Search results for: soil pollution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4399

Search results for: soil pollution

4159 Laboratory Calibration of Soil Pressure Transducer for a Specified Field Application

Authors: Mohammad Zahidul Islam Bhuiyan, Shanyong Wang, Scott William Sloan, Daichao Sheng

Abstract:

Nowadays soil pressure transducers are widely used to measure the soil stress states in laboratory and field experiments. The soil pressure transducers, investigated here, are traditional diaphragm-type earth pressure cells (DEPC) based on strain gauge principle. It is found that the output of these sensors varies with the soil conditions as well as the position of a sensor. Therefore, it is highly recommended to calibrate the pressure sensors based on the similar conditions of their intended applications. The factory calibration coefficients of the EPCs are not reliable to use since they are normally calibrated by applying fluid (a special type of oil) pressure only over load sensing zone, which does not represent the actual field conditions. Thus, the calibration of these sensors is utmost important, and they play a pivotal role for assessing earth pressures precisely. In the present study, TML soil pressure sensor is used to compare its sensitivity under different calibration systems, for example, fluid calibration, and static load calibration with or without soil. The results report that the sensor provides higher sensitivity (more accurate results) under soil calibration system.

Keywords: calibration, soil pressure, earth pressure cell, sensitivity

Procedia PDF Downloads 206
4158 Effect of Slag Application to Soil Chemical Properties and Rice Yield on Acid Sulphate Soils with Different Pyrite Depth

Authors: Richardo Y. E. Sihotang, Atang Sutandi, Joshua Ginting

Abstract:

The expansion of marginal soil such as acid sulphate soils for the development of staple crops, including rice was unavoidable. However, acid sulphate soils were less suitable for rice field due to the low fertility and the threats of pyrite oxidation. An experiment using Randomized Complete Block Design was designed to investigate the effect of slag in stabilizing soil reaction (pH), improving soil fertility and rice yield. Experiments were conducted in two locations with different pyrite depth. The results showed that slag application was able to decrease the exchangeable Al and available iron (Fe) as well as increase the soil pH, available-P, soil exchangeable Ca2+, Mg2+, and K+. Furthermore, the slag application increased the plant nutrient uptakes, particularly N, P, K, followed by the increasing of rice yield significantly. Nutrients availability, nutrient uptake, and rice yield were higher in the shallow pyrite soil instead of the deep pyrite soil. In addition, slag application was economically feasible due to the ability to reduce standard fertilizer requirements.

Keywords: acid sulphate soils, available nutrients, pyrite, slag

Procedia PDF Downloads 273
4157 The Impact of Air Pollution on Health and the Environment: The Case of Cement Beni-Saf, Western Algeria

Authors: N. Hachemi, I. Benmehdi, O. Hasnaoui

Abstract:

The air like water is an essential element for living beings. Each day, a man breathes about 20m3 of air. It originally consists of a set of gas whose presence and concentrations correspond to the needs of life. This study focuses on air pollution by smoke and dust emitted from the chimney of the cement works of Beni Saf, pathological and their impact on the environment. Dust of the cement plant are harmless to permissible levels for living organisms, but the two combined phenomena namely the release of dust and aridity of the climate, which severely marked area of Beni Saf; have contributed adverse effects in on human health and the degradation of vegetation cover and species especially weakened by environmental stress. The most visible impact is certainly the deposition of dust on the surrounding areas of the cement factory, and seriously affecting the aesthetics of the landscape. Health problems are more important inside and outside the factory. Among the diseases notable caused by the cement works are: deafness, heart disease, asthma and mental. The dust of the cement works is mainly composed of fine particles of limestone, clay, free lime, silicates and also loaded of the gases such as carbon dioxide gas CO2. The accumulation of this gas in the atmosphere is directly involved in the phenomenon of increasing of greenhouse effect. Some gases, for example, are directly toxic. They can change the climate, changing precipitation types and become a greater source of stress by drought, etc. The environment also suffers from air pollution indirectly; it is more precisely the acid rain. They are produced by the combustion of non-metals in air. Acid rain has consequences for contaminating the soil, weakening the flora, fauna and acidifies lakes. Finally, the pollution problems are multiple and specific dust. It can worsen and change, it has reached epidemic proportions quantitatively and qualitatively disturbing and unpredictable.

Keywords: atmospheric pollution, cement, dust, environment

Procedia PDF Downloads 303
4156 Environmental Pollution and Treatment Technology

Authors: R. Berrached, H. Ait Mahamed, A. Iddou

Abstract:

Water pollution is nowadays a serious problem, due to the increasing scarcity of water and thus to the impact induced by such pollution on the human health. Various techniques are made use of to deal with water pollution. Among the most used ones, some can be enumerated: the bacterian bed, the activated mud, the Lagunage as biological processes and coagulation-floculation as a physic-chemical process. These processes are very expensive and an treatment efficiency which decreases along with the increase of the initial pollutants’ concentration. This is the reason why research has been reoriented towards the use of a process by adsorption as an alternative solution instead of the other traditional processes. In our study, we have tempted to exploit the characteristics of two metallic hydroxides Al and Fe to purify contaminated water by two industrial dyes SBL blue and SRL-150 orange. Results have shown the efficiency of the two materials on the blue SBL dye.

