Search results for: statistical independence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4322

Search results for: statistical independence

4142 Desing of PSS and SVC to Improve Power System Stability

Authors: Mahmoud Samkan

Abstract:

In this paper, the design and assessment of new coordination between Power System Stabilizers (PSSs) and Static Var Compensator (SVC) in a multimachine power system via statistical method are proposed. The coordinated design problem of PSSs and SVC over a wide range of loading conditions is handled as an optimization problem. The Bacterial Swarming Optimization (BSO), which synergistically couples the Bacterial Foraging (BF) with the Particle Swarm Optimization (PSO), is employed to seek for optimal controllers parameters. By minimizing the proposed objective function, in which the speed deviations between generators are involved; stability performance of the system is enhanced. To compare the capability of PSS and SVC, both are designed independently, and then in a coordinated manner. Simultaneous tuning of the BSO based coordinated controller gives robust damping performance over wide range of operating conditions and large disturbance in compare to optimized PSS controller based on BSO (BSOPSS) and optimized SVC controller based on BSO (BSOSVC). Moreover, a statistical T test is executed to validate the robustness of coordinated controller versus uncoordinated one.

Keywords: SVC, PSSs, multimachine power system, coordinated design, bacteria swarm optimization, statistical assessment

Procedia PDF Downloads 353
4141 Botswana and Nation-Building Theory

Authors: Rowland Brucken

Abstract:

This paper argues that nation-building theories that prioritize democratic governance best explain the successful post-independence development of Botswana. Three main competing schools of thought exist regarding the sequencing of policies that should occur to re-build weakened or failed states. The first posits that economic development should receive foremost attention, while democratization and a binding sense of nationalism can wait. A second group of experts identified constructing a sense of nationalism among a populace is necessary first, so that the state receives popular legitimacy and obedience that are prerequisites for development. Botswana, though, transitioned into a multi-party democracy and prosperous open economy due to the utilization of traditional democratic structures, enlightened and accountable leadership, and an educated technocratic civil service. With these political foundations already in place when the discovery of diamonds occurred, the resulting revenues were spent wisely on projects that grew the economy, improved basic living standards, and attracted foreign investment. Thus democratization preceded, and therefore provided an accountable basis for, economic development that might otherwise have been squandered by greedy and isolated elites to the detriment of the greater population. Botswana was one of the poorest nations in the world at the time of its independence in 1966, with little infrastructure, a dependence on apartheid South Africa for trade, and a largely subsistence economy. Over the next thirty years, though, its economy grew the fastest of any nation in the world. The transparent and judicious use of diamond returns is only a partial explanation, as the government also pursued economic diversification, mass education, and rural development in response to public needs. As nation-building has become a project undertaken by nations and multilateral agencies such as the United Nations and the North Atlantic Treaty Organization, Botswana may provide best practices that others should follow in attempting to reconstruct economically and politically unstable states.

Keywords: Botswana, democratization, economic development, nation-building

Procedia PDF Downloads 481
4140 Free, Fair, and Credible Election and Democratic Governance in Bangladesh

Authors: Md. Awal Hossain Mollah

Abstract:

The aim of this study was to evaluate the relation between the free, fair and credible election in ensuring democratic governance in Bangladesh. The paper is a case (Bangladesh) study and qualitative in nature and based on secondary sources of materials. For doing this study, conceptual clarification has been done first and identified few elements of free, fair and credible elections. Then, how far these elements have been ensured in Bangladeshi elections has been evaluated by analyzing all the national elections held since independence. Apart from these, major factors and challenges of holding a free, fair and credible election in Bangladesh have been examined through using the following research questions: 1. Does role of election commission matter for free, fair and credible elections to form a democratic government? 2. Does role of political parties matter for democratic governance? 3. Do role of government matter for conducting the free, fair and credible election in ensuring democratic governance? 4. Does non-party caretaker government matter for conducting a free, fair and credible election? 5. Does democratic governance depend on multi-dimensional factors and actors? Major findings of this study are: Since the independence of Bangladesh, 10 national elections held in various regimes. 4 out of 10 national elections have been found free, fair and credible which have been conducted by the non-party caretaker government. Rests of the elections are not out of controversy and full of manipulation held under elected government. However, the caretaker government has already been abolished by the AL government through 15th amendment of the constitution. The present AL government is elected by the 10th parliamentary election under incumbent (AL) government, but a major opposition allies (20 parties) lead by BNP boycotted this election and 154 of the total 300 seats being uncontested. As a result, AL again came to the power without a competitive election and most of the national and International election observers including media world consider this election as unfair and the government is suffering from lack of legitimacy. Therefore, the governance of present Bangladesh is not democratic at all and it is to be considered as one party (14 parties’ allies lead by AL) authoritarian governance in the shade of parliamentary governance. Both the position and opposition of the parliament is belonging in 14 parties’ alliances lead by AL.

