Search results for: spent substrate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1503

Search results for: spent substrate

1293 Preparation and Characterization of Transparent and Conductive SnO2 Thin Films by Spray Pyrolysis

Authors: V. Jelev, P. Petkov, P. Shindov

Abstract:

Thin films of undoped and As-doped tin oxide (As:SnO2) were obtained on silicon and glass substrates at 450°- 480°C by spray pyrolysis technique. Tin chloride (SnCl4.5H2O) and As oxide (3As2O5.5H2O) were used as a source for Sn and As respectively. The As2O5 concentration was varied from 0 to 10 mol% in the starting water-alcoholic solution. The characterization of the films was provided with XRD, CEM, AFM and UV-VIS spectroscopy. The influence of the synthesis parameters (the temperature of the substrate, solution concentration, gas and solution flow rates, deposition time, nozzle-to substrate distance) on the optical, electrical and structural properties of the films was investigated. The substrate temperature influences on the surface topography, structure and resistivity of the films. Films grown at low temperatures (<300°C) are amorphous whereas this deposited at higher temperatures have certain degree of polycrystallinity. Thin oxide films deposited at 450°C are generally polycrystalline with tetragonal rutile structure. The resistivity decreases with dopant concentration. The minimum resistivity was achieved at dopant concentration about 2.5 mol% As2O5 in the solution. The transmittance greater than 80% and resistivity smaller than 7.5.10-4Ω.cm were achieved in the films deposited at 480°C. The As doped films (SnO2: As) deposited on silicon substrates was used for preparation of a large area position sensitive photodetector (PSD), acting on the base of a lateral photovoltaic effect. The position characteristic of PSD is symmetric to the zero and linear in the 80% of the active area. The SnO2 films are extremely stable under typical environmental conditions and extremely resistant to chemical etching.

Keywords: metal oxide film, SnO2 film, position sensitive photodetectors (PSD), lateral photovoltaic effect

Procedia PDF Downloads 272
1292 Thinking Lean in ICU: A Time Motion Study Quantifying ICU Nurses’ Multitasking Time Allocation

Authors: Fatma Refaat Ahmed, PhD, RN. Assistant Professor, Department of Nursing, College of Health Sciences, University of Sharjah, UAE. ([email protected]). Sally Mohamed Farghaly, Nursing Administration Department, Faculty of Nursing, Alexandria University, Alexandria, Egypt. ([email protected])

Abstract:

Context: Intensive care unit (ICU) nurses often face pressure and constraints in their work, leading to the rationing of care when demands exceed available time and resources. Observations suggest that ICU nurses are frequently distracted from their core nursing roles by non-core tasks. This study aims to provide evidence on ICU nurses' multitasking activities and explore the association between nurses' personal and clinical characteristics and their time allocation. Research Aim: The aim of this study is to quantify the time spent by ICU nurses on multitasking activities and investigate the relationship between their personal and clinical characteristics and time allocation. Methodology: A self-observation form utilizing the "Diary" recording method was used to record the number of tasks performed by ICU nurses and the time allocated to each task category. Nurses also reported on the distractions encountered during their nursing activities. A convenience sample of 60 ICU nurses participated in the study, with each nurse observed for one nursing shift (6 hours), amounting to a total of 360 hours. The study was conducted in two ICUs within a university teaching hospital in Alexandria, Egypt. Findings: The results showed that ICU nurses completed 2,730 direct patient-related tasks and 1,037 indirect tasks during the 360-hour observation period. Nurses spent an average of 33.65 minutes on ventilator care-related tasks, 14.88 minutes on tube care-related tasks, and 10.77 minutes on inpatient care-related tasks. Additionally, nurses spent an average of 17.70 minutes on indirect care tasks per hour. The study identified correlations between nursing time and nurses' personal and clinical characteristics. Theoretical Importance: This study contributes to the existing research on ICU nurses' multitasking activities and their relationship with personal and clinical characteristics. The findings shed light on the significant time spent by ICU nurses on direct care for mechanically ventilated patients and the distractions that require attention from ICU managers. Data Collection: Data were collected using self-observation forms completed by participating ICU nurses. The forms recorded the number of tasks performed, the time allocated to each task category, and any distractions encountered during nursing activities. Analysis Procedures: The collected data were analyzed to quantify the time spent on different tasks by ICU nurses. Correlations were also examined between nursing time and nurses' personal and clinical characteristics. Question Addressed: This study addressed the question of how ICU nurses allocate their time across multitasking activities and whether there is an association between nurses' personal and clinical characteristics and time allocation. Conclusion: The findings of this study emphasize the need for a lean evaluation of ICU nurses' activities to identify and address potential gaps in patient care and distractions. Implementing lean techniques can improve efficiency, safety, clinical outcomes, and satisfaction for both patients and nurses, ultimately enhancing the quality of care and organizational performance in the ICU setting.

Keywords: motion study, ICU nurse, lean, nursing time, multitasking activities

Procedia PDF Downloads 41
1291 Exploring Paper Mill Sludge and Sugarcane Bagasse as Carrier Matrix in Solid State Fermentation for Carotenoid Pigment Production by Planococcus sp. TRC1

Authors: Subhasree Majumdar, Sovan Dey, Sayari Mukherjee, Sourav Dutta, Dalia Dasgupta Mandal

Abstract:

Bacterial isolates from Planococcus genus are known for the production of yellowish orange pigment that belongs to the carotenoid family. These pigments are of immense pharmacological importance as antioxidant, anticancer, eye and liver protective agent, etc. The production of this pigment in a cost effective manner is a challenging task. The present study explored paper mill sludge (PMS), a solid lignocellulosic waste generated in large quantities from pulp and paper mill industry as a substrate for carotenoid pigment production by Planococcus sp. TRC1. PMS was compared in terms of efficacy with sugarcane bagasse, which is a highly explored substrate for valuable product generation via solid state fermentation. The results showed that both the biomasses yielded the highest carotenoid during 48 hours of incubation, 31.6 mg/gm and 42.1 mg/gm for PMS and bagasse respectively. Compositional alterations of both the biomasses showed reduction in lignin, hemicellulose and cellulose content by 41%, 15%, 1% for PMS and 38%, 25% and 6% for sugarcane bagasse after 72 hours of incubation. Structural changes in the biomasses were examined by FT-IR, FESEM, and XRD which further confirmed modification of solid biomasses by bacterial isolate. This study revealed the potential of PMS to act as cheap substrate for carotenoid pigment production by Planococcus sp. TRC1, as it showed a significant production in comparison to sugarcane bagasse which gave only 1.3 fold higher production than PMS. Delignification of PMS by TRC1 during pigment production is another important finding for the reuse of this waste from the paper industry.