Keywords: metallic hydroxydes, industrial dyes, purificatıon,

Procedia PDF Downloads 294
4155 Impact of Chronic Pollution on the Taj Mahal, India

Authors: Kiran P. Chadayamuri, Saransh Bagdi, Sai Vinod Boddu

Abstract:

Pollution has been a major problem that has haunted India for years. Large amounts of industrial, automobile and domestic waste have resulted in heavy contamination of air, land and water. The Taj Mahal, one of the Seven Wonders of the World, has been and continues to be India’s symbol of a rich history around the globe. Over the years, the beauty of Taj Mahal has also suffered from increasing pollution. Its shiny white exterior has started to turn yellow because of air pollution and acid rain. Illegal factories and uncontrolled construction have played a major role in worsening its condition. Rapid population growth in the city (Agra) meant more water requirement which has led to ground water deterioration under the historical monument making its wooden foundations dry and weak. Despite various measures by the state and central government, there hasn’t been any satisfactory result. This paper aims at studying the various causes and their impacts affecting the Taj Mahal and method that could slow down its deterioration.

Keywords: pollution, Taj Mahal, India, management

Procedia PDF Downloads 355
4154 Polycyclic Aromatic Hydrocarbons: Pollution and Ecological Risk Assessment in Surface Soil of the Tezpur Town, on the North Bank of the Brahmaputra River, Assam, India

Authors: Kali Prasad Sarma, Nibedita Baul, Jinu Deka

Abstract:

In the present study, pollution level of polycyclic aromatic hydrocarbon (PAH) in surface soil of historic Tezpur town located in the north bank of the River Brahmaputra were evaluated. In order to determine the seasonal distribution and concentration level of 16 USEPA priority PAHs surface soil samples were collected from 12 different sampling sites with various land use type. The total concentrations of 16 PAHs (∑16 PAHs) varied from 242.68µgkg-1to 7901.89µgkg-1. Concentration of total probable carcinogenic PAH ranged between 7.285µgkg-1 and 479.184 µgkg-1 in different seasons. However, the concentration of BaP, the most carcinogenic PAH, was found in the range of BDL to 50.01 µgkg-1. The composition profiles of PAHs in 3 different seasons were characterized by following two different types of ring: (1) 4-ring PAHs, contributed to highest percentage of total PAHs (43.75%) (2) while in pre- and post- monsoon season 3- ring compounds dominated the PAH profile, contributing 65.58% and 74.41% respectively. A high PAHs concentration with significant seasonality and high abundance of LMWPAHs was observed in Tezpur town. Soil PAHs toxicity was evaluated taking toxic equivalency factors (TEFs), which quantify the carcinogenic potential of other PAHs relative to BaP and estimate benzo[a]pyrene-equivalent concentration (BaPeq). The calculated BaPeq value signifies considerable risk to contact with soil PAHs. We applied cluster analysis and principal component analysis (PCA) with multivariate linear regression (MLR) to apportion sources of polycyclic aromatic hydrocarbons (PAHs) in surface soil of Tezpur town, based on the measured PAH concentrations. The results indicate that petrogenic and pyrogenic sources are the important sources of PAHs. A combination of chemometric and molecular indices were used to identify the sources of PAHs, which could be attributed to vehicle emissions, a mixed source input, natural gas combustion, wood or biomass burning and coal combustion. Source apportionment using absolute principle component scores–multiple linear regression showed that the main sources of PAHs are 22.3% mix sources comprising of diesel and biomass combustion and petroleum spill,13.55% from vehicle emission, 9.15% from diesel and natural gas burning, 38.05% from wood and biomass burning and 16.95% contribute coal combustion. Pyrogenic input was found to dominate source of PAHs origin with more contribution from vehicular exhaust. PAHs have often been found to co-emit with other environmental pollutants like heavy metals due to similar source of origin. A positive correlation was observed between PAH with Cr and Pb (r2 = 0.54 and 0.55 respectively) in monsoon season and PAH with Cd and Pb (r2 = 0.54 and 0.61 respectively) indicating their common source. Strong correlation was observed between PAH and OC during pre- and post- monsoon (r2=0.46 and r2=0.65 respectively) whereas during monsoon season no significant correlation was observed (r2=0.24).

Keywords: polycyclic aromatic hydrocarbon, Tezpur town, chemometric analysis, ecological risk assessment, pollution

Procedia PDF Downloads 185
4153 Prediction of Unsaturated Permeability Functions for Clayey Soil

Authors: F. Louati, H. Trabelsi, M. Jamei

Abstract:

Desiccation cracks following drainage-humidification cycles. With water loss, mainly due to evaporation, suction in the soil increases, producing volumetric shrinkage and tensile stress. When the tensile stress reaches tensile strength, the soil cracks. Desiccation cracks networks can directly control soil hydraulic properties. The aim of this study was for quantifying the hydraulic properties for examples the water retention curve, the saturated hydraulic conductivity, the unsaturated hydraulic conductivity function, the shrinkage dynamics in Tibar soil- clay soil in the Northern of Tunisia. Then a numerical simulation of unsaturated hydraulic properties for a crack network has been attempted. The finite elements code ‘CODE_BRIGHT’ can be used to follow the hydraulic distribution in cracked porous media.

Keywords: desiccation, cracks, permeability, unsaturated hydraulic flow, simulation

Procedia PDF Downloads 267
4152 Soil Transmitted Helminth Infection and Associated Risk Factors among School Children in a Selected Barangay in the Philippines

Authors: Gil Soriano, Aubreyrose Casilang

Abstract:

Soil-transmitted helminth infection remains to be one of the leading public health problem worldwide, which is common in the rural developing regions especially among children. This study aimed to detect the presence of soil transmitted helminths among children and its associated transmission factors. Descriptive cross sectional research was the design used in the study and questionnaires were administered. Stool samples were collected among the samples (n=108) and were analyzed using kato thick method. Results showed that 61 out of 108 respondents are infected by soil transmitted helminth infection with A. lumbricoides the highest, followed by hookworm and T. trichuria. Parent's educational attainment, hand washing practices, and water sources were found to be associated with presence of Soil Transmitted Helminth infection.