Keywords: democracy, governance, free, fair and credible elections, Bangladesh

Procedia PDF Downloads 300
4139 Statistical Shape Analysis of the Human Upper Airway

Authors: Ramkumar Gunasekaran, John Cater, Vinod Suresh, Haribalan Kumar

Abstract:

The main objective of this project is to develop a statistical shape model using principal component analysis that could be used for analyzing the shape of the human airway. The ultimate goal of this project is to identify geometric risk factors for diagnosis and management of Obstructive Sleep Apnoea (OSA). Anonymous CBCT scans of 25 individuals were obtained from the Otago Radiology Group. The airways were segmented between the hard-palate and the aryepiglottic fold using snake active contour segmentation. The point data cloud of the segmented images was then fitted with a bi-cubic mesh, and pseudo landmarks were placed to perform PCA on the segmented airway to analyze the shape of the airway and to find the relationship between the shape and OSA risk factors. From the PCA results, the first four modes of variation were found to be significant. Mode 1 was interpreted to be the overall length of the airway, Mode 2 was related to the anterior-posterior width of the retroglossal region, Mode 3 was related to the lateral dimension of the oropharyngeal region and Mode 4 was related to the anterior-posterior width of the oropharyngeal region. All these regions are subjected to the risk factors of OSA.

Keywords: medical imaging, image processing, FEM/BEM, statistical modelling

Procedia PDF Downloads 480
4138 Design and Implementation of Remote Control Application for Elderly People Who Live Alone

Authors: Cristina Nieves Perdomo Delgado

Abstract:

The study consists of the design and use of an application for cell phones called “Me Cuido” that consists of remote control of elderly people who live alone with their families. The objective of the study is to analyze the usability of the application by 40-year-olds using the Questionnaire for User Interaction Satisfaction (QUIS) method. The results highlight that the application has a design adapted to the elderly and that it is easy to use and understand.

Keywords: design, assistive technology, elderly people, independence

Procedia PDF Downloads 215
4137 Quantum Statistical Machine Learning and Quantum Time Series

Authors: Omar Alzeley, Sergey Utev

Abstract:

Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.

Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series

Procedia PDF Downloads 431
4136 A Brief Study about Nonparametric Adherence Tests

Authors: Vinicius R. Domingues, Luan C. S. M. Ozelim

Abstract:

The statistical study has become indispensable for various fields of knowledge. Not any different, in Geotechnics the study of probabilistic and statistical methods has gained power considering its use in characterizing the uncertainties inherent in soil properties. One of the situations where engineers are constantly faced is the definition of a probability distribution that represents significantly the sampled data. To be able to discard bad distributions, goodness-of-fit tests are necessary. In this paper, three non-parametric goodness-of-fit tests are applied to a data set computationally generated to test the goodness-of-fit of them to a series of known distributions. It is shown that the use of normal distribution does not always provide satisfactory results regarding physical and behavioral representation of the modeled parameters.

Keywords: Kolmogorov-Smirnov test, Anderson-Darling test, Cramer-Von-Mises test, nonparametric adherence tests

Procedia PDF Downloads 414
4135 Wavelet-Based Classification of Myocardial Ischemia, Arrhythmia, Congestive Heart Failure and Sleep Apnea

Authors: Santanu Chattopadhyay, Gautam Sarkar, Arabinda Das

Abstract:

This paper presents wavelet based classification of various heart diseases. Electrocardiogram signals of different heart patients have been studied. Statistical natures of electrocardiogram signals for different heart diseases have been compared with the statistical nature of electrocardiograms for normal persons. Under this study four different heart diseases have been considered as follows: Myocardial Ischemia (MI), Congestive Heart Failure (CHF), Arrhythmia and Sleep Apnea. Statistical nature of electrocardiograms for each case has been considered in terms of kurtosis values of two types of wavelet coefficients: approximate and detail. Nine wavelet decomposition levels have been considered in each case. Kurtosis corresponding to both approximate and detail coefficients has been considered for decomposition level one to decomposition level nine. Based on significant difference, few decomposition levels have been chosen and then used for classification.