Keywords: carotenoid, lignocellulosic, paper mill sludge, Planococcus sp. TRC1, solid state fermentation, sugarcane bagasse

Procedia PDF Downloads 198
1290 Behavioral Responses of Coccinella septempunctata and Diaeretiella rapae toward Semiochemicals and Plant Extract

Authors: Muhammad Tariq, Bushra Siddique, Muhammad Naeem, Asim Gulzar

Abstract:

The chemical ecology of natural enemies can play a pivotal role in any Integrated Pest Management (IPM) program. Different chemical cues help to correspond in the diversity of associations between prey and host plant species. Coccinellaseptempunctata and Diaeretiellarapae have the abilities to explore several chemical cues released by plants under herbivore attack that may enhance their efficiency of foraging. In this study, the behavioral responses of Coccinellaseptempunctata and Diaeretiellarapae were examined under the application of two semiochemicals and a plant extract and their combinations using four-arm olfactometer. The bioassay was consists of a pairwise treatment comparison. Data pertaining to the preference of C. septempunctata and D. rapae after treatment application were recorded and analyzed statistically. The mean number of entries and time spent of Coccinellaseptempunctata and D. rapaewere greater in arms treated with E-β-Farnesene. However, the efficacy of E-β-Farnesene was enhanced when combined with β-pinene. Thus, the mean number of entries and time spent of C. septempunctata and D. rapaewere highest in arms treated with the combination of E-β-Farnesene x β-pinene as compared with other treatments. The current work has demonstrated that the insect-derived semiochemicals may enhance the efficacy of natural enemies when applied in combination.

Keywords: olfectometer, parasitoid, predator, preference

Procedia PDF Downloads 106
1289 Effects of Feed Forms on Growth Pattern, Behavioural Responses and Fecal Microbial Load of Pigs Fed Diets Supplemented with Saccaromyces cereviseae Probiotics

Authors: O. A. Adebiyi, A. O. Oni, A. O. K. Adeshehinwa, I. O. Adejumo

Abstract:

In forty nine (49) days, twenty four (24) growing pigs (Landrace x Large white) with an average weight of 17 ±2.1kg were allocated to four experimental treatments T1 (dry mash without probiotics), T2 (wet feed without probiotics), T3 (dry mash + Saccaromyces cereviseae probiotics) and T4 (wet feed + Saccaromyces cereviseae probiotics) which were replicated three times with two pigs per replicate in a completely randomised design. The basal feed (dry feed) was formulated to meet the nutritional requirement of the animal with crude protein of 18.00% and metabolisable energy of 2784.00kcal/kgME. Growth pattern, faecal microbial load and behavioural activities (eating, drinking, physical pen interaction and frequency of visiting the drinking troughs) were accessed. Pigs fed dry mash without probiotics (T1) had the highest daily feed intake among the experimental animals (1.10kg) while pigs on supplemented diets (T3 and T4) had an average daily feed intake of 0.95kg. However, the feed conversion ratio was significantly (p < 0.05) affected with pigs on T3 having least value of 6.26 compared those on T4 (wet feed + Saccaromyces cereviseae) with means of 7.41. Total organism counts varied significantly (p < 0.05) with pigs on T1, T2, T3 and T4 with mean values of 179.50 x106cfu; 132.00 x 106cfu; 32.00 x 106cfu and 64.50 x 106cfu respectively. Coliform count was also significantly (p < 0.05) different among the treatments with corresponding values of 117.50 x 106cfu; 49.00 x 106cfu, 8.00 x 106cfu for pigs in T1, T2 and T4 respectively. The faecal Saccaromyces cereviseae was significantly lower in pigs fed supplemented diets compared to their counterparts on unsupplemented diets. This could be due to the inability of yeast organisms to be voided easily through feaces. The pigs in T1 spent the most time eating (7.88%) while their counterparts on T3 spent the least time eating. The corresponding physical pen interaction times expressed in percentage of a day for pigs in T1, T2, T3 and T4 are 6.22%, 5.92%, 4.04% and 4.80% respectively. These behavioural responses exhibited by these pigs (T3) showed that little amount of dry feed supplemented with probiotics is needed for better performance. The water intake increases as a result of the dryness of the feed with consequent decrease in pen interaction and more time was spent resting than engaging in other possible vice-habit like fighting or tail biting. Pigs fed dry feed (T3) which was supplemented with Saccaromyces cereviseae probiotics had a better overall performance, least faecal microbial load than wet fed pigs either supplemented with Saccaromyces cereviseae or non-supplemented.

Keywords: behaviour, feed forms, feed utilization, growth, microbial

Procedia PDF Downloads 316
1288 Low Back Pain-Related Absenteeism among Healthcare Workers in Kibuli Muslim Hospital, Kampala Uganda

Authors: Aremu Abdulmujeeb Babatunde

Abstract:

Background: Low back pain was not only considered to be the most common reason for functional disability worldwide, but also estimated to have affected 90% of the universal population. This study aimed at determining the prevalence, consequences and socio-demographic factors associated with low back pain. Methods; A cross-sectional survey was employed and a total number of 150 self-structured questionnaire was distributed among healthcare workers and this was used to determine the prevalence of low back pain and work related absenteeism. Data was entered using Epi info soft-ware and analyzed using SPSS. Results; An overall response rate of 84% (n = 140) was achieved. The study established that majority (37%) of the respondents were in the age bracket of 20-39 years, 57% female (n=59) and 64% of them were married. the pint prevalence was 84%, 31% of the respondents took leave from work as a result of low back pain. There was high prevalence of sick leave among nursing staff 45.2%, Chi-square test shows that there was a statistically significant association between the respondents occupations and daily time spent during their work (P value 0.011 and 0.042) respectively. Socio-demographic factors like age, marital status and gender were not statistically significant at P<0.05. Conclusions; The medical and socio-professional consequences of low back pain among healthcare workers was as a result of their occupation designations and the daily time spent in carry out this occupations.