Keywords: associated risk factors, barangay, school children, soil transmitted helminth infection

Procedia PDF Downloads 175
4151 3D Finite Element Analysis for Mechanics of Soil-Tool Interaction

Authors: A. Armin, R. Fotouhi, W. Szyszkowski

Abstract:

This paper is part of a study to develop robots for farming. As such power requirement to operate equipment attach to such robots become an important factor. Soil-tool interaction play major role in power consumption, thus predicting accurately the forces which act on the blade during the farming is prime importance for optimal designing of farm equipment. In this paper a finite element investigation for tillage tools and soil interaction is described by using an inelastic constitutive material law for agriculture application. A 3-dimentional (3D) nonlinear finite element analysis (FEA) is developed to examine behavior of a blade with different rake angles moving in a block of soil, and to estimate the blade force. The soil model considered is an elastic-plastic with non-associated Drucker-Prager material model. Special use of contact elements are employed to consider connection between soil-blade and soil-soil surfaces. The FEA results are compared with experiment ones, which show good agreement in accurately predicting draft forces developed on the blade when it moves through the soil. Also, a very good correlation was obtained between FEA results and analytical results from classical soil mechanics theories for straight blades. These comparisons verified the FEA model developed. For analyzing complicated soil-tool interactions and for optimum design of blades, this method will be useful.

Keywords: finite element analysis, soil-blade contact modeling, blade force, mechanical engineering

Procedia PDF Downloads 267
4150 Effect of Cocoa Pod Ash and Poultry Manure on Soil Properties and Cocoyam Productivity of Nutrient-Depleted Tropical Alfisol

Authors: T. M. Agbede, A. O. Adekiya

Abstract:

An experiment was carried out for three consecutive years at Owo, southwest Nigeria. The objective of the investigation was to determine the effect of Cocoa Pod Ash (CPA) and Poultry Manure (PM) applied solely and their combined form, as sources of fertilizers on soil properties, leaf nutrient composition, growth and yield of cocoyam. Three soil amendments: CPA, PM (sole forms), CPA and PM (mixture), were applied at 7.5 t ha-1 with an inorganic fertilizer (NPK 15-15-15) at 400 kg ha-1 as a reference and a natural soil fertility, NSF (control), arranged in a randomized complete block design with three replications. Results showed that soil amendments significantly increased (p = 0.05) corm and cormel weights and growth of cocoyam, soil and leaf N, P, K, Ca and Mg, soil pH and organic carbon (OC) concentrations compared with the NSF (control). The mixture of CPA+PM treatment increased corm and cormel weights, plant height and leaf area of cocoyam by 40, 39, 42, and 48%, respectively, compared with inorganic fertilizer (NPK) and 13, 12, 15 and 7%, respectively, compared with PM alone. Sole or mixed forms of soil amendments showed remarkable improvement in soil physical properties compared with NPK and the NSF (control). The mixture of CPA+PM applied at 7.5 t ha-1 was the most effective treatment in improving cocoyam yield and growth parameters, soil and leaf nutrient composition.

Keywords: Cocoa pod ash, cocoyam, poultry manure, soil and leaf nutrient composition.

Procedia PDF Downloads 340
4149 Comparison of Different Techniques to Estimate Surface Soil Moisture

Authors: S. Farid F. Mojtahedi, Ali Khosravi, Behnaz Naeimian, S. Adel A. Hosseini

Abstract:

Land subsidence is a gradual settling or sudden sinking of the land surface from changes that take place underground. There are different causes of land subsidence; most notably, ground-water overdraft and severe weather conditions. Subsidence of the land surface due to ground water overdraft is caused by an increase in the intergranular pressure in unconsolidated aquifers, which results in a loss of buoyancy of solid particles in the zone dewatered by the falling water table and accordingly compaction of the aquifer. On the other hand, exploitation of underground water may result in significant changes in degree of saturation of soil layers above the water table, increasing the effective stress in these layers, and considerable soil settlements. This study focuses on estimation of soil moisture at surface using different methods. Specifically, different methods for the estimation of moisture content at the soil surface, as an important term to solve Richard’s equation and estimate soil moisture profile are presented, and their results are discussed through comparison with field measurements obtained from Yanco1 station in south-eastern Australia. Surface soil moisture is not easy to measure at the spatial scale of a catchment. Due to the heterogeneity of soil type, land use, and topography, surface soil moisture may change considerably in space and time.

Keywords: artificial neural network, empirical method, remote sensing, surface soil moisture, unsaturated soil

Procedia PDF Downloads 331
4148 Study of Cathodic Protection for Trunk Pipeline of Al-Garraf Oil Field

Authors: Maysoon Khalil Askar

Abstract:

The delineation of possible areas of corrosion along the external face of an underground oil pipeline in Trunk line of Al- Garraf oil field was investigated using the horizontal electrical resistivity profiling technique and study the contribution of pH, Moisture Content in Soil and Presence chlorides, sulfates and total dissolve salts in soil and water. The test sites represent a physical and chemical properties of soils. The hydrogen-ion concentration of soil and groundwater range from 7.2 to 9.6, and the resistivity values of the soil along the pipeline were obtained using the YH302B model resistivity meter having values between 1588 and 720 Ohm-cm. the chloride concentration in soil and groundwater is high (more than 1000 ppm), total soulable salt is more than 5000 ppm, and sulphate range from 0.17% and 0.98% in soil and more than 600 ppm in groundwater. The soil is poor aeration, the soil texture is fine (clay and silt soil), the water content is high (the groundwater is close to surface), the chloride and sulphate is high in the soil and groundwater, the total soulable salt is high in ground water and finally the soil electric resistivity is low that the soil is very corrosive and there is the possibility of the pipeline failure. These methods applied in the study are quick, economic and efficient for detecting along buried pipelines which need to be protected. Routine electrical geophysical investigations along buried oil pipelines should be undertaken for the early detection and prevention of pipeline failure with its attendant environmental, human and economic consequences.

