Search results for: small wheel bicycle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4897

Search results for: small wheel bicycle

4837 Energy Recovery from Swell with a Height Inferior to 1.5 m

Authors: A. Errasti, F. Doffagne, O. Foucrier, S. Kao, A. Meigne, H. Pellae, T. Rouland

Abstract:

Renewable energy recovery is an important domain of research in past few years in view of protection of our ecosystem. Several industrial companies are setting up widespread recovery systems to exploit wave energy. Most of them have a large size, are implanted near the shores and exploit current flows. However, as oceans represent 70% of Earth surface, a huge space is still unexploited to produce energy. Present analysis focuses on surface small scale wave energy recovery. The principle is exactly the opposite of wheel damper for a car on a road. Instead of maintaining the car body as non-oscillatory as possible by adapted control, a system is designed so that its oscillation amplitude under wave action will be maximized with respect to a boat carrying it in view of differential potential energy recuperation. From parametric analysis of system equations, interesting domains have been selected and expected energy output has been evaluated.

Keywords: small scale wave, potential energy, optimized energy recovery, auto-adaptive system

Procedia PDF Downloads 227
4836 Failure of Agriculture Soil following the Passage of Tractors

Authors: Anis Eloud, Sayed Chehaibi

Abstract:

Compaction of agricultural soils as a result of the passage of heavy machinery on the fields is a problem that affects many agronomists and farmers since it results in a loss of yield of most crops. To remedy this, and raise the overall future of the food security challenge, we must study and understand the process of soil degradation. The present review is devoted to understanding the effect of repeated passages on agricultural land. The experiments were performed on a plot of the area of the ESIER, characterized by a clay texture in order to quantify the soil compaction caused by the wheels of the tractor during repeated passages on agricultural land. The test tractor CASE type puissance 110 hp and 5470 kg total mass of 3500 kg including the two rear axles and 1970 kg on the front axle. The state of soil compaction has been characterized by measuring its resistance to penetration by means of a penetrometer and direct manual reading, the density and permeability of the soil. Soil moisture was taken jointly. The measurements are made in the initial state before passing the tractor and after each pass varies from 1 to 7 on the track wheel inflated to 1.5 bar for the rear wheel and broke water to the level of valve and 4 bar for the front wheels. The passages are spaced to the average of one week. The results show that the passage of wheels on a farm tilled soil leads to compaction and the latter increases with the number of passages, especially for the upper 15 cm depth horizons. The first passage is characterized by the greatest effect. However, the effect of other passages do not follow a definite law for the complex behavior of granular media and the history of labor and the constraints it suffers from its formation.

Keywords: wheel traffic, tractor, soil compaction, wheel

Procedia PDF Downloads 448
4835 On Chromaticity of Wheels

Authors: Zainab Yasir Abed Al-Rekaby, Abdul Jalil M. Khalaf

Abstract:

Let the vertices of a graph such that every two adjacent vertices have different color is a very common problem in the graph theory. This is known as proper coloring of graphs. The possible number of different proper colorings on a graph with a given number of colors can be represented by a function called the chromatic polynomial. Two graphs G and H are said to be chromatically equivalent, if they share the same chromatic polynomial. A Graph G is chromatically unique, if G is isomorphic to H for any graph H such that G is chromatically equivalent to H. The study of chromatically equivalent and chromatically unique problems is called chromaticity. This paper shows that a wheel W12 is chromatically unique.

Keywords: chromatic polynomial, chromatically equivalent, chromatically unique, wheel

Procedia PDF Downloads 400
4834 Characterization and Analysis of Airless Tire in Mountain Cycle

Authors: Sadia Rafiq, Md. Ashab Siddique Zaki, Ananya Roy

Abstract:

Mountain cycling is a type of off-road bicycle racing that typically takes place on rocky, arid, or other challenging terrains on specially-made mountain cycles. Professional cyclists race while attempting to stay on their bikes in a variety of locales across the world. For safety measures in mountain cycling, as there we have a high chance of injury in case of tire puncture, it’s a preferable way to use an airless tire instead of a pneumatic tire. As airless tire does not tend to go flat, it needs to be replaced less frequently. The airless tire replaces the pneumatic tire, wheel, and tire system with a single unit. It consists of a stiff hub connected to a shear band by flexible, pliable spokes, which is made of poly-composite and a tread band, all of which work together as a single unit to replace all of the components of a normal radial tire. In this paper, an analysis of airless tires in the mountain cycle is shown along with structure and material study. We will be taking the Honeycomb and Diamond Structure of spokes to compare the deformation in both cases and choose our preferable structure. As we know, the tread and spokes deform with the surface roughness and impact. So, the tire tread thickness and the design of spokes can control how much the tire can distort. Through the simulation, we can come to the conclusion that the diamond structure deforms less than the honeycomb structure. So, the diamond structure is more preferable.

Keywords: airless tire, diamond structure, honeycomb structure, deformation

Procedia PDF Downloads 47
4833 The Electric Car Wheel Hub Motor Work Analysis with the Use of 2D FEM Electromagnetic Method and 3D CFD Thermal Simulations

Authors: Piotr Dukalski, Bartlomiej Bedkowski, Tomasz Jarek, Tomasz Wolnik

Abstract:

The article is concerned with the design of an electric in wheel hub motor installed in an electric car with two-wheel drive. It presents the construction of the motor on the 3D cross-section model. Work simulation of the motor (applicated to Fiat Panda car) and selected driving parameters such as driving on the road with a slope of 20%, driving at maximum speed, maximum acceleration of the car from 0 to 100 km/h are considered by the authors in the article. The demand for the drive power taking into account the resistance to movement was determined for selected driving conditions. The parameters of the motor operation and the power losses in its individual elements, calculated using the FEM 2D method, are presented for the selected car driving parameters. The calculated power losses are used in 3D models for thermal calculations using the CFD method. Detailed construction of thermal models with materials data, boundary conditions and losses calculated using the FEM 2D method are presented in the article. The article presents and describes calculated temperature distributions in individual motor components such as winding, permanent magnets, magnetic core, body, cooling system components. Generated losses in individual motor components and their impact on the limitation of its operating parameters are described by authors. Attention is paid to the losses generated in permanent magnets, which are a source of heat as the removal of which from inside the motor is difficult. Presented results of calculations show how individual motor power losses, generated in different load conditions while driving, affect its thermal state.