Keywords: low back pain, healthcare workers, prevalence, sick leave

Procedia PDF Downloads 283
1287 Promissing Antifungal Chitinase from Marine Strain of Bacillus

Authors: Ben Amar Cheba, Taha Ibrahim Zaghloul, Mohamad Hisham El-Massry, Ahmad Rafik El-Mahdy

Abstract:

Seventy two bacterial strains with ability to degrade chitin were isolated during a screening program. One of the most potent isolates (strain R2) was identified as Bacillus sp. using conventional methods as well as 16S rRNA technique and submitted in the Gen Bank sequence database as Bacillus sp. R2 with a given accession number DQ 923161. This strain was able to produce high levels of extracellular chitinase. The chitinase of Bacillus sp. R2 hydrolyzed several chitinous substrates preferentially and showed a maximum activity toward the β chitin such as Calmar pen and squid bone chitins with the folds 1.47 and 1.23 respectively. The enzyme also exhibited a substrate binding capacity of more than 70% for squid chitin, shrimp shell colloidal chitin, chitosan and prawn shell chitin. The chitinase showed a moderate antifungal activity against many phytopathogenic fungi such as Aspergillus niger, A. flavus, Penicillium degitatum and Fusarium calmorum.This strain could be a suitable candidate for chitinase production on an industrial scale for using as promising antifungal biopestecide.

Keywords: antifungal activity, Bacillus sp. R2, chitinase, substrate specificity

Procedia PDF Downloads 471
1286 Biogenic-Sedimentary Structures of the Ordovician-Khabour Formation from the Northern Thrust Zone, Kurdistan, Iraq

Authors: Waleed Sulaiman Shingaly

Abstract:

The Ordivician-Khabour Formation from the Northern Thrust Zone of Iraqi-Kurdistan comprises between 500 and 800 m of alternating predominantly greenish-grey sandstones, siltstones and shales. The succession has revealed an abundant ichnofossils characterized by 11 ichnogenus, namely: Helminthopsis, Gordia, Cruziana, Rusophycus, Monomorphichnus, Rhizocorallium, Thalassinoide, Planolite, Paleophycus, Deplocraterion and Skolithose. Ethologically these ichnogenera display dwelling and feeding activities of the infaunal organisms. This association of ichnofossils contains elements of the Skolithose and Cruziana ichnofacies. The presence of Skolithos ichnofacies indicates sandy shifting substrate and high energy conditions in foreshore zone while the Cruziana ichnofacies indicate unconsolidated, poorly sorted soft substrate and low energy condition in the shore face/offshore zone. These ichnogenera indicate shoreface-offshore zone of shallow-marine environment for the deposition of the rocks of the Khabour Formation.

Keywords: Ichnofossils, shoreface-offshore zone, Khabour Formation, Iraq

Procedia PDF Downloads 491
1285 Electrophoretic Deposition of p-Type Bi2Te3 for Thermoelectric Applications

Authors: Tahereh Talebi, Reza Ghomashchi, Pejman Talemi, Sima Aminorroaya

Abstract:

Electrophoretic deposition (EPD) of p-type Bi2Te3 material has been accomplished, and a high quality crack-free thick film has been achieved for thermoelectric (TE) applications. TE generators (TEG) can convert waste heat into electricity, which can potentially solve global warming problems. However, TEG is expensive due to the high cost of materials, as well as the complex and expensive manufacturing process. EPD is a simple and cost-effective method which has been used recently for advanced applications. In EPD, when a DC electric field is applied to the charged powder particles suspended in a suspension, they are attracted and deposited on the substrate with the opposite charge. In this study, it has been shown that it is possible to prepare a TE film using the EPD method and potentially achieve high TE properties at low cost. The relationship between the deposition weight and the EPD-related process parameters, such as applied voltage and time, has been investigated and a linear dependence has been observed, which is in good agreement with the theoretical principles of EPD. A stable EPD suspension of p-type Bi2Te3 was prepared in a mixture of acetone-ethanol with triethanolamine as a stabilizer. To achieve a high quality homogenous film on a copper substrate, the optimum voltage and time of the EPD process was investigated. The morphology and microstructures of the green deposited films have been investigated using a scanning electron microscope (SEM). The green Bi2Te3 films have shown good adhesion to the substrate. In summary, this study has shown that not only EPD of p-type Bi2Te3 material is possible, but its thick film is of high quality for TE applications.

Keywords: electrical conductivity, electrophoretic deposition, mechanical property, p-type Bi2Te3, Seebeck coefficient, thermoelectric materials, thick films

Procedia PDF Downloads 135
1284 The Effect of the Earthworm (Lumbricus rubellus) as the Source of Protein Feed and Pathogen Antibacterial for Broiler

Authors: Waode Nurmayani, Nikmatul Riswanda

Abstract:

Broilers are chickens which are kept with the most efficient time and hoped get a good body weight. All things are done, for example with the improvement of feed and use antibiotics. Feed cost is the most cost to be spent. Nearly 80% of the cost is spent just for buy feed. Earthworm (Lumbricus rubellus) is a good choice to reduce the cost of feed protein source. The Earthworm has a high crude protein content of about 48.5%-61.9%, rich with proline amino acid about 15% of the 62 amino acids. Not only about protein, this earthworm also has a role in disease prevention. Prevention of disease in livestock usual with use feed supplement. Earthworm (Lumbricus rubellus) is one of the natural materials used as feed. In addition, several types of earthworms that have been known to contain active substances about antibacterial pathogens namely Lumbricus rubellus. The earthworm could be used as an antibiotic because it contain the antibody of Lumbricine active substance. So that, this animal feed from Lumbricus rubellus could improve the performance of broilers. Bioactive of anti-bacterial is called Lumbricine able to inhibit the growth of pathogenic bacteria in the intestinal wall so that the population of pathogenic bacteria is reduced. The method of write in this scientific writing is divided into 3 techniques, namely data completion, data analysis, and thinking pan from various literature about earthworm (Lumbricus rubellus) as broiler feed. It is expected that innovation of feed material of earthworm (Lumbricus rubellus) could reduce the cost of protein feed and the use of chemical antibiotics.