Keywords: arrhythmia, congestive heart failure, discrete wavelet transform, electrocardiogram, myocardial ischemia, sleep apnea

Procedia PDF Downloads 103
4134 Second Order Statistics of Dynamic Response of Structures Using Gamma Distributed Damping Parameters

Authors: Badreddine Chemali, Boualem Tiliouine

Abstract:

This article presents the main results of a numerical investigation on the uncertainty of dynamic response of structures with statistically correlated random damping Gamma distributed. A computational method based on a Linear Statistical Model (LSM) is implemented to predict second order statistics for the response of a typical industrial building structure. The significance of random damping with correlated parameters and its implications on the sensitivity of structural peak response in the neighborhood of a resonant frequency are discussed in light of considerable ranges of damping uncertainties and correlation coefficients. The results are compared to those generated using Monte Carlo simulation techniques. The numerical results obtained show the importance of damping uncertainty and statistical correlation of damping coefficients when obtaining accurate probabilistic estimates of dynamic response of structures. Furthermore, the effectiveness of the LSM model to efficiently predict uncertainty propagation for structural dynamic problems with correlated damping parameters is demonstrated.

Keywords: correlated random damping, linear statistical model, Monte Carlo simulation, uncertainty of dynamic response

Procedia PDF Downloads 242
4133 Irrigation Water Quality Evaluation Based on Multivariate Statistical Analysis: A Case Study of Jiaokou Irrigation District

Authors: Panpan Xu, Qiying Zhang, Hui Qian

Abstract:

Groundwater is main source of water supply in the Guanzhong Basin, China. To investigate the quality of groundwater for agricultural purposes in Jiaokou Irrigation District located in the east of the Guanzhong Basin, 141 groundwater samples were collected for analysis of major ions (K+, Na+, Mg2+, Ca2+, SO42-, Cl-, HCO3-, and CO32-), pH, and total dissolved solids (TDS). Sodium percentage (Na%), residual sodium carbonate (RSC), magnesium hazard (MH), and potential salinity (PS) were applied for irrigation water quality assessment. In addition, multivariate statistical techniques were used to identify the underlying hydrogeochemical processes. Results show that the content of TDS mainly depends on Cl-, Na+, Mg2+, and SO42-, and the HCO3- content is generally high except for the eastern sand area. These are responsible for complex hydrogeochemical processes, such as dissolution of carbonate minerals (dolomite and calcite), gypsum, halite, and silicate minerals, the cation exchange, as well as evaporation and concentration. The average evaluation levels of Na%, RSC, MH, and PS for irrigation water quality are doubtful, good, unsuitable, and injurious to unsatisfactory, respectively. Therefore, it is necessary for decision makers to comprehensively consider the indicators and thus reasonably evaluate the irrigation water quality.

Keywords: irrigation water quality, multivariate statistical analysis, groundwater, hydrogeochemical process

Procedia PDF Downloads 116
4132 The Profit Trend of Cosmetics Products Using Bootstrap Edgeworth Approximation

Authors: Edlira Donefski, Lorenc Ekonomi, Tina Donefski

Abstract:

Edgeworth approximation is one of the most important statistical methods that has a considered contribution in the reduction of the sum of standard deviation of the independent variables’ coefficients in a Quantile Regression Model. This model estimates the conditional median or other quantiles. In this paper, we have applied approximating statistical methods in an economical problem. We have created and generated a quantile regression model to see how the profit gained is connected with the realized sales of the cosmetic products in a real data, taken from a local business. The Linear Regression of the generated profit and the realized sales was not free of autocorrelation and heteroscedasticity, so this is the reason that we have used this model instead of Linear Regression. Our aim is to analyze in more details the relation between the variables taken into study: the profit and the finalized sales and how to minimize the standard errors of the independent variable involved in this study, the level of realized sales. The statistical methods that we have applied in our work are Edgeworth Approximation for Independent and Identical distributed (IID) cases, Bootstrap version of the Model and the Edgeworth approximation for Bootstrap Quantile Regression Model. The graphics and the results that we have presented here identify the best approximating model of our study.

Keywords: bootstrap, edgeworth approximation, IID, quantile

Procedia PDF Downloads 127
4131 Introduction of Robust Multivariate Process Capability Indices

Authors: Behrooz Khalilloo, Hamid Shahriari, Emad Roghanian

Abstract:

Process capability indices (PCIs) are important concepts of statistical quality control and measure the capability of processes and how much processes are meeting certain specifications. An important issue in statistical quality control is parameter estimation. Under the assumption of multivariate normality, the distribution parameters, mean vector and variance-covariance matrix must be estimated, when they are unknown. Classic estimation methods like method of moment estimation (MME) or maximum likelihood estimation (MLE) makes good estimation of the population parameters when data are not contaminated. But when outliers exist in the data, MME and MLE make weak estimators of the population parameters. So we need some estimators which have good estimation in the presence of outliers. In this work robust M-estimators for estimating these parameters are used and based on robust parameter estimators, robust process capability indices are introduced. The performances of these robust estimators in the presence of outliers and their effects on process capability indices are evaluated by real and simulated multivariate data. The results indicate that the proposed robust capability indices perform much better than the existing process capability indices.