Keywords: electric car, electric drive, electric motor, thermal calculations, wheel hub motor

Procedia PDF Downloads 143
4832 A Study of Chromatic Uniqueness of W14

Authors: Zainab Yasir Al-Rekaby, Abdul Jalil M. Khalaf

Abstract:

Coloring the vertices of a graph such that every two adjacent vertices have different color is a very common problem in the graph theory. This is known as proper coloring of graphs. The possible number of different proper colorings on a graph with a given number of colors can be represented by a function called the chromatic polynomial. Two graphs G and H are said to be chromatically equivalent, if they share the same chromatic polynomial. A Graph G is chromatically unique, if G is isomorphic to H for any graph H such that G is chromatically equivalent to H. The study of chromatically equivalent and chromatically unique problems is called chromaticity. This paper shows that a wheel W14 is chromatically unique.

Keywords: chromatic polynomial, chromatically Equivalent, chromatically unique, wheel

Procedia PDF Downloads 385
4831 Analysis of Wheel Lock up Effects on Skidding Distance for Heavy Vehicles

Authors: Mahdieh Zamzamzadeh, Ahmad Abdullah Saifizul, Rahizar Ramli

Abstract:

The road accidents involving heavy vehicles have been showing worrying trends and, year after year, have increased the concern and awareness levels on safety of roads and transportations especially in developing countries like Malaysia. Statistics of road crashes continue to show that there are many contributing factors on the capability of a heavy vehicle to stop on safe distance and ultimately prevent traffic crashes. However, changes in the road condition due to weather variations and the vehicle dynamic specifications such as loading conditions and speed are the main risk factors because they will affect a heavy vehicle’s braking performance due to losing control and not being able to stop the vehicle, and in many cases will cause wheel lock up and accordingly skidding. Predicting heavy vehicle skidding distance is crucial for accident reconstruction and roadside safety engineers. Despite this, formal tools to study heavy vehicle skidding distance before stopping completely are totally limited, and most researchers have only considered braking distance in their studies. As a possible new tool, this work presents the iterative use of vehicle dynamic simulations to study heavy vehicle-roadway interaction in order to predict wheel lock up effects on skidding distance and safety. This research addresses the influence of the vehicle and road conditions on skidding distance after wheel lock up and presents a precise analysis of skidding phenomenon. The vehicle speed, vehicle loading condition and road friction parameters were all varied in a simulation-based analysis. In order to simulate the wheel lock up situation, a heavy vehicle model was constructed and simulated using multibody vehicle dynamics simulation software, and careful analysis was made on the conditions which caused the skidding distance to increase or decrease through a method using to predict skidding distance as part of braking distance. By applying many simulations, the results were quite revealing relation between the heavy vehicles loading condition, various sets of speed and road coefficient of friction and their interaction effect on the skidding distance. A number of results are presented which illustrate how the heavy vehicle overloading can seriously affect the skidding distance. Moreover, the results of simulation give the skid mark length, which is a necessary input data during accident reconstruction involving emergency braking.

Keywords: accident reconstruction, Braking, heavy vehicle, skidding distance, skid mark, wheel lock up

Procedia PDF Downloads 468
4830 Design and Biomechanical Analysis of a Transtibial Prosthesis for Cyclists of the Colombian Team Paralympic

Authors: Jhonnatan Eduardo Zamudio Palacios, Oscar Leonardo Mosquera Dussan, Daniel Guzman Perez, Daniel Alfonso Botero Rosas, Oscar Fabian Rubiano Espinosa, Jose Antonio Garcia Torres, Ivan Dario Chavarro, Ivan Ramiro Rodriguez Camacho, Jaime Orlando Rodriguez

Abstract:

The training of cilsitas with some type of disability finds in the technological development an indispensable ally, generating every day advances to contribute to the quality of life allowing to maximize the capacities of the athletes. The performance of a cyclist depends on physiological and biomechanical factors, such as aerodynamic profile, bicycle measurements, connecting rod length, pedaling systems, type of competition, among others. This study particularly focuses on the description of the dynamic model of a transtibial prosthesis for Paralympic cyclists. To make the model, two points are chosen: in the radius centers of rotation of the plate and pinion of the track bicycle. The parametric scheme of the track bike represents a model of 6 degrees of freedom due to the displacement in X - Y of each of the reference points of the angles of the curve profile β, cant of the velodrome α and the angle of rotation of the connecting rod φ. The force exerted on the crank of the bicycle varies according to the angles of the curve profile β, the velodrome cant of α and the angle of rotation of the crank φ. The behavior is analyzed through the Matlab R2015a software. The average strength that a cyclist exerts on the cranks of a bicycle is 1,607.1 N, the Paralympic cyclist must perform a force on each crank about 803.6 N. Once the maximum force associated with the movement has been determined, it is continued to the dynamic modeling of the transtibial prosthesis that represents a model of 6 degrees of freedom with displacement in X - Y in relation to the angles of rotation of the hip π, knee γ and ankle λ. Subsequently, an analysis of the kinematic behavior of the prosthesis was carried out by means of SolidWorks 2017 and Matlab R2015a, which was used to model and analyze the variation of the hip angles π, knee γ and ankle of the λ prosthesis. The reaction forces generated in the prosthesis were performed on the ankle of the prosthesis, performing the summation of forces on the X and Y axes. The same analysis was then applied to the tibia of the prosthesis and the socket. The reaction force of the parts of the prosthesis varies according to the hip angles π, knee γ and ankle of the prosthesis λ. Therefore, it can be deduced that the maximum forces experienced by the ankle of the prosthesis is 933.6 N on the X axis and 2.160.5 N on the Y axis. Finally, it is calculated that the maximum forces experienced by the tibia and the socket of the transtibial prosthesis in high performance competitions is 3.266 N on the X axis and 1.357 N on the Y axis. In conclusion, it can be said that the performance of the cyclist depends on several physiological factors, linked to biomechanics of training. The influence of biomechanical factors such as aerodynamics, bicycle measurements, connecting rod length, or non-circular pedaling systems on the cyclist performance.