Keywords: earthworm, broiler, protein, antibiotic

Procedia PDF Downloads 128
1283 A Fast Chemiresistive H₂ Gas Sensor Based on Sputter Grown Nanocrystalline P-TiO₂ Thin Film Decorated with Catalytic Pd-Pt Layer on P-Si Substrate

Authors: Jyoti Jaiswal, Satyendra Mourya, Gaurav Malik, Ramesh Chandra

Abstract:

In the present work, we have fabricated and studied a resistive H₂ gas sensor based on Pd-Pt decorated room temperature sputter grown nanocrystalline porous titanium dioxide (p-TiO₂) thin film on porous silicon (p-Si) substrate for fast H₂ detection. The gas sensing performance of Pd-Pt/p-TiO₂/p-Si sensing electrode towards H₂ gas under low (10-500 ppm) detection limit and operating temperature regime (25-200 °C) was discussed. The sensor is highly sensitive even at room temperature, with response (Ra/Rg) reaching ~102 for 500 ppm H₂ in dry air and its capability of sensing H₂ concentrations as low as ~10 ppm was demonstrated. At elevated temperature of 200 ℃, the response reached more than ~103 for 500 ppm H₂. Overall the fabricated resistive gas sensor exhibited high selectivity, good sensing response, and fast response/recovery time with good stability towards H₂.

Keywords: sputtering, porous silicon (p-Si), TiO₂ thin film, hydrogen gas sensor

Procedia PDF Downloads 230
1282 Biohydrogen Production from Starch Residues

Authors: Francielo Vendruscolo

Abstract:

This review summarizes the potential of starch agroindustrial residues as substrate for biohydrogen production. Types of potential starch agroindustrial residues, recent developments and bio-processing conditions for biohydrogen production will be discussed. Biohydrogen is a clean energy source with great potential to be an alternative fuel, because it releases energy explosively in heat engines or generates electricity in fuel cells producing water as only by-product. Anaerobic hydrogen fermentation or dark fermentation seems to be more favorable, since hydrogen is yielded at high rates and various organic waste enriched with carbohydrates as substrate result in low cost for hydrogen production. Abundant biomass from various industries could be source for biohydrogen production where combination of waste treatment and energy production would be an advantage. Carbohydrate-rich nitrogen-deficient solid wastes such as starch residues can be used for hydrogen production by using suitable bioprocess technologies. Alternatively, converting biomass into gaseous fuels, such as biohydrogen is possibly the most efficient way to use these agroindustrial residues.

Keywords: biofuel, dark fermentation, starch residues, food waste

Procedia PDF Downloads 362
1281 Undoped and Fluorine Doped Zinc Oxide (ZnO:F) Thin Films Deposited by Ultrasonic Chemical Spray: Effect of the Solution on the Electrical and Optical Properties

Authors: E. Chávez-Vargas, M. de la L. Olvera-Amador, A. Jimenez-Gonzalez, A. Maldonado

Abstract:

Undoped and fluorine doped zinc oxide (ZnO) thin films were deposited on sodocalcic glass substrates by the ultrasonic chemical spray technique. As the main goal is the manufacturing of transparent electrodes, the effects of both the solution composition and the substrate temperature on both the electrical and optical properties of ZnO thin films were studied. As a matter of fact, the effect of fluorine concentration ([F]/[F+Zn] at. %), solvent composition (acetic acid, water, methanol ratios) and ageing time, regarding solution composition, were varied. In addition, the substrate temperature and the deposition time, regarding the chemical spray technique, were also varied. Structural studies confirm the deposition of polycrystalline, hexagonal, wurtzite type, ZnO. The results show that the increase of ([F]/[F+Zn] at. %) ratio in the solution, decreases the sheet resistance, RS, of the ZnO:F films, reaching a minimum, in the order of 1.6 Ωcm, at 60 at. %; further increase in the ([F]/[F+Zn]) ratio increases the RS of the films. The same trend occurs with the variation in substrate temperature, as a minimum RS of ZnO:F thin films was encountered when deposited at TS= 450 °C. ZnO:F thin films deposited with aged solution show a significant decrease in the RS in the order of 100 ΩS. The transmittance of the films was also favorable affected by the solvent ratio and, more significantly, by the ageing of the solution. The whole evaluation of optical and electrical characteristics of the ZnO:F thin films deposited under different conditions, was done under Haacke’s figure of Merit in order to have a clear and quantitative trend as transparent conductors application.

Keywords: zinc oxide, ZnO:F, TCO, Haacke’s figure of Merit

Procedia PDF Downloads 284
1280 The Effect of Bath Composition for Hot-Dip Aluminizing of AISI 4140 Steel

Authors: Aptullah Karakas, Murat Baydogan

Abstract:

Hot-dip aluminizing (HDA) is one of the several aluminizing methods to form a wear-, corrosion- and oxidation-resistant aluminide layers on the surface. In this method, the substrate is dipped into a molten aluminum bath, hold in the bath for several minutes, and cooled down to the room temperature in air. A subsequent annealing after the HDA process is generally performed. The main advantage of HDA is its very low investment cost in comparison with other aluminizing methods such as chemical vapor deposition (CVD), pack aluminizing and metalizing. In the HDA process, Al or Al-Si molten baths are mostly used. However, in this study, three different Al alloys such as Al4043 (Al-Mg), Al5356 (Al-Si) and Al7020 (Al-Zn) were used as the molten bath in order to see their effects on morphological and mechanical properties of the resulting aluminide layers. AISI 4140 low alloyed steel was used as the substrate. Parameters of the HDA process were bath composition, bath temperature, and dipping time. These parameters were considered within a Taguchi L9 orthogonal array. After the HDA process and subsequent diffusion annealing, coating thickness measurement, microstructural analysis and hardness measurement of the aluminide layers were conducted. The optimum process parameters were evaluated according to coating morphology, such as cracks, Kirkendall porosity and hardness of the coatings. According to the results, smooth and clean aluminide layer with less Kirkendall porosity and cracks were observed on the sample, which was aluminized in the molten Al7020 bath at 700 C for 10 minutes and subsequently diffusion annealed at 750 C. Hardness of the aluminide layer was in between 1100-1300 HV and the coating thickness was approximately 400 µm. The results were promising such that a hard and thick aluminide layer with less Kirkendall porosity and cracks could be formed. It is, therefore, concluded that Al7020 bath may be used in the HDA process of AISI 4140 steel substrate.

