational outcomes, newcomer and refugee youth, racism, strength-based approach, whiteness

Procedia PDF Downloads 37
50 Obesity and Lifestyle of Students in Roumanian Southeastern Region

Authors: Mariana Stuparu-Cretu, Doina-Carina Voinescu, Rodica-Mihaela Dinica, Daniela Borda, Camelia Vizireanu, Gabriela Iordachescu, Camelia Busila

Abstract:

Obesity is involved in the etiology or acceleration of progression of important non-communicable diseases, such as: metabolic, cardiovascular, rheumatological, oncological and depression. It is a need to prevent the obesity occurrence, like a key link in disease management. From this point of view, the best approach is to early educate youngsters upon the need for a healthy nutrition lifestyle associated with constant physical activities. The objective of the study was to assess correlations between weight condition, physical activities and food preferences of students from South East Romania. Questionnaires were applied on high school students in Galati: 1006 girls and 880 boys, aged between 14 and 19 years (being approved by Local School Inspectorate and the Ethics Committee of the 'Dunarea de Jos' University of Galati). The collected answers have been statistically processed by using the multivariate regression method (PLS2) by Unscramble X program (Camo, Norway). Multiple variables such as age group, body mass index, nutritional habits and physical activities were separately analysed, depending on gender and general mathematical models were proposed to explain the obesity trend at an early age. The study results show that overweight and obesity are present in less than a fifth of the adolescents who were surveyed. With a very small variation and a strong correlation of over 86% for 99% of the cases, a general preference for sweet foods, nocturnal eating associated with computer work and a reduced period of physical activity is noticed for girls. In addition, the overweight girls consume sweet juices and alcohol, although a percentage of them also practice the gym. There is also a percentage of the normoponderal girls that consume high caloric foods which predispose this group to turn into overweight cases in time. Within the studied group, statistics for the boys show a positive correlation of almost 87% for over 96% of cases. They prefer high calories foods, fast food, and sweet juices, and perform medium physical activities. Both overweight and underweight boys are more sedentary. Over 15% of girls and over a quarter of boys consume alcohol. All these bad eating habits seem to increase with age, for both sexes. To conclude, obesity and overweight assessed in adolescents in S-E Romania reveal nonsignificant percentage differences between boys and girls. However, young people in this area of the country are sedentary in general; a significant percentage prefers sweets / sweet juices / fast-food and practice computer nourishing. The authors consider that at this age, it is very useful to adapt nutritional education by new methods of food processing and market supply. This would require an early understanding of the difference among foods and nutrients and the benefits of physical activities integrated into the healthy current lifestyle, as a measure for preventing and managing non-communicable chronic diseases related to nutritional errors and sedentarism. Acknowledgment— This study has been partial founded by the Francophone University Agency, Project Réseau régional dans le domaine de la santé, la nutrition et la sécurité alimentaire (SaIN), no.21899/ 06.09.2017.

Keywords: adolescents, body mass index, nutritional habits, obesity, physical activity

Procedia PDF Downloads 238
49 Structured Cross System Planning and Control in Modular Production Systems by Using Agent-Based Control Loops

Authors: Simon Komesker, Achim Wagner, Martin Ruskowski

Abstract:

In times of volatile markets with fluctuating demand and the uncertainty of global supply chains, flexible production systems are the key to an efficient implementation of a desired production program. In this publication, the authors present a holistic information concept taking into account various influencing factors for operating towards the global optimum. Therefore, a strategy for the implementation of multi-level planning for a flexible, reconfigurable production system with an alternative production concept in the automotive industry is developed. The main contribution of this work is a system structure mixing central and decentral planning and control evaluated in a simulation framework. The information system structure in current production systems in the automotive industry is rigidly hierarchically organized in monolithic systems. The production program is created rule-based with the premise of achieving uniform cycle time. This program then provides the information basis for execution in subsystems at the station and process execution level. In today's era of mixed-(car-)model factories, complex conditions and conflicts arise in achieving logistics, quality, and production goals. There is no provision for feedback loops of results from the process execution level (resources) and process supporting (quality and logistics) systems and reconsideration in the planning systems. To enable a robust production flow, the complexity of production system control is artificially reduced by the line structure and results, for example in material-intensive processes (buffers and safety stocks - two container principle also for different variants). The limited degrees of freedom of line production have produced the principle of progress figure control, which results in one-time sequencing, sequential order release, and relatively inflexible capacity control. As a result, modularly structured production systems such as modular production according to known approaches with more degrees of freedom are currently difficult to represent in terms of information technology. The remedy is an information concept that supports cross-system and cross-level information processing for centralized and decentralized decision-making. Through an architecture of hierarchically organized but decoupled subsystems, the paradigm of hybrid control is used, and a holonic manufacturing system is offered, which enables flexible information provisioning and processing support. In this way, the influences from quality, logistics, and production processes can be linked holistically with the advantages of mixed centralized and decentralized planning and control. Modular production systems also require modularly networked information systems with semi-autonomous optimization for a robust production flow. Dynamic prioritization of different key figures between subsystems should lead the production system to an overall optimum. The tasks and goals of quality, logistics, process, resource, and product areas in a cyber-physical production system are designed as an interconnected multi-agent-system. The result is an alternative system structure that executes centralized process planning and decentralized processing. An agent-based manufacturing control is used to enable different flexibility and reconfigurability states and manufacturing strategies in order to find optimal partial solutions of subsystems, that lead to a near global optimum for hybrid planning. This allows a robust near to plan execution with integrated quality control and intralogistics.