Keywords: biomechanics, dynamic model, paralympic cyclist, transtibial prosthesis

Procedia PDF Downloads 302
4829 Wadjda, a Film That Quietly Sets the Stage for a Cultural Revolution in Saudi Arabia

Authors: Anouar El Younssi

Abstract:

This study seeks to shed some light on the political and social ramifications and implications of Haifaa al-Mansour’s 2012 film Wadjda. The film made international headlines following its release, and was touted as the first film ever to be shot in its entirety inside the Kingdom of Saudi Arabia, and also the first to be directed by a female (Haifaa al-Mansour). Wadjda revolves around a simple storyline: A teenage Saudi girl living in the capital city Riyadh—named Wadjda—wants to have a bicycle just like her male teenage neighbor and friend Abdullah, but her ultra-conservative Saudi society places so many constraints on its female population—including not allowing girls and women to ride bicycles. Wadjda, who displays a rebellious spirit, takes concrete steps to save money in order to realize her dream of buying a bicycle. For example, she starts making and selling sports bracelets to her school mates, and she decides to participate in a Qur’an competition in hopes of winning a sum of money that comes with the first prize. In the end, Wadjda could not beat the system on her own, but the film reverses course, and the audience gets a happy ending: Wadjda’s mother, whose husband has decided to take a second wife, defies the system and buys her daughter the very bicycle Wadjda has been dreaming of. It is quite significant that the mother takes her daughter’s side on the subject of the bicycle at the end of the film, for this shows that she finally came to the realization that she and her daughter are both oppressed by the cultural norms prevalent in Saudi society. It is no coincidence that this change of heart and action on the part of the mother takes place immediately after the wedding night celebrating her husband’s second marriage. Gender inequality is thus placed front and center in the film. Nevertheless, a major finding of this study is that the film carries out its social critique in a soft and almost covert manner. The female actors in the film never issue a direct criticism of Saudi society or government; the criticism is consistently implied and subtle throughout. It is a criticism that relies more on showing than telling. The film shows us—rather than tells us directly—what is wrong, and lets us, the audience, decide and make a judgment. In fact, showing could arguably be more powerful and impactful than telling. Regarding methodology, this study will focus on and analyze the visuals and a number of key utterances by the main actor Wadjda in order to corroborate the study’s argument about the film’s bent on critiquing patriarchy. This research will attempt to establish a link between the film as an art object and as a social text. Ultimately, Wadjda sends a message of hope, that change is possible and that it is already happening slowly inside the Kingdom. It also sends the message that an insurrectional approach regarding women’s rights in Saudi Arabia is perhaps not the right one, at least at this historical juncture.

Keywords: bicycle, gender inequality, social critique, Wadjda, women’s rights

Procedia PDF Downloads 95
4828 Analysis of Magnesium Alloy Wheel Forming Technologies for Light Vehicles

Authors: Anna Dziubinska

Abstract:

The applications of magnesium alloys in transport include all kinds of vehicle wheels for cars, motorcycles, bicycles, trolleys, etc. Modern technologies of manufacturing products from these materials have been noticeably improved recently, creating new possibilities for their application. Continuously developed technologies for forming Mg alloys must not be overlooked, which make it possible to manufacture products with better properties compared to those obtained by casting only. The article reviews the specialized literature on magnesium wheel forming and presents a concept of technology for forging magnesium wheels for light vehicles from cast preforms. The research leading to these results has received funding from the Norway Grants 2014-2021 via the National Centre for Research and Development.

Keywords: forming, forging, magnesium alloy, wheels, vehicles

Procedia PDF Downloads 101
4827 Substantial Fatigue Similarity of a New Small-Scale Test Rig to Actual Wheel-Rail System

Authors: Meysam Naeimi, Zili Li, Roumen Petrov, Rolf Dollevoet, Jilt Sietsma, Jun Wu

Abstract:

The substantial similarity of fatigue mechanism in a new test rig for rolling contact fatigue (RCF) has been investigated. A new reduced-scale test rig is designed to perform controlled RCF tests in wheel-rail materials. The fatigue mechanism of the rig is evaluated in this study using a combined finite element-fatigue prediction approach. The influences of loading conditions on fatigue crack initiation have been studied. Furthermore, the effects of some artificial defects (squat-shape) on fatigue lives are examined. To simulate the vehicle-track interaction by means of the test rig, a three-dimensional finite element (FE) model is built up. The nonlinear material behaviour of the rail steel is modelled in the contact interface. The results of FE simulations are combined with the critical plane concept to determine the material points with the greatest possibility of fatigue failure. Based on the stress-strain responses, by employing of previously postulated criteria for fatigue crack initiation (plastic shakedown and ratchetting), fatigue life analysis is carried out. The results are reported for various loading conditions and different defect sizes. Afterward, the cyclic mechanism of the test rig is evaluated from the operational viewpoint. The results of fatigue life predictions are compared with the expected number of cycles of the test rig by its cyclic nature. Finally, the estimative duration of the experiments until fatigue crack initiation is roughly determined.

Keywords: fatigue, test rig, crack initiation, life, rail, squats

Procedia PDF Downloads 489
4826 Small Entrepreneurship Supporting Economic Policy in Georgia

Authors: G. Erkomaishvili

Abstract:

This paper discusses small entrepreneurship development strategy in Georgia and the tools and regulations that will encourage development of small entrepreneurship. The current situation in the small entrepreneurship sector, as well as factors affecting growth and decline in the sector and the priorities of state support, are studied and analyzed. The objective of this research is to assess the current situation of the sector to highlight opportunities and reveal the gaps. State support of small entrepreneurship should become a key priority in the country’s economic policy, as development of the sector will ensure social, economic and political stability. Based on the research, a small entrepreneurship development strategy is presented; corresponding conclusions are made and recommendations are developed.