Keywords: hot-dip aluminizing, microstructure, hardness measurement, diffusion annealing

Procedia PDF Downloads 43
1279 Behavioral Assessment of the Role of Brain 5-HT4 Receptors on the Memory and Cognitive Performance in a Rat Model of Alzheimer Disease

Authors: Siamak Shahidi, Nasrin Hashemi-Firouzi, Sara Soleimani-Asl, Alireza Komaki

Abstract:

Introduction: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory and cognitive performance. Recently, an involvement of the serotonergic system and their receptors are suspected in the AD progression. In the present behavioral study, the effects of BIMU (selective 5-HT4 receptor agonist) on cognition and memory in the rat model of AD was investigated. Material and Methods: The animal model of the AD was induced by intracerebroventricular (Icv) injection of amyloid beta (Aβ) in adult male Wistar rats. Animals were divided into experimental groups included control, sham, Aβ, Aβ +BIMU groups. The treatment substances were icv injected (1 μg/μL) for thirty consecutive days. Then, novel object recognition (NOR) and passive avoidance learning (PAL) tests were applied to investigate memory and cognitive performance. Results: Aβ decrease the discrimination index of NOR test. Also, it increases the time spent in the dark compartment during PAL test, as compared with sham and control groups. In addition, compared to Aβ groups, BIMU significantly increased the discrimination index of NOR test and decreased the time spent in the dark compartment of PAL test. Conclusion: These findings suggest that 5-HT4 receptor activation prevents progression of memory and cognitive impairment in a rat model of AD.

Keywords: Alzheimer disease, cognition, memory, serotonin receptors

Procedia PDF Downloads 100
1278 The Influence of Substrate and Temperature on the Growth of Phytophthora palmivora of Cocoa Black Pod Disease

Authors: Suhaida Salleh, Tee Yei Kheng

Abstract:

Black pod is the most commonly destructive disease of cacao (Theobroma cacao) which cause major losses to global production of cocoa beans. The genus of Phytophthora is the important pathogen of this disease worldwide. The species of P. megakarya causes black pod disease in West Africa, whereas P. capsici and P. citrophthora cause the incident in Central and South America. In Malaysia, this disease is caused by P. palmivora which infect all stages of pod development including flower cushion, cherelle, immature and mature pods. This pathogen destroys up to 10% of trees yearly through stem cankers and causes 20 to 30% pod damages through black pod rot. Since P. palmivora has a high impact on cocoa yield, it is crucial to identify some of the abiotic factors that can constrain their growth. In an effort to evaluate the effect of different substrates and temperatures to the growth of P. palmivora, a laboratory study was done under a different range of temperatures. Different substrate for the growth of P. palmivora were used which are corn meal agar (CMA) media and detached pod of cocoa. An agar plug of seven days old of P. palmivora growth was transferred on both substrates and incubated at 24, 27, 30, 33 and 36ᵒC, respectively. The diameter of lesion on pod and the cultural growth of pathogen was recorded for 7 consecutive days. The optimum incubation temperature of P. palmivora on both substrates is at 27ᵒC. However, the growth tends to be inhibited as the temperature increases. No lesion developed on pod surface incubated at 36ᵒC and only a small lesion observed at 33ᵒC. The sporulation with the formation of white mycelial growth on pod surface was only visible at optimum temperature, 27ᵒC. On CMA, the pathogen grew over the entire range of temperatures tested. The study is, therefore, concluded that P. palmivora grow the best at temperature of 27ᵒC on both substrates and their growth begin to inhibit when the temperature rises to more than 27ᵒC. The growth pattern of this pathogen is similar on both pod surface and cultural media.

Keywords: cocoa, Phytophthora palmivora, substrate, temperature

Procedia PDF Downloads 169
1277 Characterization of a Pure Diamond-Like Carbon Film Deposited by Nanosecond Pulsed Laser Deposition

Authors: Camilla G. Goncalves, Benedito Christ, Walter Miyakawa, Antonio J. Abdalla

Abstract:

This work aims to investigate the properties and microstructure of diamond-like carbon film deposited by pulsed laser deposition by ablation of a graphite target in a vacuum chamber on a steel substrate. The equipment was mounted to provide one laser beam. The target of high purity graphite and the steel substrate were polished. The mechanical and tribological properties of the film were characterized using Raman spectroscopy, nanoindentation test, scratch test, roughness profile, tribometer, optical microscopy and SEM images. It was concluded that the pulsed laser deposition (PLD) technique associated with the low-pressure chamber and a graphite target provides a good fraction of sp3 bonding, that the process variable as surface polishing and laser parameter have great influence in tribological properties and in adherence tests performance. The optical microscopy images are efficient to identify the metallurgical bond.

Keywords: characterization, DLC, mechanical properties, pulsed laser deposition

Procedia PDF Downloads 129
1276 Studies on Physico-Chemical Properties of Indium Sulfide Films Deposited under Different Deposition Conditions by Chemical Bath Deposition

Authors: S. B. Bansode, V. G. Wagh, R. S. Kapadnis, S. S. Kale, M. Pathan Habib

Abstract:

Indium sulfide films have been deposited using chemical bath deposition onto glass and indium tin oxide coated glass substrates. The influences of different deposition parameters viz. substrate and pH have been studied. The films were characterized by different techniques with respect to their crystal structure, surface morphology and compositional property by means of X-ray diffraction, scanning electron microscopy, Energy dispersive spectroscopy and optical absorption. X-ray diffraction studies revealed that amorphous nature of the films. The scanning electron microscopy of as deposited indium sulfide film on ITO coated glass substrate shows random orientation of grains where as those on glass substrates show dumbbell shape. Optical absorption study revealed that band gap varies from 2.29 to 2.79 eV for the deposited film.