Keywords: holonic manufacturing system, modular production system, planning, and control, system structure

Procedia PDF Downloads 143
48 Linguistic Insights Improve Semantic Technology in Medical Research and Patient Self-Management Contexts

Authors: William Michael Short

Abstract:

Semantic Web’ technologies such as the Unified Medical Language System Metathesaurus, SNOMED-CT, and MeSH have been touted as transformational for the way users access online medical and health information, enabling both the automated analysis of natural-language data and the integration of heterogeneous healthrelated resources distributed across the Internet through the use of standardized terminologies that capture concepts and relationships between concepts that are expressed differently across datasets. However, the approaches that have so far characterized ‘semantic bioinformatics’ have not yet fulfilled the promise of the Semantic Web for medical and health information retrieval applications. This paper argues within the perspective of cognitive linguistics and cognitive anthropology that four features of human meaning-making must be taken into account before the potential of semantic technologies can be realized for this domain. First, many semantic technologies operate exclusively at the level of the word. However, texts convey meanings in ways beyond lexical semantics. For example, transitivity patterns (distributions of active or passive voice) and modality patterns (configurations of modal constituents like may, might, could, would, should) convey experiential and epistemic meanings that are not captured by single words. Language users also naturally associate stretches of text with discrete meanings, so that whole sentences can be ascribed senses similar to the senses of words (so-called ‘discourse topics’). Second, natural language processing systems tend to operate according to the principle of ‘one token, one tag’. For instance, occurrences of the word sound must be disambiguated for part of speech: in context, is sound a noun or a verb or an adjective? In syntactic analysis, deterministic annotation methods may be acceptable. But because natural language utterances are typically characterized by polyvalency and ambiguities of all kinds (including intentional ambiguities), such methods leave the meanings of texts highly impoverished. Third, ontologies tend to be disconnected from everyday language use and so struggle in cases where single concepts are captured through complex lexicalizations that involve profile shifts or other embodied representations. More problematically, concept graphs tend to capture ‘expert’ technical models rather than ‘folk’ models of knowledge and so may not match users’ common-sense intuitions about the organization of concepts in prototypical structures rather than Aristotelian categories. Fourth, and finally, most ontologies do not recognize the pervasively figurative character of human language. However, since the time of Galen the widespread use of metaphor in the linguistic usage of both medical professionals and lay persons has been recognized. In particular, metaphor is a well-documented linguistic tool for communicating experiences of pain. Because semantic medical knowledge-bases are designed to help capture variations within technical vocabularies – rather than the kinds of conventionalized figurative semantics that practitioners as well as patients actually utilize in clinical description and diagnosis – they fail to capture this dimension of linguistic usage. The failure of semantic technologies in these respects degrades the efficiency and efficacy not only of medical research, where information retrieval inefficiencies can lead to direct financial costs to organizations, but also of care provision, especially in contexts of patients’ self-management of complex medical conditions.

Keywords: ambiguity, bioinformatics, language, meaning, metaphor, ontology, semantic web, semantics

Procedia PDF Downloads 99
47 Even When the Passive Resistance Is Obligatory: Civil Intellectuals’ Solidarity Activism in Tea Workers Movement

Authors: Moshreka Aditi Huq

Abstract:

This study shows how a progressive portion of civil intellectuals in Bangladesh contributed as the solidarity activist entities in a movement of tea workers that became the symbol of their unique moral struggle. Their passive yet sharp way of resistance, with the integration of mass tea workers of a tea estate, got demonstrated against certain private companies and government officials who approached to establish a special economic zone inside the tea garden without offering any compensation and rehabilitation for poor tea workers. Due to massive protests and rebellion, the authorized entrepreneurs had to step back and called off the project immediately. The extraordinary features of this movement generated itself from the deep core social need of indigenous tea workers who are still imprisoned in the colonial cage. Following an anthropological and ethnographic perspective, this study adopted the main three techniques of intensive interview, focus group discussion, and laborious observation, to extract empirical data. The intensive interviews were undertaken informally using a mostly conversational approach. Focus group discussions were piloted among various representative groups where observations prevailed as part of the regular documentation process. These were conducted among civil intellectual entities, tea workers, tea estate authorities, civil service authorities, and business officials to obtain a holistic view of the situation. The fieldwork was executed in capital Dhaka city, along with northern areas like Chandpur-Begumkhan Tea Estate of Chunarughat Upazilla and Habiganj city of Habiganj District of Bangladesh. Correspondingly, secondary data were accessed through books, scholarly papers, archives, newspapers, reports, leaflets, posters, writing blog, and electronic pages of social media. The study results find that: (1) civil intellectuals opposed state-sponsored business impositions by producing counter-discourse and struggled against state hegemony through the phases of the movement; (2) instead of having the active physical resistance, civil intellectuals’ strength was preferably in passive form which was portrayed through their intellectual labor; (3) the combined movement of tea workers and civil intellectuals reflected on social security of ethnic worker communities that contrasts state’s pseudo-development motives which ultimately supports offensive and oppressive neoliberal growths of economy; (4) civil intellectuals are revealed as having certain functional limitations in the process of movement organization as well as resource mobilization; (5) in specific contexts, the genuine need of protest by indigenous subaltern can overshadow intellectual elitism and helps to raise the voices of ‘subjugated knowledge’. This study is quite likely to represent two sets of apparent protagonist entities in the discussion of social injustice and oppressive development intervention. On the one, hand it may help us to find the basic functional characteristics of civil intellectuals in Bangladesh when they are in a passive mode of resistance in social movement issues. On the other hand, it represents the community ownership and inherent protest tendencies of indigenous workers when they feel threatened and insecure. The study seems to have the potential to understand the conditions of ‘subjugated knowledge’ of subalterns. Furthermore, being the memory and narratives, these ‘activism mechanisms’ of social entities broadens the path to understand ‘power’ and ‘resistance’ in more fascinating ways.