Keywords: economic policy for small entrepreneurship development, small entrepreneurship, regulations, small entrepreneurship development strategy

Procedia PDF Downloads 446
4825 Structural and Microstructural Analysis of White Etching Layer Formation by Electrical Arcing Induced on the Surface of Rail Track

Authors: Ali Ahmed Ali Al-Juboori, H. Zhu, D. Wexler, H. Li, C. Lu, J. McLeod, S. Pannila, J. Barnes

Abstract:

A number of studies have focused on the formation mechanics of white etching layer and its origin in the railway operation. Until recently, the following hypotheses consider the precise mechanics of WELs formation: (i) WELs are the result of thermal process caused by wheel slip; (ii) WELs are mechanically induced by severe plastic deformation; (iii) WELs are caused by a combination of thermo-mechanical process. The mechanisms discussed above lead to occurrence of white etching layers on the area of wheel and rail contact. This is because the contact patch which is the active point of the wheel on the rail is exposed to highest shear stresses which result in localised severe plastic deformation; and highest rate of heat caused by wheel slipe during excessive traction or braking effort. However, if the WELs are not on the running band area, it would suggest that there is another cause of WELs formation. In railway system, particularly electrified railway, arcing phenomenon has been occurring more often and regularly on the rails. In electrified railway, the current is delivered to the train traction motor via contact wires and then returned to the station via the contact between the wheel and the rail. If the contact between the wheel and the rail is temporarily losing, due to dynamic vibration, entrapped dirt or water, lubricant effect or oxidation occurrences, high current can jump through the gap and results in arcing. The other resources of arcing also include the wheel passage the insulated joint and lightning on a train during bad weather. During the arcing, an extensive heat is generated and speared over a large area of top surface of rail. Thus, arcing is considered another heat source in the rail head (rather than wheel slipe) that results in microstructural changes and white etching layer formation. A head hardened (HH) rail steel, cut from a curved rail truck was used for the investigation. Samples were sectioned from a depth of 10 mm below the rail surface, where the material is considered to be still within the hardened layer but away from any microstructural changes on the top surface layer caused by train passage. These samples were subjected to electrical discharges by using Gas Tungsten Arc Welding (GTAW) machine. The arc current was controlled and moved along the samples surface in the direction of travel, as indicated by an arrow. Five different conditions were applied on the surface of the samples. Samples containing pre-existed WELs, taken from ex-service rail surface, were also considered in this study for comparison. Both simulated and ex-serviced WELs were characterised by advanced methods including SEM, TEM, TKD, EDS, XRD. Samples for TEM and TKFD were prepared by Focused Ion Beam (FIB) milling. The results showed that both simulated WELs by electrical arcing and ex-service WEL comprise similar microstructure. Brown etching layer was found with WELs and likely induced by a concurrent tempering process. This study provided a clear understanding of new formation mechanics of WELs which contributes to track maintenance procedure.

Keywords: white etching layer, arcing, brown etching layer, material characterisation

Procedia PDF Downloads 95
4824 Mechanical Soil: Effects of the Passage of Tractors on Agricultural Land

Authors: Anis Eloud, Ben Salah Nahla, Sayed Chehaibi

Abstract:

In order to improve and develop the Tunisian agriculture, the government has encouraged the introduction of modern technologies and has also promoted the adoption of innovative practices cultures. Indeed, the extensive use of mechanization can increase crop productivity but its inadequate application also has a negative impact on the ground caused by the phenomenon of compaction. Which will cause the loss of soil fertility and increased production costs. This problem is accentuated with increase the stress on contact wheel / ground. For this reason, the objective of this study is to simulate the footprint of the ground contact / tire two types of tractor after their passage. The method of this work is based on a simulation including passages from two different tractors on soil with similar characteristics. Simulation parameters were based on the choice of two tractors masses of 6500 kg and 4400 kg of soil and sandy loam in nature. The analysis was performed using specific software. The main results showed that the heaviest tractor caused a constraint wheel / rear floor exceeding 100 kPa. For cons, the second tractor has caused stress wheel / rear floor of 50 kPa. The comparison of the two results showed that 6500 kg tractor made a serious and excessive compaction which generated a negative impact on soil quality and crop yields.

Keywords: compaction, soil, resistance to penetration, crop yields

Procedia PDF Downloads 406
4823 Design and Development of a Safety Equipment and Accessory for Bicycle Users

Authors: Francine Siy, Stephen Buñi

Abstract:

Safety plays a significant role in everyone’s life on a day-to-day basis. We wish ourselves and our loved ones their safety as we all venture out on our daily commute. The road is undeniably dangerous and unpredictable, with abundant traffic collisions and pedestrians experiencing various injuries. For bicycle users, the risk of accidents is even more exacerbated, and injuries may be severe. Even when cyclists try their best to be safe and protected, the possibility of encountering danger is always there. Despite being equipped with protective gear, safety is never guaranteed. Cyclists often settle for helmets and standard reflector vests to establish a presence on the road. There are different types of vests available, depending on the profession. However, traditional reflector vests, mostly seen on construction workers and traffic enforcers, were not designed for riders and their protection from injuries. With insufficient protection for riders, they need access to ergonomically designed equipment and accessories that suit the riders and cater to their needs. This research aimed to offer a protective vest with safety features for riders that is comfortable, effective, durable, and intuitive. This sheds light and addresses the safety of the biker population, which continuously grows through the years. The product was designed and developed by gathering data and using the cognitive mapping method to ensure that all qualitative and quantitative data were considered in this study to improve other existing products that do not have the proper design considerations. It is known that available equipment for cyclists is often sold separately or lacks the safety features for cyclists traversing open roads. Each safety feature like the headlights, reflectors, signal or rear lights, zipper pouch, body camera attachment, and wireless remote control all play a particular role in helping cyclists embark on their daily commute. These features aid in illumination, visibility, easy maneuvering, convenience, and security, allowing cyclists to go for a safer ride that is of use throughout the day. The product is designed and produced effectively and inexpensively without sacrificing the quality and purpose of its usage.