Keywords: soil resistivity, corrosion, cathodic protection, chloride concentration, water content

Procedia PDF Downloads 406
4147 Comparative Study on the Effect of Compaction Energy and Moisture Content on the Strength Properties of Lateritic Soil

Authors: Ahmad Idris, O.A. Uche, Ado Y Abdulfatah

Abstract:

Lateritic soils are found in abundance and are the most common types of soils used in construction of roads and embankments in Nigeria. Strength properties of the soils depend on the amount of compaction applied and the amount of water available in the soil at the time of compaction. In this study, the influence of the compactive effort and that of the amount of water in the soil in the determination of the shear strength properties of lateritic soil was investigated. Lateritic soil sample was collected from an existing borrow pit in Kano, Nigeria and its basic characteristics were determined and the soil was classified according to AASHTO classification method. The soil was then compacted under various compactive efforts and at wide range of moisture contents. The maximum dry density (MDD) and optimum moisture content (OMC) at each compactive effort was determined. Unconfined undrained triaxial test was carried out to determine the shear strength properties of the soil under various conditions of moisture and energy. Preliminary results obtained indicated that the soil is an A-7-5 soil. The final results obtained shows that as the compaction energy is increased, both the cohesion and friction angle increased irrespective of the moisture content used in the compaction. However, when the amount of water in the soil was increased and compaction effort kept constant, only the cohesion of the soil increases while the friction angle shows no any pattern of variation. It was also found that the highest values for cohesion and friction angle were obtained when the soil was compacted at the highest energy and at OMC.

Keywords: laterite, OMC, compaction energy, moisture content

Procedia PDF Downloads 375
4146 Study of Nitrogen Species Fate and Transport in Subsurface: To Assess the Impact of Wastewater Irrigation

Authors: C. Mekala, Indumathi M. Nambi

Abstract:

Nitrogen pollution in groundwater arising from wastewater and fertilizer application through vadose zone is a major problem and it causes a prime risk to groundwater based drinking water supplies. Nitrogenous compounds namely ammonium, nitrate and nitrite fate and transport in soil subsurface were studied experimentally. The major process like sorption, leaching, biotransformation involving microbial growth kinetics, and biological clogging due to biomass growth were assessed and modeled with advection-dispersion reaction equations for ammonium, nitrate and acetate in a saturated, heterogeneous soil medium. The transport process was coupled with freundlich sorption and monod inhibition kinetics for immobile bacteria and permeability reduction due to biomass growth will be verified and validated with the numerical model. This proposed mathematical model will be very helpful in the development of a management model for a sustainable and safe wastewater reuse strategies such as irrigation and groundwater recharge.

Keywords: nitrogen species transport, transformation, biological clogging, biokinetic parameters, contaminant transport model, saturated soil

Procedia PDF Downloads 369
4145 Soil Erosion Assessment Using the RUSLE Model, Remote Sensing, and GIS in the Shatt Al-Arab Basin (Iraq-Iran)

Authors: Hadi Allafta, Christian Opp

Abstract:

Soil erosion is a major concern in the Shatt Al-Arab basin owing to the steepness of its topography as well as the remarkable altitudinal deference between the upstream and downstream parts of the basin. Such conditions resulted in soil vulnerability to erosion; huge amounts of soil are annually transported, creating enormous implications such as land degradation, structure damage, biodiversity loss, productivity decline, etc. Thus, evaluation of soil erosion risk and its spatial distribution is crucial to build adatabase for efficient control measures. The present study used revised universal soil loss equation (RUSLE) model integrated with Geographic Information System (GIS) for depicting soil erosion hazard zones in the Shatt Al-Arab basin. The RUSLE model incorporated several parameters such as rainfall-runoff erosivity, soil erodibility, slope length and steepness, land cover and management, and conservation support practice for soil erosion zonation. High to medium soil loss of 100 to 20 ton perhectare per year represents around 25% of the basin area, while the areas of low soil loss of less than 20 ton per hectare per year occupied the rest of the total area. The high soil loss rates are linked to areas of high rainfall levels, loamy soil domination, elevated terrains/plateau margins with steep side slope, and high cultivation activities. The findings of the current study can be useful for managers and policy makers in the implementation of a suitable conservation program to reduce soil erosion or to recommend soil conservation acts if development projects are to be continued at regions of high soil erosion risk.