Keywords: civil intellectuals, resistance, subjugated knowledge, indigenous

Procedia PDF Downloads 102
46 Implementation of Building Information Modelling to Monitor, Assess, and Control the Indoor Environmental Quality of Higher Education Buildings

Authors: Mukhtar Maigari

Abstract:

The landscape of Higher Education (HE) institutions, especially following the CVID-19 pandemic, necessitates advanced approaches to manage Indoor Environmental Quality (IEQ) which is crucial for the comfort, health, and productivity of students and staff. This study investigates the application of Building Information Modelling (BIM) as a multifaceted tool for monitoring, assessing, and controlling IEQ in HE buildings aiming to bridge the gap between traditional management practices and the innovative capabilities of BIM. Central to the study is a comprehensive literature review, which lays the foundation by examining current knowledge and technological advancements in both IEQ and BIM. This review sets the stage for a deeper investigation into the practical application of BIM in IEQ management. The methodology consists of Post-Occupancy Evaluation (POE) which encompasses physical monitoring, questionnaire surveys, and interviews under the umbrella of case studies. The physical data collection focuses on vital IEQ parameters such as temperature, humidity, CO2 levels etc, conducted by using different equipment including dataloggers to ensure accurate data. Complementing this, questionnaire surveys gather perceptions and satisfaction levels from students, providing valuable insights into the subjective aspects of IEQ. The interview component, targeting facilities management teams, offers an in-depth perspective on IEQ management challenges and strategies. The research delves deeper into the development of a conceptual BIM-based framework, informed by the insight findings from case studies and empirical data. This framework is designed to demonstrate the critical functions necessary for effective IEQ monitoring, assessment, control and automation with real time data handling capabilities. This BIM-based framework leads to the developing and testing a BIM-based prototype tool. This prototype leverages on software such as Autodesk Revit with its visual programming tool i.e., Dynamo and an Arduino-based sensor network thereby allowing for real-time flow of IEQ data for monitoring, control and even automation. By harnessing the capabilities of BIM technology, the study presents a forward-thinking approach that aligns with current sustainability and wellness goals, particularly vital in the post-COVID-19 era. The integration of BIM in IEQ management promises not only to enhance the health, comfort, and energy efficiency of educational environments but also to transform them into more conducive spaces for teaching and learning. Furthermore, this research could influence the future of HE buildings by prompting universities and government bodies to revaluate and improve teaching and learning environments. It demonstrates how the synergy between IEQ and BIM can empower stakeholders to monitor IEQ conditions more effectively and make informed decisions in real-time. Moreover, the developed framework has broader applications as well; it can serve as a tool for other sustainability assessments, like energy analysis in HE buildings, leveraging measured data synchronized with the BIM model. In conclusion, this study bridges the gap between theoretical research and real-world application by practicalizing how advanced technologies like BIM can be effectively integrated to enhance environmental quality in educational institutions. It portrays the potential of integrating advanced technologies like BIM in the pursuit of improved environmental conditions in educational institutions.

Keywords: BIM, POE, IEQ, HE-buildings

Procedia PDF Downloads 18
45 Determination of Aquifer Geometry Using Geophysical Methods: A Case Study from Sidi Bouzid Basin, Central Tunisia

Authors: Dhekra Khazri, Hakim Gabtni

Abstract:

Because of Sidi Bouzid water table overexploitation, this study aims at integrating geophysical methods to determinate aquifers geometry assessing their geological situation and geophysical characteristics. However in highly tectonic zones controlled by Atlassic structural features with NE-SW major directions (central Tunisia), Bouguer gravimetric responses of some areas can be as much dominated by the regional structural tendency, as being non-identified or either defectively interpreted such as the case of Sidi Bouzid basin. This issue required a residual gravity anomaly elaboration isolating the Sidi Bouzid basin gravity response ranging between -8 and -14 mGal and crucial for its aquifers geometry characterization. Several gravity techniques helped constructing the Sidi Bouzid basin's residual gravity anomaly, such as Upwards continuation compared to polynomial regression trends and power spectrum analysis detecting deep basement sources at (3km), intermediate (2km) and shallow sources (1km). A 3D Euler Deconvolution was also performed detecting deepest accidents trending NE-SW, N-S and E-W with depth values reaching 5500 m and delineating the main outcropping structures of the study area. Further gravity treatments highlighted the subsurface geometry and structural features of Sidi Bouzid basin over Horizontal and vertical gradient, and also filters based on them such as Tilt angle and Source Edge detector locating rooted edges or peaks from potential field data detecting a new E-W lineament compartmentalizing the Sidi Bouzid gutter into two unequally residual anomaly and subsiding domains. This subsurface morphology is also detected by the used 2D seismic reflection sections defining the Sidi Bouzid basin as a deep gutter within a tectonic set of negative flower structures, and collapsed and tilted blocks. Furthermore, these structural features were confirmed by forward gravity modeling process over several modeled residual gravity profiles crossing the main area. Sidi Bouzid basin (central Tunisia) is also of a big interest cause of the unknown total thickness and the undefined substratum of its siliciclastic Tertiary package, and its aquifers unbounded structural subsurface features and deep accidents. The Combination of geological, hydrogeological and geophysical methods is then of an ultimate need. Therefore, a geophysical methods integration based on gravity survey supporting available seismic data through forward gravity modeling, enhanced lateral and vertical extent definition of the basin's complex sedimentary fill via 3D gravity models, improved depth estimation by a depth to basement modeling approach, and provided 3D isochronous seismic mapping visualization of the basin's Tertiary complex refining its geostructural schema. A subsurface basin geomorphology mapping, over an ultimate matching between the basin's residual gravity map and the calculated theoretical signature map, was also displayed over the modeled residual gravity profiles. An ultimate multidisciplinary geophysical study of the Sidi Bouzid basin aquifers can be accomplished via an aeromagnetic survey and a 4D Microgravity reservoir monitoring offering temporal tracking of the target aquifer's subsurface fluid dynamics enhancing and rationalizing future groundwater exploitation in this arid area of central Tunisia.