Keywords: bicycle accessory, protective gear, safety, transport, visibility

Procedia PDF Downloads 55
4822 A 20 Year Comparison of Australian Childhood Bicycle Injuries – Have We Made a Difference?

Authors: Bronwyn Griffin, Caroline Acton, Tona Gillen, Roy Kimble

Abstract:

Background: Bicycle riding is a common recreational activity enjoyed by many children throughout Australia that has been associated with the usual caveat of benefits related to exercise and recreation. Given Australia was the first country in the world to introduce cyclist helmet laws in 1991, very few publications have reviewed paediatric cycling injuries (fatal or non-fatal) since. Objectives: To identify trends in children (0-16 years) who required admission for greater than 24 hours following a bicycle-related injury (fatal and non-fatal) in Queensland. Further, to discuss changes that have occurred in paediatric cycling injury trends in Queensland since a prominent local study/publication in 1995. This paper aims to establish evidence to inform interventions promoting safer riding to parents, children and communities. Methods: Data on paediatric (0-16 years) cycling injuries in Queensland resulting in hospital admission more than 24 hours across three tertiary paediatric hospitals in Brisbane between November 2008-June 2015 was compiled by the Paediatric Trauma Data Registry for non-fatal injuries. The Child Death Review Team at the Queensland Families and Childhood Commission provided data on fatalities in children <17years from (June 2004 –June 2015). Comparing trends to a local study published in 1995 Results: Between 2008-2015 there were 197 patients admitted for greater than 24 hours following a cycling injury. The median age was 11 years, with males more frequently involved (n=139, 87%) compared to females. Mean length of stay was three days, with 47 (28%) children admitted to PICU, location of injury was most often the street (n=63, 37%). Between 2004 –2015 there were 15 fatalities (Incidence rate 0.25/100,000); all were male, 14/15 occurred on the street, with eight stated to have not been wearing a helmet, 11/15 children came from the least advantaged socio-economic group (SEIFA) compared to a local publication in 1995, finding of 94 fatalities between (1981-1992). Conclusions: There has been a notable decrease in incidence of fatalities between the two time periods with incidence rates dropping from 1.75-0.25/100,000. More statistics need to be run to ascertain if this is a true reduction or perhaps a decrease in children riding bicycles. Injuries that occur on the street that come in contact with a car remain of serious concern. The purpose of this paper is not to discourage bicycle riding among child and adolescent populations, rather, inform parents and the wider community about the risks associated with cycling in order to reduce injuries associated with this sport, whilst promoting safe cycling.

Keywords: paediatric, cycling, trauma, prevention, emergency

Procedia PDF Downloads 228
4821 Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction

Authors: Mingxin Li, Liya Ni

Abstract:

Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed.

Keywords: autonomous parking, convolutional neural network, image processing, kinematics-based prediction, transfer learning

Procedia PDF Downloads 106
4820 Novel Animal Drawn Wheel-Axle Mechanism Actuated Knapsack Boom Sprayer

Authors: Ibrahim O. Abdulmalik, Michael C. Amonye, Mahdi Makoyo

Abstract:

Manual knapsack sprayer is the most popular means of farm spraying in Nigeria. It has its limitations. Apart from the human fatigue, which leads to unsteady walking steps, their field capacities are small. They barely cover about 0.2hectare per hour. Their small swath implies that a sizeable farm would take several days to cover. Weather changes are erratic and often it is desired to spray a large farm within hours or few days for even effect, uniformity and to avoid adverse weather interference. It is also often required that a large farm be covered within a short period to avoid re-emergence of weeds before crop emergence. Deployment of many knapsack operators to large farms has not been successful. Human error in taking equally spaced swaths usually result in over dosage of overlaps and in unapplied areas due to error at edges overlaps. Large farm spraying require boom equipment with larger swath. Reduced error in swath overlaps and spraying within the shortest possible time are then assured. Tractor boom sprayers would readily overcome these problems and achieve greater coverage, but they are not available in the country. Tractor hire for cultivation is very costly with the attendant lack of spare parts and specialized technicians for maintenance wherefore farmers find it difficult to engage tractors for cultivation and would avoid considering the employment of a tractor boom sprayer. Animal traction in farming is predominant in Nigeria, especially in the Northern part of the country. Development of boom sprayers drawn by work animals surely implies the maximization of animal utilization in farming. The Hydraulic Equipment Development Institute, Kano, in keeping to its mandate of targeted R&D in hydraulic and pneumatic systems, has developed an Animal Drawn Knapsack Boom Sprayer with four nozzles using the axle mechanism of a two wheeled cart to actuate the piston pump of two knapsack sprayers in line with appropriate technology demand of the country. It is hoped that the introduction of this novel contrivance shall enhance crop protection practice and lead to greater crop and food production in Nigeria.

Keywords: boom, knapsack, farm, sprayer, wheel axle

Procedia PDF Downloads 255
4819 Improving the Technology of Assembly by Use of Computer Calculations

Authors: Mariya V. Yanyukina, Michael A. Bolotov

Abstract:

Assembling accuracy is the degree of accordance between the actual values of the parameters obtained during assembly, and the values specified in the assembly drawings and technical specifications. However, the assembling accuracy depends not only on the quality of the production process but also on the correctness of the assembly process. Therefore, preliminary calculations of assembly stages are carried out to verify the correspondence of real geometric parameters to their acceptable values. In the aviation industry, most calculations involve interacting dimensional chains. This greatly complicates the task. Solving such problems requires a special approach. The purpose of this article is to carry out the problem of improving the technology of assembly of aviation units by use of computer calculations. One of the actual examples of the assembly unit, in which there is an interacting dimensional chain, is the turbine wheel of gas turbine engine. Dimensional chain of turbine wheel is formed by geometric parameters of disk and set of blades. The interaction of the dimensional chain consists in the formation of two chains. The first chain is formed by the dimensions that determine the location of the grooves for the installation of the blades, and the dimensions of the blade roots. The second dimensional chain is formed by the dimensions of the airfoil shroud platform. The interaction of the dimensional chain of the turbine wheel is the interdependence of the first and second chains by means of power circuits formed by a plurality of middle parts of the turbine blades. The timeliness of the calculation of the dimensional chain of the turbine wheel is the need to improve the technology of assembly of this unit. The task at hand contains geometric and mathematical components; therefore, its solution can be implemented following the algorithm: 1) research and analysis of production errors by geometric parameters; 2) development of a parametric model in the CAD system; 3) creation of set of CAD-models of details taking into account actual or generalized distributions of errors of geometrical parameters; 4) calculation model in the CAE-system, loading of various combinations of models of parts; 5) the accumulation of statistics and analysis. The main task is to pre-simulate the assembly process by calculating the interacting dimensional chains. The article describes the approach to the solution from the point of view of mathematical statistics, implemented in the software package Matlab. Within the framework of the study, there are data on the measurement of the components of the turbine wheel-blades and disks, as a result of which it is expected that the assembly process of the unit will be optimized by solving dimensional chains.

Keywords: accuracy, assembly, interacting dimension chains, turbine

Procedia PDF Downloads 348
4818 The Combined Methodology To Detect Onboard Driver Fatigue

Authors: K. Senthil Nathan, P. Rajasekaran

Abstract:

Fatigue is a feeling of extreme physical or mental tiredness. Almost everyone becomes fatigued at some time, but driver’s fatigue is a serious problem that leads to thousands of automobile crashes each year. Fatigue process is often a change from the alertness and vigor state to the tiredness and weakness state. It is not only accompanied by drowsiness but also has a negative impact on mood. There have been studies to detect and quantify fatigue from the measurement of physiology variables such as electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG). This project involves a multimodal sensing of driver’s drowsiness. The first method is to count the eye blinking rate. In the second level, we authenticate the results of eye blink module with a grip sensor. The Flexiforce sensor is placed over the steering wheel. In the third level, the activities are sensed, the time elapsed from the driver’s last activity is counted here. The activities in the sense: Changing gear, applying brake, pressing sound horns, and turning the steering wheel. Absence of these activities is also an indicator of fatigue.

Keywords: eye blink sensor, Flexiforce sensor, EEG, EOG, EMG

Procedia PDF Downloads 452
4817 Wireless Backhauling for 5G Small Cell Networks

Authors: Abdullah A. Al Orainy

Abstract:

Small cell backhaul solutions need to be cost-effective, scalable, and easy to install. This paper presents an overview of small cell backhaul technologies. Wireless solutions including TV white space, satellite, sub-6 GHz radio wave, microwave and mmWave with their backhaul characteristics are discussed. Recent research on issues like beamforming, backhaul architecture, precoding and large antenna arrays, and energy efficiency for dense small cell backhaul with mmWave communications is reviewed. Recent trials of 5G technologies are summarized.

Keywords: backhaul, small cells, wireless, 5G

Procedia PDF Downloads 466
4816 Analysis of Impact of Airplane Wheels Pre-Rotating on Landing Gears of Large Airplane

Authors: Huang Bingling, Jia Yuhong, Liu Yanhui

Abstract:

As an important part of aircraft, landing gears are responsible for taking-off and landing function. In recent years, big airplane's structural quality increases a lot. As a result, landing gears have stricter technical requirements than ever before such as structure strength and etc. If the structural strength of the landing gear is enhanced through traditional methods like increasing structural quality, the negative impacts on the landing gear's function would be very serious and even counteract the positive effects. Thus, in order to solve this problem, the impact of pre-rotating of landing gears on performance of landing gears is studied from the theoretical and experimental verification in this paper. By increasing the pre-rotating speed of the wheel, it can improve the performance of the landing gear and reduce the structural quality, the force of joint parts and other properties. In addition, the pre-rotating of the wheels also has other advantages, such as reduce the friction between wheels and ground and extend the life of the wheel. In this paper, the impact of the pre-rotating speed on landing gears and the connecting between landing gears performance and pre-rotating speed would be researched in detail. This paper is divided into three parts. In the first part, large airplane landing gear model is built by CATIA and LMS. As most general landing gear type in big plane, four-wheel landing gear is picked as model. The second part is to simulate the process of landing in LMS motion, and study the impact of pre-rotating of wheels on the aircraft`s properties, including the buffer stroke, efficiency, power; friction, displacement and relative speed between piston and sleeve; force and load distribution of tires. The simulation results show that the characteristics of the different pre-rotation speed are understood. The third part is conclusion. Through the data of the previous simulation and the relationship between the pre-rotation speed of the aircraft wheels and the performance of the aircraft, recommended speed interval is proposed. This paper is of great theoretical value to improve the performance of large airplane. It is a very effective method to improve the performance of aircraft by setting wheel pre-rotating speed. Do not need to increase the structural quality too much, eliminating the negative effects of traditional methods.

Keywords: large airplane, landing gear, pre-rotating, simulation

Procedia PDF Downloads 304
4815 Assessing the Impact of Additional Information during Motor Preparation in Lane Change Task

Authors: Nikita Rajendra Sharma, Jai Prakash Kushvah, Gerhard Rinkenauer

Abstract:

Driving a car is a discrete aiming movement in which drivers aim at successful extraction of relevant information and elimination of potentially distracting one. It is the motor preparation which enables one to react to certain stimuli onsite by allowing perceptual process for optimal adjustment. Drivers prepare their responses according to the available resources of advanced and ongoing information to drive efficiently. It requires constant programming and reprogramming of the motor system. The reaction time (RT) is shorter when a response signal is preceded by a warning signal. The reason behind this reduced time in responding to targets is that the warning signal causes the participant to prepare for the upcoming response by updating the motor program before the execution. While performing the primary task of changing lanes while driving, the simultaneous occurrence of additional information during the presentation of cues (congruent or incongruent with respect to target cue) might impact the motor preparation and execution. The presence of additional information (other than warning or response signal) between warning signal and imperative stimulus influences human motor preparation to a reasonable extent. The present study was aimed to assess the impact of congruent and incongruent additional information (with respect to imperative stimulus) on driving performance (reaction time, steering wheel amplitude, and steering wheel duration) during a lane change task. implementing movement pre-cueing paradigm. 22 young valid car-drivers (Mage = 24.1+/- 3.21 years, M = 10, F = 12, age-range 21-33 years) participated in the study. The study revealed that additional information influenced the overall driving performance as potential distractors and relevant information. Findings suggest that the events of additional information relatively influenced the reaction time and steering wheel angle as potential distractor or irrelevant information. Participants took longer to respond, and higher steering wheel angles were reported for targets coupled with additional information in comparison with warning signs preceded by potential distractors and the participants' response time was more for a higher number of lanes (2 Lanes > 1 Lane). The same additional information appearing interchangeably at warning signals and targets worked as relevant information facilitating the motor programming in the trails where they were congruent with the direction of lane change direction.

Keywords: additional information, lane change task, motor preparation, movement pre-cueing, reaction time, steering wheel amplitude

Procedia PDF Downloads 159
4814 A Strategy of Direct Power Control for PWM Rectifier Reducing Ripple in Instantaneous Power

Authors: T. Mohammed Chikouche, K. Hartani

Abstract:

Based on the analysis of basic direct torque control, a parallel master slave for four in-wheel permanent magnet synchronous motors (PMSM) fed by two three phase inverters used in electric vehicle is proposed in this paper. A conventional system with multi-inverter and multi-machine comprises a three phase inverter for each machine to be controlled. Another approach consists in using only one three-phase inverter to supply several permanent magnet synchronous machines. A modified direct torque control (DTC) algorithm is used for the control of the bi-machine traction system. Simulation results show that the proposed control strategy is well adapted for the synchronism of this system and provide good speed tracking performance.

Keywords: electric vehicle, multi-machine single-inverter system, multi-machine multi-inverter control, in-wheel motor, master-slave control

Procedia PDF Downloads 192
4813 Model and Algorithm for Dynamic Wireless Electric Vehicle Charging Network Design

Authors: Trung Hieu Tran, Jesse O'Hanley, Russell Fowler

Abstract:

When in-wheel wireless charging technology for electric vehicles becomes mature, a need for such integrated charging stations network development is essential. In this paper, we thus investigate the optimisation problem of in-wheel wireless electric vehicle charging network design. A mixed-integer linear programming model is formulated to solve into optimality the problem. In addition, a meta-heuristic algorithm is proposed for efficiently solving large-sized instances within a reasonable computation time. A parallel computing strategy is integrated into the algorithm to speed up its computation time. Experimental results carried out on the benchmark instances show that our model and algorithm can find the optimal solutions and their potential for practical applications.

Keywords: electric vehicle, wireless charging station, mathematical programming, meta-heuristic algorithm, parallel computing

Procedia PDF Downloads 49
4812 Haematological Responses on Amateur Cycling Stages Race

Authors: Renato André S. Silva, Nana L. F. Sampaio, Carlos J. G. Cruz, Bruno Vianna, Flávio O. Pires

Abstract:

multiple stage bicycle races require high physiological loads from professional cyclists. Such demands can lead to immunosuppression and health problems. However, in this type of competition, little is known about its physiological effects on amateur athletes, who generally receive less medical support. Thus, this study analyzes the hematological effects of a multiple stage bicycle race on amateur cyclists. Seven Brazilian national amateur cyclists (34 ± 4.21 years) underwent a laboratory test to evaluate VO2Max (69.89 ± 7.43 ml⋅kg-1⋅min-1). Six days later, these volunteers raced in the Tour of Goiás, participating in five races in four days (435 km) of competition. Arterial blood samples were collected one day before and one day after the competition. The Kolmogorov-Smirnov tests were used to evaluate the data distribution and Wilcoxon to compare the two moments (p <0.05) of data collection. The results show: Red cells ↓ 7.8% (5.1 ± 0.28 vs 4.7 ± 0.37 106 / mm 3, p = 0.01); Hemoglobin ↓ 7.9% (15.1 ± 0.31 vs 13.9 ± 0.27 g / dL, p = 0.01); Leukocytes ↑ 9.5% (4946 ± 553 versus 5416 ± 1075 / mm 3, p = 0.17); Platelets ↓ 7.0% (200.2 ± 51.5 vs 186.1 ± 39.5 / mm 3, p = 0.01); LDH ↑ 11% (164.4 ± 28.5 vs 182.5 ± 20.5 U / L, p = 0.17); CK ↑ 13.5% (290.7 ± 206.1 vs 330.1 ± 90.5 U / L, p = 0.39); CK-MB ↑ 2% (15.7 ± 3.9 vs. 20.1 ± 2.9 U / L, p = 0.06); Cortizol ↓ 13.5% (12.1 ± 2.4 vs 9.9 ± 1.9 μg / dL, p = 0.01); Total testosterone ↓ 7% (453.6 ± 120.1 vs 421.7 ± 74.3 ng / dL, p = 0.12); IGF-1 ↓ 15.1% (213.8 ± 18.8 vs 181.5 ± 34.7 ng / mL, p = 0.04). This means that there was significant reductions in O2 allocation / transport capacities, vascular injury disruption, and a fortuitous reduction of muscle skeletal anabolism along with maintenance and / or slight elevation of immune function, glucose and lipid energy and myocardial damage. Therefore, the results suggest that no abnormal health effect was identified among the athletes after participating in the Tour de Goiás.