Keywords: chemical bath deposition, optical properties, structural property, Indium sulfide

Procedia PDF Downloads 443
1275 Effects of Stiffness on Endothelial Cells Behavior

Authors: Forough Ataollahi, Sumit Pramanik, Belinda Pingguan-Murphy, Wan Abu Bakar Bin Wan Abas, Noor Azuan Bin Abu Osman

Abstract:

Endothelium proliferation is an important process in cardiovascular homeostasis and can be regulated by extracellular environment, as cells can actively sense mechanical environment. In this study, we evaluated endothelial cell proliferation on PDMS/alumina (Al2O3) composites and pure PDMS. The substrates were prepared from pure PDMS and its composites with 5% and 10% Al2O3 at curing temperature 50˚C for 4 h and then characterized by mechanical, structural and morphological analyses. Higher stiffness was found in the composites compared to the pure PDMS substrate. Cell proliferation of the cultured bovine aortic endothelial cells on substrate materials were evaluated via Resazurin assay and 1, 1’-Dioctadecyl-1, 3, 3, 3’, 3’-Tetramethylindocarbocyanine Perchlorate-Acetylated LDL (Dil-Ac-LDL) cell staining, respectively. The results revealed that stiffer substrates promote more endothelial cells proliferation to the less stiff substrates. Therefore, this study firmly hypothesizes that the stiffness elevates endothelial cells proliferation.

Keywords: stiffness, proliferation, bovine aortic endothelial cells, extra cellular matrix, vascular

Procedia PDF Downloads 317
1274 Numerical Study of Homogeneous Nanodroplet Growth

Authors: S. B. Q. Tran

Abstract:

Drop condensation is the phenomenon that the tiny drops form when the oversaturated vapour present in the environment condenses on a substrate and makes the droplet growth. Recently, this subject has received much attention due to its applications in many fields such as thin film growth, heat transfer, recovery of atmospheric water and polymer templating. In literature, many papers investigated theoretically and experimentally in macro droplet growth with the size of millimeter scale of radius. However few papers about nanodroplet condensation are found in the literature especially theoretical work. In order to understand the droplet growth in nanoscale, we perform the numerical simulation work to study nanodroplet growth. We investigate and discuss the role of the droplet shape and monomer diffusion on drop growth and their effect on growth law. The effect of droplet shape is studied by doing parametric studies of contact angle and disjoining pressure magnitude. Besides, the effect of pinning and de-pinning behaviours is also studied. We investigate the axisymmetric homogeneous growth of 10–100 nm single water nanodroplet on a substrate surface. The main mechanism of droplet growth is attributed to the accumulation of laterally diffusing water monomers, formed by the absorption of water vapour in the environment onto the substrate. Under assumptions of quasi-steady thermodynamic equilibrium, the nanodroplet evolves according to the augmented Young–Laplace equation. Using continuum theory, we model the dynamics of nanodroplet growth including the coupled effects of disjoining pressure, contact angle and monomer diffusion with the assumption of constant flux of water monomers at the far field. The simulation result is validated by comparing with the published experimental result. For the case of nanodroplet growth with constant contact angle, our numerical results show that the initial droplet growth is transient by monomer diffusion. When the flux at the far field is small, at the beginning, the droplet grows by the diffusion of initially available water monomers on the substrate and after that by the flux at the far field. In the steady late growth rate of droplet radius and droplet height follow a power law of 1/3, which is unaffected by the substrate disjoining pressure and contact angle. However, it is found that the droplet grows faster in radial direction than high direction when disjoining pressure and contact angle increase. The simulation also shows the information of computational domain effect in the transient growth period. When the computational domain size is larger, the mass coming in the free substrate domain is higher. So the mass coming in the droplet is also higher. The droplet grows and reaches the steady state faster. For the case of pinning and de-pinning droplet growth, the simulation shows that the disjoining pressure does not affect the droplet radius growth law 1/3 in steady state. However the disjoining pressure modifies the growth rate of the droplet height, which then follows a power law of 1/4. We demonstrate how spatial depletion of monomers could lead to a growth arrest of the nanodroplet, as observed experimentally.

Keywords: augmented young-laplace equation, contact angle, disjoining pressure, nanodroplet growth

Procedia PDF Downloads 243
1273 Direct Bonded Aluminum to Alumina Using a Transient Eutectic Liquid Phase for Power Electronics Applications

Authors: Yu-Ting Wang, Yun-Hsiang Cheng, Chien-Cheng Lin, Kun-Lin Lin

Abstract:

Using a transient liquid phase method, Al was successfully bonded with Al₂O₃, which deposited Ni, Cu, Ge, and Si at the surface of the Al₂O₃ substrate after annealing at the relatively low melting point of Al. No reaction interlayer existed at the interface of any Al/Al₂O₃ specimens. Al−Fe intermetallic compounds, such as Al₉Fe₂ and Al₃Fe, formed in the Al substrate because of the precipitation of Fe, which was an impurity of the Al foil, and the reaction with Al at the grain boundaries of Al during annealing processing. According to the evaluation results of mechanical and thermal properties, the Al/Al₂O₃ specimen deposited on the Ni film possessed the highest shear strength, thermal conductivity, and bonding area percentage, followed by the Cu, Ge, and Si films. The properties of the Al/Al₂O₃ specimens deposited with Ge and Si were relatively unsatisfactory, which could be because the deposited amorphous layers easily formed oxide, resulting in inferior adhesion between Al and Al₂O₃. Therefore, the optimal choice for use in high-power devices is Al/Al₂O₃, with the deposition of Ni film.

Keywords: direct-bonded aluminum, transient liquid phase, thermal conductivity, microstructures, shear strength

Procedia PDF Downloads 118
1272 Flexible Laser Reduced Graphene Oxide/MnO2 Electrode for Supercapacitor Applications

Authors: Ingy N. Bkrey, Ahmed A. Moniem

Abstract:

We succeeded to produce a high performance and flexible graphene/Manganese dioxide (G/MnO2) electrode coated on flexible polyethylene terephthalate (PET) substrate. The graphene film is initially synthesized by drop-casting the graphene oxide (GO) solution on the PET substrate, followed by simultaneous reduction and patterning of the dried film using carbon dioxide (CO2) laser beam with power of 1.8 W. Potentiostatic Anodic Deposition method was used to deposit thin film of MnO2 with different loading mass 10 – 50 and 100 μg.cm-2 on the pre-prepared graphene film. The electrodes were fully characterized in terms of structure, morphology, and electrochemical performance. A maximum specific capacitance of 973 F.g-1 was attributed when depositing 50 μg.cm-2 MnO2 on the laser reduced graphene oxide rGO (or G/50MnO2) and over 92% of its initial capacitance was retained after 1000 cycles. The good electrochemical performance and long-term cycling stability make our proposed approach a promising candidate in the supercapacitor applications.