Keywords: aquifer geometry, geophysics, 3D gravity modeling, improved depths, source edge detector

Procedia PDF Downloads 256
44 Case Report: A Case of Confusion with Review of Sedative-Hypnotic Alprazolam Use

Authors: Agnes Simone

Abstract:

A 52-year-old male with unknown psychiatric and medical history was brought to the Psychiatric Emergency Room by ambulance directly from jail. He had been detained for three weeks for possession of a firearm while intoxicated. On initial evaluation, the patient was unable to provide a reliable history. He presented with odd jerking movements of his extremities and catatonic features, including mutism and stupor. His vital signs were stable. Patient was transferred to the medical emergency department for work-up of altered mental status. Due to suspicion for opioid overdose, the patient was given naloxone (Narcan) with no improvement. Laboratory work-up included complete blood count, comprehensive metabolic panel, thyroid stimulating hormone, vitamin B12, folate, magnesium, rapid plasma reagin, HIV, blood alcohol level, aspirin, and Tylenol blood levels, urine drug screen, and urinalysis, which were all negative. CT head and chest X-Ray were also negative. With this negative work-up, the medical team concluded there was no organic etiology and requested inpatient psychiatric admission. Upon re-evaluation by psychiatry, it was evident that the patient continued to have an altered mental status. Of note, the medical team did not include substance withdrawal in the differential diagnosis due to stable vital signs and a negative urine drug screen. The psychiatry team decided to check California's prescription drug monitoring program (CURES) and discovered that the patient was prescribed benzodiazepine alprazolam (Xanax) 2mg BID, a sedative-hypnotic, and hydrocodone/acetaminophen 10mg/325mg (Norco) QID, an opioid. After a thorough chart review, his daughter's contact information was found, and she confirmed his benzodiazepine and opioid use, with recent escalation and misuse. It was determined that the patient was experiencing alprazolam withdrawal, given this collateral information, his current symptoms, negative urine drug screen, and recent abrupt discontinuation of medications while incarcerated. After admission to the medical unit and two doses of alprazolam 2mg, the patient's mental status, alertness, and orientation improved, but he had no memory of the events that led to his hospitalization. He was discharged with a limited supply of alprazolam and a close follow-up to arrange a taper. Accompanying this case report, a qualitative review of presentations with alprazolam withdrawal was completed. This case and the review highlights: (1) Alprazolam withdrawal can occur at low doses and within just one week of use. (2) Alprazolam withdrawal can present without any vital sign instability. (3) Alprazolam withdrawal does not respond to short-acting benzodiazepines but does respond to certain long-acting benzodiazepines due to its unique chemical structure. (4) Alprazolam withdrawal is distinct from and more severe than other benzodiazepine withdrawals. This case highlights (1) the importance of physician utilization of drug-monitoring programs. This case, in particular, relied on California's drug monitoring program. (2) The importance of obtaining collateral information, especially in cases in which the patient is unable to provide a reliable history. (3) The importance of including substance intoxication and withdrawal in the differential diagnosis even when there is a negative urine drug screen. Toxidrome of withdrawal can be delayed. (4) The importance of discussing addiction and withdrawal risks of medications with patients.

Keywords: addiction risk of benzodiazepines, alprazolam withdrawal, altered mental status, benzodiazepines, drug monitoring programs, sedative-hypnotics, substance use disorder

Procedia PDF Downloads 94
43 A Digital Clone of an Irrigation Network Based on Hardware/Software Simulation

Authors: Pierre-Andre Mudry, Jean Decaix, Jeremy Schmid, Cesar Papilloud, Cecile Munch-Alligne

Abstract:

In most of the Swiss Alpine regions, the availability of water resources is usually adequate even in times of drought, as evidenced by the 2003 and 2018 summers. Indeed, important natural stocks are for the moment available in the form of snow and ice, but the situation is likely to change in the future due to global and regional climate change. In addition, alpine mountain regions are areas where climate change will be felt very rapidly and with high intensity. For instance, the ice regime of these regions has already been affected in recent years with a modification of the monthly availability and extreme events of precipitations. The current research, focusing on the municipality of Val de Bagnes, located in the canton of Valais, Switzerland, is part of a project led by the Altis company and achieved in collaboration with WSL, BlueArk Entremont, and HES-SO Valais-Wallis. In this region, water occupies a key position notably for winter and summer tourism. Thus, multiple actors want to apprehend the future needs and availabilities of water, on both the 2050 and 2100 horizons, in order to plan the modifications to the water supply and distribution networks. For those changes to be salient and efficient, a good knowledge of the current water distribution networks is of most importance. In the current case, the water drinking network is well documented, but this is not the case for the irrigation one. Since the water consumption for irrigation is ten times higher than for drinking water, data acquisition on the irrigation network is a major point to determine future scenarios. This paper first presents the instrumentation and simulation of the irrigation network using custom-designed IoT devices, which are coupled with a digital clone simulated to reduce the number of measuring locations. The developed IoT ad-hoc devices are energy-autonomous and can measure flows and pressures using industrial sensors such as calorimetric water flow meters. Measurements are periodically transmitted using the LoRaWAN protocol over a dedicated infrastructure deployed in the municipality. The gathered values can then be visualized in real-time on a dashboard, which also provides historical data for analysis. In a second phase, a digital clone of the irrigation network was modeled using EPANET, a software for water distribution systems that performs extended-period simulations of flows and pressures in pressurized networks composed of reservoirs, pipes, junctions, and sinks. As a preliminary work, only a part of the irrigation network was modelled and validated by comparisons with the measurements. The simulations are carried out by imposing the consumption of water at several locations. The validation is performed by comparing the simulated pressures are different nodes with the measured ones. An accuracy of +/- 15% is observed on most of the nodes, which is acceptable for the operator of the network and demonstrates the validity of the approach. Future steps will focus on the deployment of the measurement devices on the whole network and the complete modelling of the network. Then, scenarios of future consumption will be investigated. Acknowledgment— The authors would like to thank the Swiss Federal Office for Environment (FOEN), the Swiss Federal Office for Agriculture (OFAG) for their financial supports, and ALTIS for the technical support, this project being part of the Swiss Pilot program 'Adaptation aux changements climatiques'.