Keywords: cycling, health effects, cycling stages races, haematology

Procedia PDF Downloads 177
4811 Modelling and Technical Assessment of Multi-Motor for Electric Vehicle Drivetrains by Using Electric Differential

Authors: Mohamed Abdel-Monem, Gamal Sowilam, Omar Hegazy

Abstract:

This paper presents a technical assessment of an electric vehicle with two independent rear-wheel motor and an improved traction control system. The electric differential and the control strategy have been implemented to assure that in a straight trajectory, the two rear-wheels run exactly at the same speed, considering the same/different road conditions under the left and right side of the wheels. In case of turning to right/left, the difference between the two rear-wheels speeds assures a vehicle trajectory without sliding, thanks to a harmony between the electric differential and the control strategy. The present article demonstrates a complete model and analysis of a traction control system, considering four different traction scenarios, for two independent rear-wheels motors for electric vehicles. Furthermore, the vehicle model, including wheel dynamics, load forces, electric differential, and control strategy, is designed and verified by using MATLAB/Simulink environment.

Keywords: electric vehicle, energy saving, multi-motor, electric differential, simulation and control

Procedia PDF Downloads 315
4810 Automation of Pneumatic Seed Planter for System of Rice Intensification

Authors: Tukur Daiyabu Abdulkadir, Wan Ishak Wan Ismail, Muhammad Saufi Mohd Kassim

Abstract:

Seed singulation and accuracy in seed spacing are the major challenges associated with the adoption of mechanical seeder for system of rice intensification. In this research the metering system of a pneumatic planter was modified and automated for increase precision to meet the demand of system of rice intensification SRI. The chain and sprocket mechanism of a conventional vacuum planter were now replaced with an electro mechanical system made up of a set of servo motors, limit switch, micro controller and a wheel divided into 10 equal angles. The circumference of the planter wheel was determined based on which seed spacing was computed and mapped to the angles of the metering wheel. A program was then written and uploaded to arduino micro controller and it automatically turns the seed plates for seeding upon covering the required distance. The servo motor was calibrated with the aid of labVIEW. The machine was then calibrated using a grease belt and varying the servo rpm through voltage variation between 37 rpm to 47 rpm until an optimum value of 40 rpm was obtained with a forward speed of 5 kilometers per hour. A pressure of 1.5 kpa was found to be optimum under which no skip or double was recorded. Precision in spacing (coefficient of variation), miss index, multiple index, doubles and skips were investigated. No skip or double was recorded both at laboratory and field levels. The operational parameters under consideration were both evaluated at laboratory and field. Even though there was little variation between the laboratory and field values of precision in spacing, multiple index and miss index, the different is not significant as both laboratory and field values fall within the acceptable range.

Keywords: automation, calibration, pneumatic seed planter, system of rice intensification

Procedia PDF Downloads 612
4809 Urban Ecological Interaction: Air, Water, Light and New Transit at the Human Scale of Barcelona’s Superilles

Authors: Philip Speranza

Abstract:

As everyday transit options are shifting from autocentric to pedestrian and bicycle oriented modes for healthy living, downtown streets are becoming more attractive places to live. However, tools and methods to measure the natural environment at the small scale of streets do not exist. Fortunately, a combination of mobile data collection technology and parametric urban design software now allows an interface to relate urban ecological conditions. This paper describes creation of an interactive tool to measure urban phenomena of air, water, and heat/light at the scale of new three-by-three block pedestrianized areas in Barcelona called Superilles. Each Superilla limits transit to the exterior of the blocks and to create more walkable and bikeable interior streets for healthy living. The research will describe the integration of data collection, analysis, and design output via a live interface using parametric software Rhino Grasshopper and the Human User Interface (UI) plugin.

Keywords: transit, urban design, GIS, parametric design, Superilles, Barcelona, urban ecology

Procedia PDF Downloads 216
4808 Stability Analysis of Hossack Suspension Systems in High Performance Motorcycles

Authors: Ciro Moreno-Ramirez, Maria Tomas-Rodriguez, Simos A. Evangelou

Abstract:

A motorcycle's front end links the front wheel to the motorcycle's chassis and has two main functions: the front wheel suspension and the vehicle steering. Up to this date, several suspension systems have been developed in order to achieve the best possible front end behavior, being the telescopic fork the most common one and already subjected to several years of study in terms of its kinematics, dynamics, stability and control. A motorcycle telescopic fork suspension model consists of a couple of outer tubes which contain the suspension components (coil springs and dampers) internally and two inner tubes which slide into the outer ones allowing the suspension travel. The outer tubes are attached to the frame through two triple trees which connect the front end to the main frame through the steering bearings and allow the front wheel to turn about the steering axis. This system keeps the front wheel's displacement in a straight line parallel to the steering axis. However, there exist alternative suspension designs that allow different trajectories of the front wheel with the suspension travel. In this contribution, the authors investigate an alternative front suspension system (Hossack suspension) and its influence on the motorcycle nonlinear dynamics to identify and reduce stability risks that a new suspension systems may introduce in the motorcycle dynamics. Based on an existing high-fidelity motorcycle mathematical model, the front end geometry is modified to accommodate a Hossack suspension system. It is characterized by a double wishbone design that varies the front end geometry on certain maneuverings and, consequently, the machine's behavior/response. It consists of a double wishbone structure directly attached to the chassis. In here, the kinematics of this system and its impact on the motorcycle performance/stability are analyzed and compared to the well known telescopic fork suspension system. The framework of this research is the mathematical modelling and numerical simulation. Full stability analyses are performed in order to understand how the motorcycle dynamics may be affected by the newly introduced front end design. This study is carried out by a combination of nonlinear dynamical simulation and root-loci methods. A modal analysis is performed in order to get a deeper understanding of the different modes of oscillation and how the Hossack suspension system affects them. The results show that different kinematic designs of a double wishbone suspension systems do not modify the general motorcycle's stability. The normal modes properties remain unaffected by the new geometrical configurations. However, these normal modes differ from one suspension system to the other. It is seen that the normal modes behaviour depends on various important dynamic parameters, such as the front frame flexibility, the steering damping coefficient and the centre of mass location.

Keywords: nonlinear mechanical systems, motorcycle dynamics, suspension systems, stability

Procedia PDF Downloads 200