Keywords: electrode deposition, flexible, graphene oxide, graphene, high power CO2 Laser, MnO2

Procedia PDF Downloads 292
1271 Anxieolytic Activity of Ethyl Acetate Extract of Flowers Nerium indicum

Authors: D. S. Mohale, A. V. Chandewar

Abstract:

Anxiety is defined as an exaggerated feeling of apprehension, uncertainty and fear. Nerium indicum is a well-known ornamental and medicinal plant belonging to the family Apocynaceae. A wide spectrum of biological activities has been reported with various constituents isolated from different parts of the plant. This study was conducted to investigate antianxiety activity of flower extract. Flowers were collected and dried in shade and coarsely powdered. Powdered mixture was extracted with ethyl acetate by maceration process. Extract of flowers obtained was subsequently dried in oven at 40-50 °C. This extract is then tested for antianxiety activity at low and high dose using Elevated Plus Maze and Light & dark Model. Rats shown increased open arm entries and time spent in open arm in elevated Plus maze with treatment low and high dose of extract of Nerium indicum flower as compared to their respective control groups. In Light & dark Model, light box entries and time spent in light box increased with treatment low and high dose of extract of Nerium indicum flower as compared to their respective control groups. From result it is concluded that Ethyl acetate extract of flower of Nerium indicum possess antianxiety activity at low and high dose.

Keywords: anxiety, anxieolytic, social isolation, nerium indicum, kaner

Procedia PDF Downloads 288
1270 Wood Decay Fungal Strains Useful for Bio-Composite Material Production

Authors: C. Girometta, S. Babbini, R. M. Baiguera, D. S. Branciforti, M. Cartabia, D. Dondi, M. Pellegrini, A. M. Picco, E. Savino

Abstract:

Interest on wood decay fungi (WDF) has been increasing in the last year's thanks to the potentiality of this kind of fungi; research on new WDF strains has increased as well thus pointing out the key role of the culture collections. One of the most recent biotechnological application of WDF is the development of novel materials from natural or recycled resources. Based on different combinations of fungal species, substrate, and processing treatment involved (e.g. heat pressing), it is possible to achieve a wide variety of materials with different features useful for many industrial applications: from packaging to thermal and acoustic insulation. In comparison with the conventional ones, these materials represent a 100% natural and compostable alternative involving low amounts of energy in the production process. The purpose of the present work was to isolate and select WDF strains able to colonize and degrade different plant wastes thus producing a fungal biomass shapeable to achieve bio-composite materials. Strains were selected within the mycological culture collection of Pavia University (MicUNIPV, over 300 strains of WDF). The selected strains have been investigated with regards their ability to colonize and degrade plant residues from the local major cultivations (e.g. poplar, alfalfa, maize, rice, and wheat) and produce the fungal biomass. The degradation of the substrate was assessed by Thermogravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). Chemical characterization confirmed that TGA and FTIR are complementary techniques able to provide quality-quantitative information on compositional and structural variation that occurs during the transformation from the substrate to the bio-composite material. This pilot study provides a fundamental step to tune further applications in fungus-residues composite biomaterials.

Keywords: bio-composite material, lignocellulosic residues, sustainable materials, wood decay fungi

Procedia PDF Downloads 110
1269 Development of Hydrophobic Coatings on Aluminum Alloy 7075

Authors: Nauman A. Siddiqui

Abstract:

High performance requirement of aircrafts and marines industry demands to cater major industrial problems like wetting, high-speed efficiency, and corrosion resistance. These problems can be resolved by producing the hydrophobic surfaces on the metal substrate. By anodization process, the surface of AA 7075 has been modified and achieved a rough surface with a porous aluminum oxide (Al2O3) structure at nano-level. This surface modification process reduces the surface contact energy and increases the liquid contact angle which ultimately enhances the anti-icing properties. Later the Silane and Polyurethane (PU) coatings on the anodized surface have produced a contact angle of 130°. The results showed a good water repellency and self-cleaning properties. Using SEM analysis, micrographs revealed the round nano-porous oxide structure on the substrate. Therefore this technique can help in increasing the speed efficiency by reducing the friction with the outer interaction and can also be declared as a green technique since it is user-friendly.

Keywords: AA 7075, hydrophobicity, silanes, polyurethane, anodization

Procedia PDF Downloads 246
1268 Internet Use, Social Networks, Loneliness and Quality of Life among Adults Aged 50 and Older: Mediating and Moderating Effects

Authors: Rabia Khaliala, Adi Vitman-Schorr

Abstract:

Background: The increase in longevity of people on one hand, and on the other hand the fact that the social networks in later life become increasingly narrower, highlight the importance of Internet use to enhance quality of life (QoL). However, whether Internet use increases or decreases social networks, loneliness and quality of life is not clear-cut. Purposes: To explore the direct and/or indirect effects of Internet use on QoL, and to examine whether ethnicity and time the elderly spent with family moderate the mediation effect of Internet use on quality of life throughout loneliness. Methods: This descriptive-correlational study was carried out in 2016 by structured interviews with a convenience sample of 502 respondents aged 50 and older, living in northern Israel. Bootstrapping with resampling strategies was used for testing mediation a model. Results: Use of the Internet was found to be positively associated with QoL. However, this relationship was mediated by loneliness, and moderated by the time the elderly spent with family members. In addition, respondents' ethnicity significantly moderated the mediation effect between Internet use and loneliness. Conclusions: Internet use can enhance QoL of older adults directly or indirectly by reducing loneliness. However, these effects are conditional on other variables. The indirect effect moderated by ethnicity, and the direct effect moderated by the time the elderly spend with their families. Researchers and practitioners should be aware of these interactions which can impact loneliness and quality of life of older persons differently.