Keywords: hydraulic digital clone, IoT water monitoring, LoRaWAN water measurements, EPANET, irrigation network

Procedia PDF Downloads 111
42 The Effects of Science, Technology, Engineering and Math Problem-Based Learning on Native Hawaiians and Other Underrepresented, Low-Income, Potential First-Generation High School Students

Authors: Nahid Nariman

Abstract:

The prosperity of any nation depends on its ability to use human potential, in particular, to offer an education that builds learners' competencies to become effective workforce participants and true citizens of the world. Ever since the Second World War, the United States has been a dominant player in the world politically, economically, socially, and culturally. The rapid rise of technological advancement and consumer technologies have made it clear that science, technology, engineering, and math (STEM) play a crucial role in today’s world economy. Exploring the top qualities demanded from new hires in the industry—i.e., problem-solving skills, teamwork, dependability, adaptability, technical and communication skills— sheds light on the kind of path that is needed for a successful educational system to effectively support STEM. The focus of 21st century education has been to build student competencies by preparing them to acquire and apply knowledge, to think critically and creatively, to competently use information, be able to work in teams, to demonstrate intellectual and moral values as well as cultural awareness, and to be able to communicate. Many educational reforms pinpoint various 'ideal' pathways toward STEM that educators, policy makers, and business leaders have identified for educating the workforce of tomorrow. This study will explore how problem-based learning (PBL), an instructional strategy developed in the medical field and adopted with many successful results in K-12 through higher education, is the proper approach to stimulate underrepresented high school students' interest in pursuing STEM careers. In the current study, the effect of a problem-based STEM model on students' attitudes and career interests was investigated using qualitative and quantitative methods. The participants were 71 low-income, native Hawaiian high school students who would be first-generation college students. They were attending a summer STEM camp developed as the result of a collaboration between the University of Hawaii and the Upward Bound Program. The project, funded by the National Science Foundation's Innovative Technology Experiences for Students and Teachers (ITEST) program, used PBL as an approach in challenging students to engage in solving hands-on, real-world problems in their communities. Pre-surveys were used before camp and post-surveys on the last day of the program to learn about the implementation of the PBL STEM model. A Career Interest Questionnaire provided a way to investigate students’ career interests. After the summer camp, a representative selection of students participated in focus group interviews to discuss their opinions about the PBL STEM camp. The findings revealed a significantly positive increase in students' attitudes towards STEM disciplines and STEM careers. The students' interview results also revealed that students identified PBL to be an effective form of instruction in their learning and in the development of their 21st-century skills. PBL was acknowledged for making the class more enjoyable and for raising students' interest in STEM careers, while also helping them develop teamwork and communication skills in addition to scientific knowledge. As a result, the integration of PBL and a STEM learning experience was shown to positively affect students’ interest in STEM careers.

Keywords: problem-based learning, science education, STEM, underrepresented students

Procedia PDF Downloads 92
41 Railway Composite Flooring Design: Numerical Simulation and Experimental Studies

Authors: O. Lopez, F. Pedro, A. Tadeu, J. Antonio, A. Coelho

Abstract:

The future of the railway industry lies in the innovation of lighter, more efficient and more sustainable trains. Weight optimizations in railway vehicles allow reducing power consumption and CO₂ emissions, increasing the efficiency of the engines and the maximum speed reached. Additionally, they reduce wear of wheels and rails, increase the space available for passengers, etc. Among the various systems that integrate railway interiors, the flooring system is one which has greater impact both on passenger safety and comfort, as well as on the weight of the interior systems. Due to the high weight saving potential, relative high mechanical resistance, good acoustic and thermal performance, ease of modular design, cost-effectiveness and long life, the use of new sustainable composite materials and panels provide the latest innovations for competitive solutions in the development of flooring systems. However, one of the main drawbacks of the flooring systems is their relatively poor resistance to point loads. Point loads in railway interiors can be caused by passengers or by components fixed to the flooring system, such as seats and restraint systems, handrails, etc. In this way, they can originate higher fatigue solicitations under service loads or zones with high stress concentrations under exceptional loads (higher longitudinal, transverse and vertical accelerations), thus reducing its useful life. Therefore, to verify all the mechanical and functional requirements of the flooring systems, many physical prototypes would be created during the design phase, with all of the high costs associated with it. Nowadays, the use of virtual prototyping methods by computer-aided design (CAD) and computer-aided engineering (CAE) softwares allow validating a product before committing to making physical test prototypes. The scope of this work was to current computer tools and integrate the processes of innovation, development, and manufacturing to reduce the time from design to finished product and optimise the development of the product for higher levels of performance and reliability. In this case, the mechanical response of several sandwich panels with different cores, polystyrene foams, and composite corks, were assessed, to optimise the weight and the mechanical performance of a flooring solution for railways. Sandwich panels with aluminum face sheets were tested to characterise its mechanical performance and determine the polystyrene foam and cork properties when used as inner cores. Then, a railway flooring solution was fully modelled (including the elastomer pads to provide the required vibration isolation from the car body) and perform structural simulations using FEM analysis to comply all the technical product specifications for the supply of a flooring system. Zones with high stress concentrations are studied and tested. The influence of vibration modes on the comfort level and stability is discussed. The information obtained with the computer tools was then completed with several mechanical tests performed on some solutions, and on specific components. The results of the numerical simulations and experimental campaign carried out are presented in this paper. This research work was performed as part of the POCI-01-0247-FEDER-003474 (coMMUTe) Project funded by Portugal 2020 through COMPETE 2020.

