Search results for: slope stability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3677

Search results for: slope stability

3377 Developing Stability Monitoring Parameters for NIPRIMAL®: A Monoherbal Formulation for the Treatment of Uncomplicated Malaria

Authors: Ekere E. Kokonne, Isimi C. Yetunde, Okoh E. Judith, Okafor E. Ijeoma, Ajeh J. Isaac, Olobayo O. Kunle, Emeje O. Martins

Abstract:

NIPRIMAL® is a mono herbal formulation of Nauclea latifolia used in the treatment of malaria. The stability of extracts made from plant material is essential to ensure the quality, safety and efficacy of the finished product. This study assessed the stability of the formulation under three different storage conditions; normal room temperature, infrared and under refrigeration. Differential Scanning Calorimetry (DSC) and Thin Layer Chromatography (TLC) were used to monitor the formulations. The DSC analysis was done from 0oC to 350oC under the three storage conditions. Results obtained indicate that NIPRIMAL® was stable at all the storage conditions investigated. Thin layer chromatography (TLC) after 6 months showed there was no significant difference between retention factor (RF) values for the various storage conditions. The reference sample had four spots with RF values of 0.47, 0.68, 0.76, 0.82 respectively and these spots were retained in the test formulations with corresponding RF values were after 6 months at room temperature and refrigerated temperature been 0.56, 0.73, 0.80, 0.92 and 0.47, 0.68, 0.76, 0.82 respectively. On the other hand, the RF values (0.55, 0.74, 0.77, 0.93) obtained under infrared after 1 month varied slightly from the reference. The sample exposed to infrared had a lower heat capacity compared to that stored under room temperature or refrigeration. A combination of TLC and DSC measurements has been applied for assessing the stability of NIPRIMAL®. Both methods were found to be rapid, sensitive and reliable in determining its stability. It is concluded that NIPRIMAL® can be stored under any of the tested conditions without degradation. This study is a major contribution towards developing appropriate stability monitoring parameters for herbal products.

Keywords: differential scanning calorimetry, formulation, NIPRIMAL®, stability, thin layer hromatography

Procedia PDF Downloads 221
3376 Stability Analysis of DC Microgrid with Varying Supercapacitor Operating Voltages

Authors: Annie B. V., Anu A. G., Harikumar R.

Abstract:

Microgrid (MG) is a self-governing miniature section of the power system. Nowadays the majority of loads and energy storage devices are inherently in DC form. This necessitates a greater scope of research in the various types of energy storage devices in DC microgrids. In a modern power system, DC microgrid is a manageable electric power system usually integrated with renewable energy sources (RESs) and DC loads with the help of power electronic converters. The stability of the DC microgrid mainly depends on the power imbalance. Power imbalance due to the presence of intermittent renewable energy resources (RERs) is supplied by energy storage devices. Battery, supercapacitor, flywheel, etc. are some of the commonly used energy storage devices. Owing to the high energy density provided by the batteries, this type of energy storage system is mainly utilized in all sorts of hybrid energy storage systems. To minimize the stability issues, a Supercapacitor (SC) is usually interfaced with the help of a bidirectional DC/DC converter. SC can exchange power during transient conditions due to its high power density. This paper analyses the stability issues of DC microgrids with hybrid energy storage systems (HESSs) arises from a reduction in SC operating voltage due to self-discharge. The stability of DC microgrid and power management is analyzed with different control strategies.

Keywords: DC microgrid, hybrid energy storage system (HESS), power management, small signal modeling, supercapacitor

Procedia PDF Downloads 218
3375 The Mapping of Pastoral Area as a Basis of Ecological for Beef Cattle in Pinrang Regency, South Sulawesi, Indonesia

Authors: Jasmal A. Syamsu, Muhammad Yusuf, Hikmah M. Ali, Mawardi A. Asja, Zulkharnaim

Abstract:

This study was conducted and aimed in identifying and mapping the pasture as an ecological base of beef cattle. A survey was carried out during a period of April to June 2016, in Suppa, Mattirobulu, the district of Pinrang, South Sulawesi province. The mapping process of grazing area was conducted in several stages; inputting and tracking of data points into Google Earth Pro (version 7.1.4.1529), affirmation and confirmation of tracking line visualized by satellite with a variety of records at the point, a certain point and tracking input data into ArcMap Application (ArcGIS version 10.1), data processing DEM/SRTM (S04E119) with respect to the location of the grazing areas, creation of a contour map (a distance of 5 m) and mapping tilt (slope) of land and land cover map-making. Analysis of land cover, particularly the state of the vegetation was done through the identification procedure NDVI (Normalized Differences Vegetation Index). This procedure was performed by making use of the Landsat-8. The results showed that the topography of the grazing areas of hills and some sloping surfaces and flat with elevation vary from 74 to 145 above sea level (asl), while the requirements for growing superior grass and legume is an altitude of up to 143-159 asl. Slope varied between 0 - > 40% and was dominated by a slope of 0-15%, according to the slope/topography pasture maximum of 15%. The range of NDVI values for pasture image analysis results was between 0.1 and 0.27. Characteristics of vegetation cover of pasture land in the category of vegetation density were low, 70% of the land was the land for cattle grazing, while the remaining approximately 30% was a grove and forest included plant water where the place for shelter of the cattle during the heat and drinking water supply. There are seven types of graminae and 5 types of legume that was dominant in the region. Proportionally, graminae class dominated up 75.6% and legume crops up to 22.1% and the remaining 2.3% was another plant trees that grow in the region. The dominant weed species in the region were Cromolaenaodorata and Lantana camara, besides that there were 6 types of floor plant that did not include as forage fodder.

Keywords: pastoral, ecology, mapping, beef cattle

Procedia PDF Downloads 312
3374 Soil Loss Assessment at Steep Slope: A Case Study at the Guthrie Corridor Expressway, Selangor, Malaysia

Authors: Rabiul Islam

Abstract:

The study was in order to assess soil erosion at plot scale Universal Soil Loss Equation (USLE) erosion model and Geographic Information System (GIS) technique have been used for the study 8 plots in Guthrie Corridor Expressway, Selangor, Malaysia. The USLE model estimates an average soil loss soil integrating several factors such as rainfall erosivity factor(R ), Soil erodibility factor (K), slope length and steepness factor (LS), vegetation cover factor as well as conservation practice factor (C &P) and Results shows that the four plots have very low rates of soil loss, i.e. NLDNM, NDNM, PLDM, and NDM having an average soil loss of 0.059, 0.106, 0.386 and 0.372 ton/ha/ year, respectively. The NBNM, PLDNM and NLDM plots had a relatively higher rate of soil loss, with an average of 0.678, 0.757 and 0.493ton/ha/year. Whereas, the NBM is one of the highest rate of soil loss from 0.842 ton/ha/year to maximum 16.466 ton/ha/year. The NBM plot was located at bare the land; hence the magnitude of C factor(C=0.15) was the highest one.

Keywords: USLE model, GIS, Guthrie Corridor Expressway (GCE), Malaysia

Procedia PDF Downloads 494
3373 Role of Endonuclease G in Exogenous DNA Stability in HeLa Cells

Authors: Vanja Misic, Mohamed El-Mogy, Yousef Haj-Ahmad

Abstract:

Endonuclease G (EndoG) is a well conserved mitochondrio-nuclear nuclease with dual lethal and vital roles in the cell. The aim of our study was to examine whether EndoG exerts its nuclease activity on exogenous DNA substrates such as plasmid DNA (pDNA), considering their importance in gene therapy applications. The effects of EndoG knockdown on pDNA stability and levels of encoded reporter gene expression were evaluated in the cervical carcinoma HeLa cells. Transfection of pDNA vectors encoding short-hairpin RNAs (shRNAs) reduced levels of EndoG mRNA and nuclease activity in HeLa cells. In physiological circumstances, EndoG knockdown did not have an effect on the stability of pDNA or the levels of encoded transgene expression as measured over a four day time-course. However, when endogenous expression of EndoG was induced by an extrinsic stimulus, targeting of EndoG by shRNA improved the perceived stability and transgene expression of pDNA vectors. Therefore, EndoG is not a mediator of exogenous DNA clearance, but in non-physiological circumstances it may non-specifically cleave intracellular DNA regardless of its origin. These findings make it unlikely that targeting of EndoG is a viable strategy for improving the duration and level of transgene expression from non-viral DNA vectors in gene therapy efforts.