Keywords: multivariate process capability indices, robust M-estimator, outlier, multivariate quality control, statistical quality control

Procedia PDF Downloads 250
4130 Strategic Investment in Infrastructure Development to Facilitate Economic Growth in the United States

Authors: Arkaprabha Bhattacharyya, Makarand Hastak

Abstract:

The COVID-19 pandemic is unprecedented in terms of its global reach and economic impacts. Historically, investment in infrastructure development projects has been touted to boost the economic growth of a nation. The State and Local governments responsible for delivering infrastructure assets work under tight budgets. Therefore, it is important to understand which infrastructure projects have the highest potential of boosting economic growth in the post-pandemic era. This paper presents relationships between infrastructure projects and economic growth. Statistical relationships between investment in different types of infrastructure projects (transit, water and wastewater, highways, power, manufacturing etc.) and indicators of economic growth are presented using historic data between 2002 and 2020 from the U.S. Census Bureau and U.S. Bureau of Economic Analysis (BEA). The outcome of the paper is the comparison of statistical correlations between investment in different types of infrastructure projects and indicators of economic growth. The comparison of the statistical correlations is useful in ranking the types of infrastructure projects based on their ability to influence economic prosperity. Therefore, investment in the infrastructures with the higher rank will have a better chance of boosting the economic growth. Once, the ranks are derived, they can be used by the decision-makers in infrastructure investment related decision-making process.

Keywords: economic growth, infrastructure development, infrastructure projects, strategic investment

Procedia PDF Downloads 142
4129 Statistical Assessment of Models for Determination of Soil–Water Characteristic Curves of Sand Soils

Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha

Abstract:

Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and time-consuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.

Keywords: soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil, geotechnical engineering

Procedia PDF Downloads 313
4128 R Statistical Software Applied in Reliability Analysis: Case Study of Diesel Generator Fans

Authors: Jelena Vucicevic

Abstract:

Reliability analysis represents a very important task in different areas of work. In any industry, this is crucial for maintenance, efficiency, safety and monetary costs. There are ways to calculate reliability, unreliability, failure density and failure rate. This paper will try to introduce another way of calculating reliability by using R statistical software. R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. The R programming environment is a widely used open source system for statistical analysis and statistical programming. It includes thousands of functions for the implementation of both standard and new statistical methods. R does not limit user only to operation related only to these functions. This program has many benefits over other similar programs: it is free and, as an open source, constantly updated; it has built-in help system; the R language is easy to extend with user-written functions. The significance of the work is calculation of time to failure or reliability in a new way, using statistic. Another advantage of this calculation is that there is no need for technical details and it can be implemented in any part for which we need to know time to fail in order to have appropriate maintenance, but also to maximize usage and minimize costs. In this case, calculations have been made on diesel generator fans but the same principle can be applied to any other part. The data for this paper came from a field engineering study of the time to failure of diesel generator fans. The ultimate goal was to decide whether or not to replace the working fans with a higher quality fan to prevent future failures. Seventy generators were studied. For each one, the number of hours of running time from its first being put into service until fan failure or until the end of the study (whichever came first) was recorded. Dataset consists of two variables: hours and status. Hours show the time of each fan working and status shows the event: 1- failed, 0- censored data. Censored data represent cases when we cannot track the specific case, so it could fail or success. Gaining the result by using R was easy and quick. The program will take into consideration censored data and include this into the results. This is not so easy in hand calculation. For the purpose of the paper results from R program have been compared to hand calculations in two different cases: censored data taken as a failure and censored data taken as a success. In all three cases, results are significantly different. If user decides to use the R for further calculations, it will give more precise results with work on censored data than the hand calculation.

Keywords: censored data, R statistical software, reliability analysis, time to failure

Procedia PDF Downloads 376
4127 The Link between Corporate Governance and EU Competition Law Enforcement: A Conditional Logistic Regression Analysis of the Role of Diversity, Independence and Corporate Social Responsibility

Authors: Jeroen De Ceuster

Abstract:

This study is the first empirical analysis of the link between corporate governance and European Union competition law. Although competition law enforcement is often studied through the lens of competition law, we offer an alternative perspective by looking at a number of corporate governance factor at the level of the board of directors. We find that undertakings where the Chief Executive Officer is also chairman of the board are twice as likely to violate European Union competition law. No significant relationship was found between European Union competition law infringements and gender diversity of the board, the size of the board, the percentage of directors appointed after the Chief Executive Officer, the percentage of independent directors, or the presence of corporate social responsibility (CSR) committee. This contribution is based on a 1-1 matched peer study. Our sample includes all ultimate parent companies with a board that have been sanctioned by the European Commission for either anticompetitive agreements or abuse of dominance for the period from 2004 to 2018. These companies were matched to a company with headquarters in the same country, belongs to the same industry group, is active in the European Economic Area, and is the nearest neighbor to the infringing company in terms of revenue. Our final sample includes 121 pairs. As is common with matched peer studies, we use CLR to analyze the differences within these pairs. The only statistically significant independent variable after controlling for size and performance is CEO/Chair duality. The results indicate that companies whose Chief Executive Officer also functions as chairman of the board are twice as likely to infringe European Union competition law. This is in line with the monitoring theory of the board of directors, which states that its primary function is to monitor top management. Since competition law infringements are mostly organized by management and hidden from board directors, the results suggest that a Chief Executive Officer who is also chairman is more likely to be either complicit in the infringement or less critical towards his day-to-day colleagues and thus impedes proper detection by the board of competition law infringements.