Keywords: cork agglomerate core, mechanical performance, numerical simulation, railway flooring system

Procedia PDF Downloads 153
40 Comparative Characteristics of Bacteriocins from Endemic Lactic Acid Bacteria

Authors: K. Karapetyan, F. Tkhruni, A. Aghajanyan, T. S. Balabekyan, L. Arstamyan

Abstract:

Introduction: Globalization of the food supply has created the conditions favorable for the emergence and spread of food-borne and especially dangerous pathogens (EDP) in developing countries. The fresh-cut fruit and vegetable industry is searching for alternatives to replace chemical treatments with biopreservative approaches that ensure the safety of the processed foods product. Antimicrobial compounds of lactic acid bacteria (LAB) possess bactericidal or bacteriostatic activity against intestinal pathogens, spoilage organisms and food-borne pathogens such as Listeria monocytogenes, Staphylococcus aureus and Salmonella. Endemic strains of LAB were isolated. The strains, showing broad spectrum of antimicrobial activity against food spoiling microorganisms, were selected. The genotyping by 16S rRNA sequencing, GS-PCR, RAPD PCR methods showed that they were presented by Lactobacillus rhamnosus109, L.plantarum 65, L.plantarum 66 and Enterococcus faecium 64 species. LAB are deposited in "Microbial Depository Center" (MDC) SPC "Armbiotechnology". Methods: LAB strains were isolated from different dairy products from rural households from the highland regions of Armenia. Serially diluted samples were spread on MRS (Merck, Germany) and hydrolyzed milk agar (1,2 % w/v). Single colonies from each LAB were individually inoculated in liquid MRS medium and incubated at 37oC for 24 hours. Culture broth with biomass was centrifuged at 10,000 g during 20 min for obtaining of cell free culture broth (CFC). The antimicrobial substances from CFC broth were purified by the combination of adsorption-desorption and ion-exchange chromatography methods. Separation of bacteriocins was performed using a HPLC method on "Avex ODS" C18 column. Mass analysis of peptides recorded on the device API 4000 in the electron ionization mode. The spot-on-lawn method on the test culture plated in the solid medium was applied. The antimicrobial activity is expressed in arbitrary units (AU/ml). Results. Purification of CFC broth of LAB allowed to obtain partially purified antimicrobial preparations which contains bacteriocins with broad spectrum of antimicrobial activity. Investigation of their main biochemical properties shown, that inhibitory activity of preparations is partially reduced after treatment with proteinase K, trypsin, pepsin, suggesting a proteinaceous nature of bacteriocin-like substances containing in CFC broth. Preparations preserved their activity after heat treatment (50-121 oC, 20 min) and were stable in the pH range 3–8. The results of SDS PAAG electrophoresis show that L.plantarum 66 and Ent.faecium 64 strains have one bacteriocin (BCN) with maximal antimicrobial activity with approximate molecular weight 2.0-3.0 kDa. From L.rhamnosus 109 two BCNs were obtained. Mass spectral analysis indicates that these bacteriocins have peptide bonds and molecular weight of BCN 1 and BCN 2 are approximately 1.5 kDa and 700 Da. Discussion: Thus, our experimental data shown, that isolated endemic strains of LAB are able to produce bacteriocins with high and different inhibitory activity against broad spectrum of microorganisms of different taxonomic group, such as Salmonella sp., Esherichia coli, Bacillus sp., L.monocytogenes, Proteus mirabilis, Staph. aureus, Ps. aeruginosa. Obtained results proved the perspectives for use of endemic strains in the preservation of foodstuffs. Acknowledgments: This work was realized with financial support of the Project Global Initiatives for Preliferation Prevention (GIPP) T2- 298, ISTC A-1866.

Keywords: antimicrobial activity, bacteriocins, endemic strains, food safety

Procedia PDF Downloads 540
39 The Securitization of the European Migrant Crisis (2015-2016): Applying the Insights of the Copenhagen School of Security Studies to a Comparative Analysis of Refugee Policies in Bulgaria and Hungary

Authors: Tatiana Rizova

Abstract:

The migrant crisis, which peaked in 2015-2016, posed an unprecedented challenge to the European Union’s (EU) newest member states, including Bulgaria and Hungary. Their governments had to formulate sound migration policies with expediency and sensitivity to the needs of millions of people fleeing violent conflicts in the Middle East and failed states in North Africa. Political leaders in post-communist countries had to carefully coordinate with other EU member states on joint policies and solutions while minimizing the risk of alienating their increasingly anti-migrant domestic constituents. Post-communist member states’ governments chose distinct policy responses to the crisis, which were dictated by factors such as their governments’ partisan stances on migration, their views of the European Union, and the decision to frame the crisis as a security or a humanitarian issue. This paper explores how two Bulgarian governments (Boyko Borisov’s second and third government formed during the 43rd and 44th Bulgarian National Assembly, respectively) navigated the processes of EU migration policy making and managing the expectations of their electorates. Based on a comparative analysis of refugee policies in Bulgaria and Hungary during the height of the crisis (2015-2016) and a temporal analysis of refugee policies in Bulgaria (2015-2018), the paper advances the following conclusions. Drawing on insights of the Copenhagen school of security studies, the paper argues that cultural concerns dominated domestic debates in both Bulgaria and Hungary; both governments framed the issue predominantly as a matter of security rather than humanitarian disaster. Regardless of the similarities in issue framing, however, the two governments sought different paths of tackling the crisis. While the Bulgarian government demonstrated its willingness to comply with EU decisions (such as the proposal for mandatory quotas for refugee relocation), the Hungarian government defied EU directives and became a leading voice of dissent inside the EU. The current Bulgarian government (April 2017 - present) appears to be committed to complying with EU decisions and accepts the strategy of EU burden-sharing, while the Hungarian government has continually snubbed the EU’s appeals for cooperation despite the risk of hefty financial penalties. Hungary’s refugee policies have been influenced by the parliamentary representation of the far right-wing party Movement for a Better Hungary (Jobbik), which has encouraged the majority party (FIDESZ) to adopt harsher anti-migrant rhetoric and more hostile policies toward refugees. Bulgaria’s current government is a coalition of the center-right Citizens for a European Development of Bulgaria (GERB) and its far right-wing junior partners – the United Patriots (comprised of three nationalist political parties). The parliamentary presence of Jobbik in Hungary’s parliament has magnified the anti-migrant stance, rhetoric, and policies of Mr. Orbán’s Civic Alliance; we have yet to observe a substantial increase in the anti-migrant rhetoric and policies in Bulgaria’s case. Analyzing responses to the migrant/refugee crisis is a critical opportunity to understand how issues of cultural identity and belonging, inclusion and exclusion, regional integration and disintegration are debated and molded into policy in Europe’s youngest member states in the broader EU context.