Keywords: geographic information system, revised universal soil loss equation, shatt Al-Arab basin, soil erosion

Procedia PDF Downloads 91
4144 A Close Study on the Nitrate Fertilizer Use and Environmental Pollution for Human Health in Iran

Authors: Saeed Rezaeian, M. Rezaee Boroon

Abstract:

Nitrogen accumulates in soils during the process of fertilizer addition to promote the plant growth. When the organic matter decomposes, the form of available nitrogen produced is in the form of nitrate, which is highly mobile. The most significant health effect of nitrate ingestion is methemoglobinemia in infants under six months of age (blue baby syndrome). The mobile nutrients, like nitrate nitrogen, are not stored in the soil as the available forms for the long periods and in large amounts. It depends on the needs for the crops such as vegetables. On the other hand, the vegetables will compete actively for nitrate nitrogen as a mobile nutrient and water. The mobile nutrients must be shared. The fewer the plants, the larger this share is for each plant. Also, this nitrate nitrogen is poisonous for the people who use these vegetables. Nitrate is converted to nitrite by the existing bacteria in the stomach and the Gastro-Intestinal (GI) tract. When nitrite is entered into the blood cells, it converts the hemoglobin to methemoglobin, which causes the anoxemia and cyanosis. The increasing use of pesticides and chemical fertilizers, especially the fertilizers with nitrates compounds, which have been common for the increased production of agricultural crops, has caused the nitrate pollution in the (soil, water, and environment). They have caused a lot of damage to humans and animals. In this research, the nitrate accumulation in different kind of vegetables such as; green pepper, tomatoes, egg plants, watermelon, cucumber, and red pepper were observed in the suburbs of Mashhad, Neisabour, and Sabzevar cities. In some of these cities, the information forms of agronomical practices collected were such as; different vegetable crops fertilizer recommendations, varieties, pesticides, irrigation schedules, etc., which were filled out by some of our colleagues in the research areas mentioned above. Analysis of the samples was sent to the soil and water laboratory in our department in Mashhad. The final results from the chemical analysis of samples showed that the mean levels of nitrates from the samples of the fruit crops in the mentioned cities above were all lower than the critical levels. These fruit crop samples were in the order of: 35.91, 8.47, 24.81, 6.03, 46.43, 2.06 mg/kg dry matter, for the following crops such as; tomato, cucumber, eggplant, watermelon, green pepper, and red pepper. Even though, this study was conducted with limited samples and by considering the mean levels, the use of these crops from the nutritional point of view will not cause the poisoning of humans.

Keywords: environmental pollution, human health, nitrate accumulations, nitrate fertilizers

Procedia PDF Downloads 220
4143 The Potential Effect of Biochar Application on Microbial Activities and Availability of Mineral Nitrogen in Arable Soil Stressed by Drought

Authors: Helena Dvořáčková, Jakub Elbl, Irina Mikajlo, Antonín Kintl, Jaroslav Hynšt, Olga Urbánková, Jaroslav Záhora

Abstract:

Application of biochar to arable soils represents a new approach to restore soil health and quality. Many studies reported the positive effect of biochar application on soil fertility and development of soil microbial community. Moreover biochar may affect the soil water retention, but this effect has not been sufficiently described yet. Therefore this study deals with the influence of biochar application on: microbial activities in soil, availability of mineral nitrogen in soil for microorganisms, mineral nitrogen retention and plant production. To demonstrate the effect of biochar addition on the above parameters, the pot experiment was realized. As a model crop, Lactuca sativa L. was used and cultivated from December 10th 2014 till March 22th 2015 in climate chamber in thoroughly homogenized arable soil with and without addition of biochar. Five variants of experiment (V1–V5) with different regime of irrigation were prepared. Variants V1–V2 were fertilized by mineral nitrogen, V3–V4 by biochar and V5 was a control. The significant differences were found only in plant production and mineral nitrogen retention. The highest content of mineral nitrogen in soil was detected in V1 and V2, about 250 % in comparison with the other variants. The positive effect of biochar application on soil fertility, mineral nitrogen availability was not found. On the other hand results of plant production indicate the possible positive effect of biochar application on soil water retention.

Keywords: arable soil, biochar, drought, mineral nitrogen

Procedia PDF Downloads 386
4142 Microplastics in Urban Environment – Coimbra City Case Study

Authors: Inês Amorim Leitão, Loes van Shaick, António Dinis Ferreira, Violette Geissen

Abstract:

Plastic pollution is a growing concern worldwide: plastics are commercialized in large quantities and it takes a long time for them to degrade. When in the environment, plastic is fragmented into microplastics (<5mm), which have been found in all environmental compartments at different locations. Microplastics contribute to the environmental pollution in water, air and soil and are linked to human health problems. The progressive increase of population living in cities led to the aggravation of the pollution problem worldwide, especially in urban environments. Urban areas represent a strong source of pollution, through the roads, industrial production, wastewater, landfills, etc. It is expected that pollutants such as microplastics are transported diffusely from the sources through different pathways such as wind and rain. Therefore, it is very complex to quantify, control and treat these pollutants, designated current problematic issues by the European Commission. Green areas are pointed out by experts as natural filters for contaminants in cities, through their capacity of retention by vegetation. These spaces have thus the capacity to control the load of pollutants transported. This study investigates the spatial distribution of microplastics in urban soils of different land uses, their transport through atmospheric deposition, wind erosion, runoff and streams, as well as their deposition in vegetation like grass and tree leaves in urban environment. Coimbra, a medium large city located in the central Portugal, is the case-study. All the soil, sediments, water and vegetation samples were collected in Coimbra and were later analyzed in the Wageningen University & Research laboratory. Microplastics were extracted through the density separation using Sodium Phosphate as solution (~1.4 g cm−3) and filtration methods, visualized under a stereo microscope and identified using the u-FTIR method. Microplastic particles were found in all the different samples. In terms of soils, higher concentrations of microplastics were found in green parks, followed by landfills and industrial places, and the lowest concentrations in forests and pasture land-uses. Atmospheric deposition and streams after rainfall events seems to represent the strongest pathways of microplastics. Tree leaves can retain microplastics on their surfaces. Small leaves such as needle leaves seem to present higher amounts of microplastics per leaf area than bigger leaves. Rainfall episodes seem to reduce the concentration of microplastics on leaves surface, which suggests the wash of microplastics down to lower levels of the tree or to the soil. When in soil, different types of microplastics could be transported to the atmosphere through wind erosion. Grass seems to present high concentrations of microplastics, and the enlargement of the grass cover leads to a reduction of the amount of microplastics in soil, but also of the microplastics moved from the ground to the atmosphere by wind erosion. This study proof that vegetation can help to control the transport and dispersion of microplastics. In order to control the entry and the concentration of microplastics in the environment, especially in cities, it is essential to defining and evaluating nature-based land-use scenarios, considering the role of green urban areas in filtering small particles.