Keywords: corporate governance, competition law, board of directors, board independence, ender diversity, corporate social responisbility

Procedia PDF Downloads 102
4126 Pattern Identification in Statistical Process Control Using Artificial Neural Networks

Authors: M. Pramila Devi, N. V. N. Indra Kiran

Abstract:

Control charts, predominantly in the form of X-bar chart, are important tools in statistical process control (SPC). They are useful in determining whether a process is behaving as intended or there are some unnatural causes of variation. A process is out of control if a point falls outside the control limits or a series of point’s exhibit an unnatural pattern. In this paper, a study is carried out on four training algorithms for CCPs recognition. For those algorithms optimal structure is identified and then they are studied for type I and type II errors for generalization without early stopping and with early stopping and the best one is proposed.

Keywords: control chart pattern recognition, neural network, backpropagation, generalization, early stopping

Procedia PDF Downloads 337
4125 The Effect of Aerobic Exercises on the Amount of Urea, Uric Acid and Creatine in Blood of Iranian Soccer Players

Authors: Abdolrasoul Daneshjoo

Abstract:

The purpose of this research was to study the effect of aerobic exercises with 75% heart beats on the amount of urea, uric acid and creatine in blood of Iranian soccer national U-23 players. 27 players were selected according to the following demographic specifications: age: 21.4±1.60 years old; weight: 68±9.4 kg; height: 174.2±8.6 cm. Urea, uric acid and creatine in blood are considered as dependent variations where as 40 minutes running on a track with maximum 75% heart beats are independent variations. Heart beat and blood pressure in rest time, age, height, and weight are considered as the controlled variations. Maximum heart beats are recorded under maximum exercises (8 minutes and 150-250 watt energy) on ergo meter. Then, in order to determine independent variations, 75% maximum heart beats are considered for each player. Blood is taken twice (before and after determining independence variation). Moreover, the players are given a few instructions to be fulfilled 24 hours before the main exercises. Laboratory analysis method for blood urea sample is deacetyl ammoniom, for uric acid Karvy test and for creatine pyric acid. 'T' formula is applied for analyzing statistical data in dependent groups with degree of freedom 7 (d.f=7) urea and uric acid contain P>0.01 and P>0.05 for creatine. 1. Aerobic exercise can effect on the concentration of urea of blood as well as uric acid and creatine in blood serum and increase the amount of them. 2. Urea of blood serum increases from 26.75±2.59 to 28.9±2.67 (25%) with 40 minutes running and 75% heart beat. 3. Aerobic exercise causes uric acid increase 12.5% from 5.7±0.52 (before exercise) to 6.1±0.71 (after exercise). Creatine of blood serum increases from 1.36±0.27 (before exercise) to 1.85±0.49 (after exercise). We came to this result that during aerobic exercise catabolism of protein substrate increases. Moreover, augmentation of urea, uric acid and creatine in blood serum as metabolic poisons causes disorder in kidney. Also, tendons and joints are affected by these poisons. Appropriate diet and exercise can prevent production of these poisons resulted from heavy exercise.

Keywords: aerobic exercise, urea, uric acid, creatine, blood, soccer national players

Procedia PDF Downloads 508
4124 Chemical Variability in the Essential Oils from the Leaves and Buds of Syzygium Species

Authors: Rabia Waseem, Low Kah Hin, Najihah Mohamed Hashim

Abstract:

The variability in the chemical components of the Syzygium species essential oils has been evaluated. The leaves of Syzygium species have been collected from Perak, Malaysia. The essential oils extracted by using the conventional Hydro-distillation extraction procedure and analyzed by using Gas chromatography System attached with Mass Spectrometry (GCMS). Twenty-seven constituents were found in Syzygium species in which the major constituents include: α-Pinene (3.94%), α-Thujene (2.16%), α-Terpineol (2.95%), g-Elemene (2.89%) and D-Limonene (14.59%). The aim of this study was the comparison between the evaluated data and existing literature to fortify the major variability through statistical analysis.