Keywords: internet use, loneliness, quality of life, social contacts

Procedia PDF Downloads 150
1267 Wear Performance of Stellite 21 Cladded Overlay on Aisi 304L

Authors: Sandeep Singh Sandhua, Karanvir Singh Ghuman, Arun Kumar

Abstract:

Stellite 21 is cobalt based super alloy used in improving the wear performance of stainless steel engineering components subjected to harsh environmental conditions. This piece of research focuses on the wear analysis of satellite 21 cladded on AISI 304 L substrate using SMAW process. Bead on plate experiments were carried out by varying current and electrode manipulation techniques to optimize the dilution and microhardness. 80 Amp current and weaving technique was found to be optimum set of parameters for overlaying which were further used for multipass multilayer cladding of AISI 304 L substrate. The wear performance was examined on pin on dics wear testing machine under room temperature conditions. The results from this study show that Stellite 21 overlays show a significant improvement in the frictional wear resistance after TIG remelting. It is also established that low dilution procedures are important in controlling the metallurgical composition of these overlays which has a consequent effect in enhancing hardness and wear resistance of these overlays.

Keywords: surfacing, stellite 21, dilution, SMAW, frictional wear, micro-hardness

Procedia PDF Downloads 219
1266 The Creation of Calcium Phosphate Coating on Nitinol Substrate

Authors: Kirill M. Dubovikov, Ekaterina S. Marchenko, Gulsharat A. Baigonakova

Abstract:

NiTi alloys are widely used as implants in medicine due to their unique properties such as superelasticity, shape memory effect and biocompatibility. However, despite these properties, one of the major problems is the release of nickel after prolonged use in the human body under dynamic stress. This occurs due to oxidation and cracking of NiTi implants, which provokes nickel segregation from the matrix to the surface and release into living tissues. As we know, nickel is a toxic element and can cause cancer, allergies, etc. One of the most popular ways to solve this problem is to create a corrosion resistant coating on NiTi. There are many coatings of this type, but not all of them have good biocompatibility, which is very important for medical implants. Coatings based on calcium phosphate phases have excellent biocompatibility because Ca and P are the main constituents of the mineral part of human bone. This fact suggests that a Ca-P coating on NiTi can enhance osteogenesis and accelerate the healing process. Therefore, the aim of this study is to investigate the structure of Ca-P coating on NiTi substrate. Plasma assisted radio frequency (RF) sputtering was used to obtain this film. This method was chosen because it allows the crystallinity and morphology of the Ca-P coating to be controlled by the sputtering parameters. It allows us to obtain three different NiTi samples with Ca-P coating. XRD, AFM, SEM and EDS were used to study the composition, structure and morphology of the coating phase. Scratch tests were carried out to evaluate the adhesion of the coating to the substrate. Wettability tests were used to investigate the hydrophilicity of the different coatings and to suggest which of them had better biocompatibility. XRD showed that the coatings of all samples were hydroxyapatite, but the matrix was represented by TiNi intermetallic compounds such as B2, Ti2Ni and Ni3Ti. The SEM shows that the densest and defect-free coating has only one sample after three hours of sputtering. Wettability tests show that the sample with the densest coating has the lowest contact angle of 40.2° and the largest free surface area of 57.17 mJ/m2, which is mostly disperse. A scratch test was carried out to investigate the adhesion of the coating to the surface and it was shown that all coatings were removed by a cohesive mechanism. However, at a load of 30N, the indenter reached the substrate in two out of three samples, except for the sample with the densest coating. It was concluded that the most promising sputtering mode was the third, which consisted of three hours of deposition. This mode produced a defect-free Ca-P coating with good wettability and adhesion.

Keywords: biocompatibility, calcium phosphate coating, NiTi alloy, radio frequency sputtering.

Procedia PDF Downloads 43
1265 Node Optimization in Wireless Sensor Network: An Energy Approach

Authors: Y. B. Kirankumar, J. D. Mallapur

Abstract:

Wireless Sensor Network (WSN) is an emerging technology, which has great invention for various low cost applications both for mass public as well as for defence. The wireless sensor communication technology allows random participation of sensor nodes with particular applications to take part in the network, which results in most of the uncovered simulation area, where fewer nodes are located at far distances. The drawback of such network would be that the additional energy is spent by the nodes located in a pattern of dense location, using more number of nodes for a smaller distance of communication adversely in a region with less number of nodes and additional energy is again spent by the source node in order to transmit a packet to neighbours, thereby transmitting the packet to reach the destination. The proposed work is intended to develop Energy Efficient Node Placement Algorithm (EENPA) in order to place the sensor node efficiently in simulated area, where all the nodes are equally located on a radial path to cover maximum area at equidistance. The total energy consumed by each node compared to random placement of nodes is less by having equal burden on fewer nodes of far location, having distributed the nodes in whole of the simulation area. Calculating the network lifetime also proves to be efficient as compared to random placement of nodes, hence increasing the network lifetime, too. Simulation is been carried out in a qualnet simulator, results are obtained on par with random placement of nodes with EENP algorithm.

Keywords: energy, WSN, wireless sensor network, energy approach

Procedia PDF Downloads 286
1264 N-Type GaN Thinning for Enhancing Light Extraction Efficiency in GaN-Based Thin-Film Flip-Chip Ultraviolet (UV) Light Emitting Diodes (LED)

Authors: Anil Kawan, Soon Jae Yu, Jong Min Park

Abstract:

GaN-based 365 nm wavelength ultraviolet (UV) light emitting diodes (LED) have various applications: curing, molding, purification, deodorization, and disinfection etc. However, their usage is limited by very low output power, because of the light absorption in the GaN layers. In this study, we demonstrate a method utilizing removal of 365 nm absorption layer buffer GaN and thinning the n-type GaN so as to improve the light extraction efficiency of the GaN-based 365 nm UV LED. The UV flip chip LEDs of chip size 1.3 mm x 1.3 mm were fabricated using GaN epilayers on a sapphire substrate. Via-hole n-type contacts and highly reflective Ag metal were used for efficient light extraction. LED wafer was aligned and bonded to AlN carrier wafer. To improve the extraction efficiency of the flip chip LED, sapphire substrate and absorption layer buffer GaN were removed by using laser lift-off and dry etching, respectively. To further increase the extraction efficiency of the LED, exposed n-type GaN thickness was reduced by using inductively coupled plasma etching.

Keywords: extraction efficiency, light emitting diodes, n-GaN thinning, ultraviolet

Procedia PDF Downloads 393