Keywords: microplastics, cities, sources, pathways, vegetation

Procedia PDF Downloads 18
4141 Measuring the Amount of Eroded Soil and Surface Runoff Water in the Field

Authors: Abdulfatah Faraj Aboufayed

Abstract:

Water erosion is the most important problems of the soil in the Jebel Nefusa area located in north west of Libya, therefore erosion station had been established in the Faculty of Veterinary and rainfed agriculture research Station, University of the Jepel Algherbee in Zentan. The length of the station is 72.6 feet, 6 feet width, and the percentage of it's slope is 3%. The station was established to measure the mount of soil eroded and amount of surface water produced during the seasons 95/96 and 96/97 from each rain storms. The Monitoring shows that there was a difference between the two seasons in the number of rainstorms which made differences in the amount of surface runoff water and the amount of soil eroded between the two seasons. Although the slope is low (3%), the soil texture is sandy and the land ploughed twice during each season surface runoff and soil eroded occurred. The average amount of eroded soil was 3792 grams (gr) per season and the average amount of surface runoff water was 410 litter (L) per season. The amount of surface runoff water would be much greater from Jebel Nefusa upland with steep slopes and collecting of them will save a valuable amount of water which lost as a runoff while this area is in desperate of this water. The regression analysis of variance show strong correlation between rainfall depth and the other two depended variable (the amount of surface runoff water and the amount of eroded soil). It shows also strong correlation between amount of surface runoff water and amount of eroded soil.

Keywords: rain, surface runoff water, soil, water erosion, soil erosion

Procedia PDF Downloads 362
4140 Key Parameters for Controlling Swell of Expansive Soil-Hydraulic Cement Admixture

Authors: Aung Phyo Kyaw, Kuo Chieh Chao

Abstract:

Expansive soils are more complicated than normal soils, although the soil itself is not very complicated. When evaluating foundation performance on expansive soil, it is important to consider soil expansion. The primary focus of this study is on hydraulic cement and expansive soil mixtures, and the research aims to identify key parameters for controlling the swell of the expansive soil-hydraulic cement mixture. Treatment depths can be determined using hydraulic cement ratios of 4%, 8%, 12%, and 15% for treating expansive soil. To understand the effect of hydraulic cement percentages on the swelling of expansive soil-hydraulic admixture, performing the consolidation-swell test σ''ᶜˢ is crucial. This investigation primarily focuses on consolidation-swell tests σ''ᶜˢ, although the heave index Cₕ is also needed to determine total heave. The heave index can be measured using the percent swell in the specific inundation stress in both the consolidation-swell test and the constant-volume test swelling pressure. Obtaining the relationship between swelling pressure and σ''ᶜⱽ determined from the "constant volume test" is useful in predicting heave from a single oedometer test. The relationship between σ''ᶜˢ and σ''ᶜⱽ is based on experimental results of expansive soil behavior and facilitates heave prediction for each soil. In this method, the soil property "m" is used as a parameter, and common soil property tests include compaction, particle size distribution, and the Atterberg limit. The Electricity Generating Authority of Thailand (EGAT) provided the soil sample for this study, and all laboratory testing is performed according to American Society for Testing and Materials (ASTM) standards.

Keywords: expansive soil, swelling pressure, total heave, treatment depth

Procedia PDF Downloads 48
4139 Numerical Investigation of Soft Clayey Soil Improved by Soil-Cement Columns under Harmonic Load

Authors: R. Ziaie Moayed, E. Ghanbari Alamouty

Abstract:

Deep soil mixing is one of the improvement methods in geotechnical engineering which is widely used in soft soils. This article investigates the consolidation behavior of a soft clay soil which is improved by soil-cement column (SCC) by numerical modeling using Plaxis2D program. This behavior is simulated under vertical static and cyclic load which is applied on the soil surface. The static load problem is the simulation of a physical model test in an axisymmetric condition which uses a single SCC in the model center. The results of numerical modeling consist of settlement of soft soil composite, stress on soft soil and column, and excessive pore water pressure in the soil show a good correspondence with the test results. The response of soft soil composite to the cyclic load in vertical direction also compared with the static results. Also the effects of two variables namely the cement content used in a SCC and the area ratio (the ratio of the diameter of SCC to the diameter of composite soil model, a) is investigated. The results show that the stress on the column with the higher value of a, is lesser compared with the stress on other columns. Different rate of consolidation and excessive pore pressure distribution is observed in cyclic load problem. Also comparing the results of settlement of soil shows higher compressibility in the cyclic load problem.