Keywords: Copenhagen School, migrant crisis, refugees, security

Procedia PDF Downloads 98
38 The Prospects of Optimized KOH/Cellulose 'Papers' as Hierarchically Porous Electrode Materials for Supercapacitor Devices

Authors: Dina Ibrahim Abouelamaiem, Ana Jorge Sobrido, Magdalena Titirici, Paul R. Shearing, Daniel J. L. Brett

Abstract:

Global warming and scarcity of fossil fuels have had a radical impact on the world economy and ecosystem. The urgent need for alternative energy sources has hence elicited an extensive research for exploiting efficient and sustainable means of energy conversion and storage. Among various electrochemical systems, supercapacitors attracted significant attention in the last decade due to their high power supply, long cycle life compared to batteries and simple mechanism. Recently, the performance of these devices has drastically improved, as tuning of nanomaterials provided efficient charge and storage mechanisms. Carbon materials, in various forms, are believed to pioneer the next generation of supercapacitors due to their attractive properties that include high electronic conductivities, high surface areas and easy processing and functionalization. Cellulose has eco-friendly attributes that are feasible to replace man-made fibers. The carbonization of cellulose yields carbons, including activated carbon and graphite fibers. Activated carbons successively are the most exploited candidates for supercapacitor electrode materials that can be complemented with pseudocapacitive materials to achieve high energy and power densities. In this work, the optimum functionalization conditions of cellulose have been investigated for supercapacitor electrode materials. The precursor was treated with potassium hydroxide (KOH) at different KOH/cellulose ratios prior to the carbonization process in an inert nitrogen atmosphere at 850 °C. The chalky products were washed, dried and characterized with different techniques including transmission electron microscopy (TEM), x-ray tomography and nitrogen adsorption-desorption isotherms. The morphological characteristics and their effect on the electrochemical performances were investigated in two and three-electrode systems. The KOH/cellulose ratios of 0.5:1 and 1:1 exhibited the highest performances with their unique hierarchal porous network structure, high surface areas and low cell resistances. Both samples acquired the best results in three-electrode systems and coin cells with specific gravimetric capacitances as high as 187 F g-1 and 20 F g-1 at a current density of 1 A g-1 and retention rates of 72% and 70%, respectively. This is attributed to the morphology of the samples that constituted of a well-balanced micro-, meso- and macro-porosity network structure. This study reveals that the electrochemical performance doesn’t solely depend on high surface areas but also an optimum pore size distribution, specifically at low current densities. The micro- and meso-pore contribution to the final pore structure was found to dominate at low KOH loadings, reaching ‘equilibrium’ with macropores at the optimum KOH loading, after which macropores dictate the porous network. The wide range of pore sizes is detrimental for the mobility and penetration of electrolyte ions in the porous structures. These findings highlight the influence of various morphological factors on the double-layer capacitances and high performance rates. In addition, they open a platform for the investigation of the optimized conditions for double-layer capacitance that can be coupled with pseudocapacitive materials to yield higher energy densities and capacities.

Keywords: carbon, electrochemical performance, electrodes, KOH/cellulose optimized ratio, morphology, supercapacitor

Procedia PDF Downloads 190
37 Continuity Through Best Practice. A Case Series of Complex Wounds Manage by Dedicated Orthopedic Nursing Team

Authors: Siti Rahayu, Khairulniza Mohd Puat, Kesavan R., Mohammad Harris A., Jalila, Kunalan G., Fazir Mohamad

Abstract:

The greatest challenge has been in establishing and maintaining the dedicated nursing team. Continuity is served when nurses are assigned exclusively for managing wound, where they can continue to build expertise and skills. In addition, there is a growing incidence of chronic wounds and recognition of the complexity involved in caring for these patients. We would like to share 4 cases with different techniques of wound management. 1st case, 39 years old gentleman with underlying rheumatoid arthritis with chronic periprosthetic joint infection of right total knee replacement presented with persistent drainage over right knee. Patient was consulted for two stage revision total knee replacement. However, patient only agreed for debridement and retention of implant. After debridement, large medial and lateral wound was treated with Instillation Negative Pressure Wound Therapy Dressings. After several cycle, the wound size reduced, and conventional dressing was applied. 2nd case, 58 years old gentleman with underlying diabetes presented with right foot necrotizing fasciitis with gangrene of 5th toe. He underwent extensive debridement of foot with rays’ amputation of 5th toe. Post debridement patient was started on Instillation Negative Pressure Wound Therapy Dressings. After several cycle of VAC, the wound bed was prepared, and he underwent split skin graft over right foot. 3 rd case, 60 years old gentleman with underlying diabetes mellitus presented with right foot necrotizing soft tissue infection. He underwent rays’ amputation and extensive wound debridement. Upon stabilization of general condition, patient was discharge with regular wound dressing by same nurse and doctor during each visit to clinic follow up. After 6 months of follow up, the wound healed well. 4th case, 38-year-old gentleman had alleged motor vehicle accident and sustained closed fracture right tibial plateau. Open reduction and proximal tibial locking plate were done. At 2 weeks post-surgery, the patient presented with warm, erythematous leg and pus discharge from the surgical site. Empirical antibiotic was started, and wound debridement was done. Intraoperatively, 50cc pus was evacuated, unhealthy muscle and tissue debrided. No loosening of the implant. Patient underwent multiple wound debridement. At 2 weeks post debridement wound healed well, but the proximal aspect was unable to close immediately. This left the proximal part of the implant to be exposed. Patient was then put on VAC dressing for 3 weeks until healthy granulation tissue closes the implant. Meanwhile, antibiotic was change according to culture and sensitivity. At 6 weeks post the first debridement, the wound was completely close, and patient was discharge home well. At 3 months post operatively, patient wound and fracture healed uneventfully and able to ambulate independently. Complex wounds are too serious to be dealt with. Team managing complex wound need continuous support through the provision of educational tools to support their professional development, engagement with local and international expert, as well as highquality products that increase efficiencies in services

Keywords: VAC (Vacuum Assisted Closure), empirical- initial antibiotics, NPWT- negative pressure wound therapy, NF- necrotizing fasciitis, gangrene- blackish discoloration due to poor blood supply