Keywords: chemotaxonomy, cluster analysis, essential oil, medicinal plants, statistical analysis

Procedia PDF Downloads 280
4123 Clustering of Association Rules of ISIS & Al-Qaeda Based on Similarity Measures

Authors: Tamanna Goyal, Divya Bansal, Sanjeev Sofat

Abstract:

In world-threatening terrorist attacks, where early detection, distinction, and prediction are effective diagnosis techniques and for functionally accurate and precise analysis of terrorism data, there are so many data mining & statistical approaches to assure accuracy. The computational extraction of derived patterns is a non-trivial task which comprises specific domain discovery by means of sophisticated algorithm design and analysis. This paper proposes an approach for similarity extraction by obtaining the useful attributes from the available datasets of terrorist attacks and then applying feature selection technique based on the statistical impurity measures followed by clustering techniques on the basis of similarity measures. On the basis of degree of participation of attributes in the rules, the associative dependencies between the attacks are analyzed. Consequently, to compute the similarity among the discovered rules, we applied a weighted similarity measure. Finally, the rules are grouped by applying using hierarchical clustering. We have applied it to an open source dataset to determine the usability and efficiency of our technique, and a literature search is also accomplished to support the efficiency and accuracy of our results.

Keywords: association rules, clustering, similarity measure, statistical approaches

Procedia PDF Downloads 291
4122 Underrepresentation of Right Middle Cerebral Infarct: A Statistical Parametric Mapping

Authors: Wi-Sun Ryu, Eun-Kee Bae

Abstract:

Prior studies have shown that patients with right hemispheric stroke are likely to seek medical service compared with those with left hemispheric stroke. However, the underlying mechanism for this phenomenon is unknown. In the present study, we generated lesion probability maps in a patient with right and left middle cerebral artery infarct and statistically compared. We found that precentral gyrus-Brodmann area 44, a language area in the left hemisphere - involvement was significantly higher in patients with left hemispheric stroke. This finding suggests that a language dysfunction was more noticeable, thereby taking more patients to hospitals.

Keywords: cerebral infarct, brain MRI, statistical parametric mapping, middle cerebral infarct

Procedia PDF Downloads 312
4121 Evaluation of the Mechanical Behavior of a Retaining Wall Structure on a Weathered Soil through Probabilistic Methods

Authors: P. V. S. Mascarenhas, B. C. P. Albuquerque, D. J. F. Campos, L. L. Almeida, V. R. Domingues, L. C. S. M. Ozelim

Abstract:

Retaining slope structures are increasingly considered in geotechnical engineering projects due to extensive urban cities growth. These kinds of engineering constructions may present instabilities over the time and may require reinforcement or even rebuilding of the structure. In this context, statistical analysis is an important tool for decision making regarding retaining structures. This study approaches the failure probability of the construction of a retaining wall over the debris of an old and collapsed one. The new solution’s extension length will be of approximately 350 m and will be located over the margins of the Lake Paranoá, Brasilia, in the capital of Brazil. The building process must also account for the utilization of the ruins as a caisson. A series of in situ and laboratory experiments defined local soil strength parameters. A Standard Penetration Test (SPT) defined the in situ soil stratigraphy. Also, the parameters obtained were verified using soil data from a collection of masters and doctoral works from the University of Brasília, which is similar to the local soil. Initial studies show that the concrete wall is the proper solution for this case, taking into account the technical, economic and deterministic analysis. On the other hand, in order to better analyze the statistical significance of the factor-of-safety factors obtained, a Monte Carlo analysis was performed for the concrete wall and two more initial solutions. A comparison between the statistical and risk results generated for the different solutions indicated that a Gabion solution would better fit the financial and technical feasibility of the project.

Keywords: economical analysis, probability of failure, retaining walls, statistical analysis

Procedia PDF Downloads 384
4120 Challenges of Skill Training among Women with Intellectual Disability: Stakeholders' Perspective

Authors: Jayanti Pujari

Abstract:

The present study attempts to find out the barriers faced by adult women with an Intellectual disability during their training at vocational training centres offered by rehabilitation institutes. As economic independence is the ultimate aim of rehabilitation, this study tries to focus on the barriers which restrict the adult women with intellectual disability in equipping themselves in required skill which can really empower them and help them in independent living. The objectives of the study are (1) To find out the barriers perceived by job coaches during training given to women with intellectual disability (2) To find out the barriers perceived by the parents of women with intellectual disability who are undergoing vocational training and (3) To find out the barriers perceived by the women with intellectual disabilities during the vocational training. The barriers have been operationalised in the present study from three perspectives such as behavioural barriers, competency related barriers and accessibility barriers. For the present study three groups of participants(N=60) have been selected through purposive nonprobability sampling procedure to generate the data. They are( 20) job coaches who are working at vocational centres, (20) parents of women with intellectual disabilities, (20) adult women with intellectual disabilities. The study followed a descriptive research design and data are generated through self developed questionnaire. Three sets of self-developed and face validated questionnaires were used as the tool to gather the data from the three categories of sample. The questionnaire has 30 close ended questions and the respondents have to answer on a three point scale (yes, no, need help). Both qualitative and quantitative analysis was conducted to test the hypothesis. The major findings of the study depict that the 87% of the women with intellectual disability perceived highest barriers related to competency whereas barriers related to behaviour and accessibility are perceived lowest. 92% of job coaches perceived barriers related to competencies and accessibility are highest which hinder the effectiveness of skill development of women with intellectual disability and 74% of the parents of adult women with intellectual disability also opines that the barriers related to competencies and accessibility are highest. In conclusion, it is stressed that there is need to create awareness among the stakeholders about the training and management strategies of skill training and positive behaviour support which will surely enable the adult women with intellectual disability to utilise their residual skill and acquire training to become economically independent.

Keywords: economic independence, intellectual disability, skill development, training barrier

Procedia PDF Downloads 192
4119 Modeling of Daily Global Solar Radiation Using Ann Techniques: A Case of Study

Authors: Said Benkaciali, Mourad Haddadi, Abdallah Khellaf, Kacem Gairaa, Mawloud Guermoui

Abstract:

In this study, many experiments were carried out to assess the influence of the input parameters on the performance of multilayer perceptron which is one the configuration of the artificial neural networks. To estimate the daily global solar radiation on the horizontal surface, we have developed some models by using seven combinations of twelve meteorological and geographical input parameters collected from a radiometric station installed at Ghardaïa city (southern of Algeria). For selecting of best combination which provides a good accuracy, six statistical formulas (or statistical indicators) have been evaluated, such as the root mean square errors, mean absolute errors, correlation coefficient, and determination coefficient. We noted that multilayer perceptron techniques have the best performance, except when the sunshine duration parameter is not included in the input variables. The maximum of determination coefficient and correlation coefficient are equal to 98.20 and 99.11%. On the other hand, some empirical models were developed to compare their performances with those of multilayer perceptron neural networks. Results obtained show that the neural networks techniques give the best performance compared to the empirical models.

Keywords: empirical models, multilayer perceptron neural network, solar radiation, statistical formulas

Procedia PDF Downloads 312
4118 Confidence Intervals for Process Capability Indices for Autocorrelated Data

Authors: Jane A. Luke

Abstract:

Persistent pressure passed on to manufacturers from escalating consumer expectations and the ever growing global competitiveness have produced a rapidly increasing interest in the development of various manufacturing strategy models. Academic and industrial circles are taking keen interest in the field of manufacturing strategy. Many manufacturing strategies are currently centered on the traditional concepts of focused manufacturing capabilities such as quality, cost, dependability and innovation. Process capability indices was conducted assuming that the process under study is in statistical control and independent observations are generated over time. However, in practice, it is very common to come across processes which, due to their inherent natures, generate autocorrelated observations. The degree of autocorrelation affects the behavior of patterns on control charts. Even, small levels of autocorrelation between successive observations can have considerable effects on the statistical properties of conventional control charts. When observations are autocorrelated the classical control charts exhibit nonrandom patterns and lack of control. Many authors have considered the effect of autocorrelation on the performance of statistical process control charts. In this paper, the effect of autocorrelation on confidence intervals for different PCIs was included. Stationary Gaussian processes is explained. Effect of autocorrelation on PCIs is described in detail. Confidence intervals for Cp and Cpk are constructed for PCIs when data are both independent and autocorrelated. Confidence intervals for Cp and Cpk are computed. Approximate lower confidence limits for various Cpk are computed assuming AR(1) model for the data. Simulation studies and industrial examples are considered to demonstrate the results.

Keywords: autocorrelation, AR(1) model, Bissell’s approximation, confidence intervals, statistical process control, specification limits, stationary Gaussian processes

Procedia PDF Downloads 358
4117 Exploratory Study of the Influencing Factors for Hotels' Competitors

Authors: Asma Ameur, Dhafer Malouche

Abstract:

Hotel competitiveness research is an essential phase of the marketing strategy for any hotel. Certainly, knowing the hotels' competitors helps the hotelier to grasp its position in the market and the citizen to make the right choice in picking a hotel. Thus, competitiveness is an important indicator that can be influenced by various factors. In fact, the issue of competitiveness, this ability to cope with competition, remains a difficult and complex concept to define and to exploit. Therefore, the purpose of this article is to make an exploratory study to calculate a competitiveness indicator for hotels. Further on, this paper makes it possible to determine the criteria of direct or indirect effect on the image and the perception of a hotel. The actual research is used to look into the right model for hotel ‘competitiveness. For this reason, we exploit different theoretical contributions in the field of machine learning. Thus, we use some statistical techniques such as the Principal Component Analysis (PCA) to reduce the dimensions, as well as other techniques of statistical modeling. This paper presents a survey covering of the techniques and methods in hotel competitiveness research. Furthermore, this study allows us to deduct the significant variables that influence the determination of hotel’s competitors. Lastly, the discussed experiences in this article found that the hotel competitors are influenced by several factors with different rates.