Keywords: area ratio, consolidation behavior, cyclic load, numerical modeling, soil-cement column

Procedia PDF Downloads 129
4138 Immediate and Long-Term Effect of the Sawdust Usage on Shear Strength of the Clayey Silt Soil

Authors: Dogan Cetin, Omar Hamdi Jasim

Abstract:

Using some additives is very common method to improve the soil properties such as shear strength, bearing capacity; and to reduce the settlement and lateral deformation. Soil reinforcement with natural materials is an attractive method to improve the soil properties because of their low cost. However, the studies conducted by using natural additive are very limited. This paper presents the results of an investigation on the immediate and long-term effects of the sawdust on the shear strength behavior of a clayey silt soil obtained in Arnavutkoy in Istanbul with sawdust. Firstly, compaction tests were conducted to be able to optimum moisture content for every percentage of sawdust. The samples were obtained from compacted soil at optimum moisture content. UU Triaxial Tests were conducted to evaluate the response of randomly distributed sawdust on the strength of low plasticity clayey silt soil. The specimens were tested with 1%, 2% and 3% content of sawdust. It was found that the undrained shear strength of clay soil with 1%, 2% and 3% sawdust were increased respectively 4.65%, 27.9% and 39.5% higher than the soil without additive. At 5%, shear strength of clay soil decreased by 3.8%. After 90 days cure period, the shear strength of the soil with 1%, 2%, 3% and %5 increased respectively 251%, 302%, 260% and 153%. It can be said that the effect of the sawdust usage has a remarkable effect on the undrained shear strength of the soil. Besides the increasing undrained shear strength, it was also found that the sawdust decreases the liquid limit, plastic limit and plasticity index by 5.5%, 2.9 and 10.9% respectively.

Keywords: compaction test, sawdust, shear strength, UU Triaxial Test

Procedia PDF Downloads 321
4137 Spatial Orientation of Land Use Activities along Buffalo River Estuary: A Study in Buffalo City Metropolitan Municipality, Eastern Cape South Africa

Authors: A. Ngunga, M. K. Soviti, S. Nakin

Abstract:

South Africa is one of the developing countries rich in estuary ecosystem. Previous studies have identified many impacts of land use activities on the pollution status of the estuaries. These land use activity and related practices are often blamed for the many pollution problems affecting the estuaries. For example, the estuarine ecosystems on a global scale are experiencing vast transformations from anthropogenic influences; Buffalo River Estuary is one of the influenced estuaries whereby the sources of pollution are unknown. These problems consequently lead to the degradation of the estuaries. The aim of the research was to establish the factors that have the potential to impact pollution status of Buffalo river estuary. Study focuses on Identifying and mapping land use activities along Buffalo River Estuary. Questionnaire survey, structured interviews, direct observation, GPS survey and ArcGIS mapping were the methods used for data collection in the area, and results were analyzed and presented by ANOVA and Microsoft Excel statistical methods. The results showed that harbour is the main source of pollution, in Buffalo River Estuary, through Ballast water discharge. Therefore that requires more concern for protecting and cleaning the estuary.

Keywords: estuary, land-use activities, pollution, mapping, water pollution

Procedia PDF Downloads 159
4136 Wetting-Drying Cycles Effect on Piles Embedded in a Very High Expansive Soil

Authors: Bushra Suhail, Laith Kadim

Abstract:

The behavior of model piles embedded in a very high expansive soil was investigated, a specially manufactured saturation-drying tank was used to apply three cycles of wetting and drying to the expansive soil surrounding the model straight shaft and under reamed piles, the relative movement of the piles with respect to the soil surface was recorded with time, also the exerted uplift pressure of the piles due to soil swelling was recorded. The behavior of unloaded straight shaft and under reamed piles was investigated. Two design charts were presented for straight shaft and under reamed piles one for the required pile depth for zero upward movement due to soil swelling, the other for the required pile depth to exert zero uplift pressure when the soil swells. Under reamed piles showed a decrease in upward movement of 20% to 40%, and an uplift pressure decrease of 10% to 30%.

Keywords: expansive soil, piles, under reamed, structural and geotechnical engineering

Procedia PDF Downloads 290
4135 Major Gullies Erosion Sites and Volume of Soil Loss in Edo State, Nigeria

Authors: Augustine Osayande

Abstract:

This research is on Major Gullies Erosion Sites and Volume of Soil Loss in Edo State, Nigeria. The primary objective was to identify notable gullies sites and quantify the volume of soil loss in the study area. Direct field observation and measurement of gullies dimensions was done with the help of research assistants using a measuring tape, Camera and 3percent accuracy Global Positioning System (GPS). The result revealed that notable gullies in the area have resulted in the loss of lives and properties, destruction of arable lands and wastage of large areas of usable lands. Gullies in Edo North have Mean Volume of Soil Loss of 614, 763.33 m³, followed by Edo South with 79,604.76 m³ and Edo Central is 46,242.98 m³ and as such an average of 1,772, 888.7m3 of soil is lost annually in the study area due to gully erosion problem. The danger of gully erosion in helpless regions like Edo State called for urgent remedies in order to arrest the further loss of soil, buildings and other properties.

Keywords: Edo, magnitude, gully, volume, soil, sloss

Procedia PDF Downloads 111
4134 A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay

Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari

Abstract:

Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation.