Procedia PDF Downloads 81
36 Delivering Safer Clinical Trials; Using Electronic Healthcare Records (EHR) to Monitor, Detect and Report Adverse Events in Clinical Trials

Authors: Claire Williams

Abstract:

Randomised controlled Trials (RCTs) of efficacy are still perceived as the gold standard for the generation of evidence, and whilst advances in data collection methods are well developed, this progress has not been matched for the reporting of adverse events (AEs). Assessment and reporting of AEs in clinical trials are fraught with human error and inefficiency and are extremely time and resource intensive. Recent research conducted into the quality of reporting of AEs during clinical trials concluded it is substandard and reporting is inconsistent. Investigators commonly send reports to sponsors who are incorrectly categorised and lacking in critical information, which can complicate the detection of valid safety signals. In our presentation, we will describe an electronic data capture system, which has been designed to support clinical trial processes by reducing the resource burden on investigators, improving overall trial efficiencies, and making trials safer for patients. This proprietary technology was developed using expertise proven in the delivery of the world’s first prospective, phase 3b real-world trial, ‘The Salford Lung Study, ’ which enabled robust safety monitoring and reporting processes to be accomplished by the remote monitoring of patients’ EHRs. This technology enables safety alerts that are pre-defined by the protocol to be detected from the data extracted directly from the patients EHR. Based on study-specific criteria, which are created from the standard definition of a serious adverse event (SAE) and the safety profile of the medicinal product, the system alerts the investigator or study team to the safety alert. Each safety alert will require a clinical review by the investigator or delegate; examples of the types of alerts include hospital admission, death, hepatotoxicity, neutropenia, and acute renal failure. This is achieved in near real-time; safety alerts can be reviewed along with any additional information available to determine whether they meet the protocol-defined criteria for reporting or withdrawal. This active surveillance technology helps reduce the resource burden of the more traditional methods of AE detection for the investigators and study teams and can help eliminate reporting bias. Integration of multiple healthcare data sources enables much more complete and accurate safety data to be collected as part of a trial and can also provide an opportunity to evaluate a drug’s safety profile long-term, in post-trial follow-up. By utilising this robust and proven method for safety monitoring and reporting, a much higher risk of patient cohorts can be enrolled into trials, thus promoting inclusivity and diversity. Broadening eligibility criteria and adopting more inclusive recruitment practices in the later stages of drug development will increase the ability to understand the medicinal products risk-benefit profile across the patient population that is likely to use the product in clinical practice. Furthermore, this ground-breaking approach to AE detection not only provides sponsors with better-quality safety data for their products, but it reduces the resource burden on the investigator and study teams. With the data taken directly from the source, trial costs are reduced, with minimal data validation required and near real-time reporting enables safety concerns and signals to be detected more quickly than in a traditional RCT.

Keywords: more comprehensive and accurate safety data, near real-time safety alerts, reduced resource burden, safer trials

Procedia PDF Downloads 50
35 In-situ Mental Health Simulation with Airline Pilot Observation of Human Factors

Authors: Mumtaz Mooncey, Alexander Jolly, Megan Fisher, Kerry Robinson, Robert Lloyd, Dave Fielding

Abstract:

Introduction: The integration of the WingFactors in-situ simulation programme has transformed the education landscape at the Whittington Health NHS Trust. To date, there have been a total of 90 simulations - 19 aimed at Paediatric trainees, including 2 Child and Adolescent Mental Health (CAMHS) scenarios. The opportunity for joint debriefs provided by clinical faculty and airline pilots, has created a new exciting avenue to explore human factors within psychiatry. Through the use of real clinical environments and primed actors; the benefits of high fidelity simulation, interdisciplinary and interprofessional learning has been highlighted. The use of in-situ simulation within Psychiatry is a newly emerging concept and its success here has been recognised by unanimously positive feedback from participants and acknowledgement through nomination for the Health Service Journal (HSJ) Award (Best Education Programme 2021). Methodology: The first CAMHS simulation featured a collapsed patient in the toilet with a ligature tied around her neck, accompanied by a distressed parent. This required participants to consider:; emergency physical management of the case, alongside helping to contain the mother and maintaining situational awareness when transferring the patient to an appropriate clinical area. The second simulation was based on a 17- year- old girl attempting to leave the ward after presenting with an overdose, posing potential risk to herself. The safe learning environment enabled participants to explore techniques to engage the young person and understand their concerns, and consider the involvement of other members of the multidisciplinary team. The scenarios were followed by an immediate ‘hot’ debrief, combining technical feedback with Human Factors feedback from uniformed airline pilots and clinicians. The importance of psychological safety was paramount, encouraging open and honest contributions from all participants. Key learning points were summarized into written documents and circulated. Findings: The in-situ simulations demonstrated the need for practical changes both in the Emergency Department and on the Paediatric ward. The presence of airline pilots provided a novel way to debrief on Human Factors. The following key themes were identified: -Team-briefing (‘Golden 5 minutes’) - Taking a few moments to establish experience, initial roles and strategies amongst the team can reduce the need for conversations in front of a distressed patient or anxious relative. -Use of checklists / guidelines - Principles associated with checklist usage (control of pace, rigor, team situational awareness), instead of reliance on accurate memory recall when under pressure. -Read-back - Immediate repetition of safety critical instructions (e.g. drug / dosage) to mitigate the risks associated with miscommunication. -Distraction management - Balancing the risk of losing a team member to manage a distressed relative, versus it impacting on the care of the young person. -Task allocation - The value of the implementation of ‘The 5A’s’ (Availability, Address, Allocate, Ask, Advise), for effective task allocation. Conclusion: 100% of participants have requested more simulation training. Involvement of airline pilots has led to a shift in hospital culture, bringing to the forefront the value of Human Factors focused training and multidisciplinary simulation. This has been of significant value in not only physical health, but also mental health simulation.

Keywords: human factors, in-situ simulation, inter-professional, multidisciplinary

Procedia PDF Downloads 78