Keywords: competitiveness, e-reputation, hotels' competitors, online hotel’ review, principal component analysis, statistical modeling

Procedia PDF Downloads 86
4116 Electricity Generation from Renewables and Targets: An Application of Multivariate Statistical Techniques

Authors: Filiz Ersoz, Taner Ersoz, Tugrul Bayraktar

Abstract:

Renewable energy is referred to as "clean energy" and common popular support for the use of renewable energy (RE) is to provide electricity with zero carbon dioxide emissions. This study provides useful insight into the European Union (EU) RE, especially, into electricity generation obtained from renewables, and their targets. The objective of this study is to identify groups of European countries, using multivariate statistical analysis and selected indicators. The hierarchical clustering method is used to decide the number of clusters for EU countries. The conducted statistical hierarchical cluster analysis is based on the Ward’s clustering method and squared Euclidean distances. Hierarchical cluster analysis identified eight distinct clusters of European countries. Then, non-hierarchical clustering (k-means) method was applied. Discriminant analysis was used to determine the validity of the results with data normalized by Z score transformation. To explore the relationship between the selected indicators, correlation coefficients were computed. The results of the study reveal the current situation of RE in European Union Member States.

Keywords: share of electricity generation, k-means clustering, discriminant, CO2 emission

Procedia PDF Downloads 393
4115 Monte Carlo Methods and Statistical Inference of Multitype Branching Processes

Authors: Ana Staneva, Vessela Stoimenova

Abstract:

A parametric estimation of the MBP with Power Series offspring distribution family is considered in this paper. The MLE for the parameters is obtained in the case when the observable data are incomplete and consist only with the generation sizes of the family tree of MBP. The parameter estimation is calculated by using the Monte Carlo EM algorithm. The estimation for the posterior distribution and for the offspring distribution parameters are calculated by using the Bayesian approach and the Gibbs sampler. The article proposes various examples with bivariate branching processes together with computational results, simulation and an implementation using R.

Keywords: Bayesian, branching processes, EM algorithm, Gibbs sampler, Monte Carlo methods, statistical estimation

Procedia PDF Downloads 390
4114 TDApplied: An R Package for Machine Learning and Inference with Persistence Diagrams

Authors: Shael Brown, Reza Farivar

Abstract:

Persistence diagrams capture valuable topological features of datasets that other methods cannot uncover. Still, their adoption in data pipelines has been limited due to the lack of publicly available tools in R (and python) for analyzing groups of them with machine learning and statistical inference. In an easy-to-use and scalable R package called TDApplied, we implement several applied analysis methods tailored to groups of persistence diagrams. The two main contributions of our package are comprehensiveness (most functions do not have implementations elsewhere) and speed (shown through benchmarking against other R packages). We demonstrate applications of the tools on simulated data to illustrate how easily practical analyses of any dataset can be enhanced with topological information.

Keywords: machine learning, persistence diagrams, R, statistical inference

Procedia PDF Downloads 49
4113 Predicting the Relationship Between the Corona Virus Anxiety and Psychological Hardiness in Staff Working at Hospital in Shiraz Iran

Authors: Gholam Reza Mirzaei, Mehran Roost

Abstract:

This research was conducted with the aim of predicting the relationship between coronavirus anxiety and psychological hardiness in employees working at Shahid Beheshti Hospital in Shiraz. The current research design was descriptive and correlational. The statistical population of the research consisted of all the employees of Shahid Beheshti Hospital in Shiraz in 2021. From among the statistical population, 220 individuals were selected and studied based on available sampling. To collect data, Kobasa's psychological hardiness questionnaire and coronavirus anxiety questionnaire were used. After collecting the data, the scores of the participants were analyzed using Pearson's correlation coefficient multiple regression analysis and SPSS-24 statistical software. The results of Pearson's correlation coefficient showed that there is a significant negative correlation between psychological hardiness and its components (challenge, commitment, and control) with coronavirus anxiety; also, psychological hardiness with a beta coefficient of 0.20 could predict coronavirus anxiety in hospital employees. Based on the results, plans can be made to enhance psychological hardiness through educational workshops to relieve the anxiety of the healthcare staff.

Keywords: the corona virus, commitment, hospital employees, psychological hardiness

Procedia PDF Downloads 29