Keywords: model tree, CART, logistic regression, soil shear strength

Procedia PDF Downloads 164
4133 Influence of Compactive Efforts on the Hydraulic Conductivity of Bagasse Ash Treated Black Cotton Soil

Authors: T. S. Ijimdiya, K. J. Osinubi

Abstract:

This study examines the influence of compactive efforts on hydraulic conductivity behaviour of compacted black cotton soil treated with bagasse ash which is necessary in assessing the performance of the soil - bagasse ash mixture for use as a suitable barrier material in waste containment application. Black cotton soil treated with up to 12% bagasse ash (obtained from burning the fibrous residue from the extraction of sugar juice from sugarcane) by dry weight of soil for use in waste containment application. The natural soil classifies as A-7-6 or CH in accordance with the AASHTO and the Unified Soil Classification System, respectively. The treated soil samples were prepared at molding water contents of -2, 0, +2, and +4 % of optimum moisture contents and compacted using four compactive efforts of Reduced British Standard Light (RBSL), British Standard light (BSL), West African Standard (WAS) and British Standard Heavy (BSH). The results obtained show that hydraulic conductivity decreased with increase in bagasse ash content, moulding water content and compaction energy.

Keywords: bagasse ash treatment, black cotton soil, hydraulic conductivity, moulding water contents, compactive efforts

Procedia PDF Downloads 394
4132 Ingenious Eco-Technology for Transforming Food and Tanneries Waste into a Soil Bio-Conditioner and Fertilizer Product Used for Recovery and Enhancement of the Productive Capacity of the Soil

Authors: Petre Voicu, Mircea Oaida, Radu Vasiu, Catalin Gheorghiu, Aurel Dumitru

Abstract:

The present work deals with the way in which food and tobacco waste can be used in agriculture. As a result of the lack of efficient technologies for their recycling, we are currently faced with the appearance of appreciable quantities of residual organic residues that find their use only very rarely and only after long storage in landfills. The main disadvantages of long storage of organic waste are the unpleasant smell, the high content of pathogenic agents, and the high content in the water. The release of these enormous amounts imperatively demands the finding of solutions to ensure the avoidance of environmental pollution. The measure practiced by us consists of the processing of this waste in special installations, testing in pilot experimental perimeters, and later administration on agricultural lands without harming the quality of the soil, agricultural crops, and the environment. The current crisis of raw materials and energy also raises special problems in the field of organic waste valorization, an activity that takes place with low energy consumption. At the same time, their composition recommends them as useful secondary sources in agriculture. The transformation of food scraps and other residues concentrated organics thus acquires a new orientation, in which these materials are seen as important secondary resources. The utilization of food and tobacco waste in agriculture is also stimulated by the increasing lack of chemical fertilizers and the continuous increase in their price, under the conditions that the soil requires increased amounts of fertilizers in order to obtain high, stable, and profitable production. The need to maintain and increase the humus content of the soil is also taken into account, as an essential factor of its fertility, as a source and reserve of nutrients and microelements, as an important factor in increasing the buffering capacity of the soil, and the more reserved use of chemical fertilizers, improving the structure and permeability for water with positive effects on the quality of agricultural works and preventing the excess and/or deficit of moisture in the soil.

Keywords: ecology, soil, organic waste, fertility

Procedia PDF Downloads 51
4131 Soil-Geopolymer Mixtures for Pavement Base and Subbase Layers

Authors: Mohammad Khattak, Bikash Adhikari, Sambodh Adhikari

Abstract:

This research deals with the physical, microstructural, mechanical, and shrinkage characteristics of flyash-based soil-geopolymer mixtures. Medium and high plastic soils were obtained from local construction projects. Class F flyash was used with a mixture of sodium silicate and sodium hydroxide solution to develop soil-geopolymer mixtures. Several mixtures were compacted, cured at different curing conditions, and tested for unconfined compressive strength (UCS), linear shrinkage, and observed under scanning electron microscopy (SEM). The results of the study demonstrated that the soil-geopolymer mixtures fulfilled the UCS criteria of cement treated design (CTD) and cement stabilized design (CSD) as recommended by the department of transportation for pavement base and subbase layers. It was found that soil-geopolymer demonstrated either similar or better UCS and shrinkage characteristics relative to conventional soil-cement mixtures. The SEM analysis revealed that microstructure of soil-geopolymer mixtures exhibited development and steady growth of geopolymerization during the curing period. Based on mechanical, shrinkage, and microstructural characteristics it was suggested that the soil-geopolymer mixtures, has an immense potential to be used as pavement subgrade, subbase, and base layers.

Keywords: soil-geopolymer, pavement base, soil stabilization, unconfined compressive strength, shrinkage, microstructure, and morphology

Procedia PDF Downloads 155
4130 Features of Soil Formation in the North of Western Siberia in Cryogenic Conditions

Authors: Tatiana V. Raudina, Sergey P. Kulizhskiy

Abstract:

A large part of Russia is located in permafrost areas. These areas are widely used because there are concentrated valuable natural resources. Therefore to explore of cryosols it is important due to the significant increase of anthropogenic stress as well as the problem of global climate change. In the north of Western Siberia permafrost phenomena is widespread. Permafrost as a factor of soil formation and cryogenesis as a process have a great impact on the soil formation of these areas. Based on the research results of permafrost-affected soils tundra landscapes formed in the central part of the Tazovskiy Peninsula in cryogenic conditions, data were obtained which characterize the morphological features of soils. The specificity of soil cover distribution and manifestation of soil-forming processes within the study area are noted. Permafrost features such as frost cracking, cryoturbation, thixotropy, movement of humus are formed. The formation of these features is increased with the development of the territory. As a consequence, there is a change in the components of the environment and the destruction of the soil cover.

Keywords: gleyed and nongleyed soils, permafrost, soil cryogenesis (pedocryogenesis), soil-forming macroprocesses

Procedia PDF Downloads 308