Keywords: EndoG, silencing, exogenous DNA stability, HeLa cells

Procedia PDF Downloads 435
3372 Coastal Hydraulic Modelling to Ascertain Stability of Rubble Mound Breakwater

Authors: Safari Mat Desa, Othman A. Karim, Mohd Kamarulhuda Samion, Saiful Bahri Hamzah

Abstract:

Rubble mound breakwater was one of the most popular designs in Malaysia, constructed at the river mouth to dissipate the incoming wave energy from the seaward. Geometrically characteristics in trapezoid, crest width, and bottom width will determine the hypotonus stability, whilst structural height was designed for wave overtopping consideration. Physical hydraulic modelling in two-dimensional facilities was instigated in the flume to test the stability as well as the overtopping rate complied with the method of similarity, namely kinematic, dynamic, and geometric. Scaling effects of wave characteristics were carried out in order to acquire significant interaction of wave height, wave period, and water depth. Results showed two-dimensional physical modelling has proven reliable capability to ascertain breakwater stability significantly.

Keywords: breakwater, geometrical characteristic, wave overtopping, physical hydraulic modelling, method of similarity, wave characteristic

Procedia PDF Downloads 78
3371 Effect of Formulation Compositions and Freezing Rates on the Conformational Changes of Influenza Virus Haemagglutinin (HA)

Authors: Thanh Phuong Doan, Narueporn Sutanthavibul

Abstract:

The influence of freezing cycle on influenza haemagglutinin (HA) conformational stability was investigated in terms of freezing rates and formulation compositions. The results showed that appropriate HA conformation could be evaluated using circular dichroism (CD) spectroscopy with HA concentration of greater than 0.09 mg/ml. The intermediate freezing rate of approximately 1.0oC/min preserved the original HA conformation better than at slow freezing rate (0.5oC/min) and rapid freezing rate (2.6oC/min). The changes in CD spectra of the secondary HA structure were more pronounced than those of the tertiary HA structure during the evaluation. Additionally, the formulations, which resulted in the highest conformational stability were found to have sucrose present in the composition. As opposed to when only glycine was used, the stability of HA conformation was poor.

Keywords: freezing, haemagglutinin, influenza, circular dichroism

Procedia PDF Downloads 362
3370 2D Numerical Analysis for Determination of the Effect of Bored Piles Constructed against the Landslide near Karabuk University Stadium

Authors: Dogan Cetin, Burak Turk, Mahmut Candan

Abstract:

Landslides cause remarkable damage and loss of human life every year around the world. They may be made more likely by factors such as earthquakes, heavy precipitation, and incorrect construction activities near or on slopes. The stadium of Karabük University is located at the bottom of a very high slope. After construction of the stadium, severe deformations were observed on the social activity area surrounding the stadium. Some inclinometers were placed behind the stadium to detect the possible landslide activity. According to measurements of the inclinometers, irregular soil movements were detected at depths between 20 m and 45 m. Also, significant heaves and settlements were observed behind the stadium walls located at the toe of the slope. The heaves indicate that the stadium walls were under threat of a significant landslide. After inclinometer readings and field observations, the potential failure geometry was estimated. The protection system was designed based on numerous numerical analysis performed by 2-D Plaxis software. After the design was completed, protective geotechnical work was started. Before the geotechnical work began, new inclinometers were installed to monitor earth movement during the work and afterward. The total horizontal length of the possible failure surface is 220 m. Geotechnical work included two-row-pile construction and three-row-pile construction on the slope. The bored piles were 120 cm in diameter for two-row-pile construction, and 150 cm in diameter for three-row-pile construction. Pile length is 31.30 m for two-row-pile construction and 31.40 m for three-row-pile construction. The distance between two-row-pile and three-row-pile construction is 60 m. With these bored piles, the landslide was divided into three parts. In this way, the earth's pressure was reduced. After a number of inclinometer readings, it was seen that deformation continued during the work, but after the work was done, the movement reversed, and total deformation stayed in mm dimension. It can be said that the protection work eliminated the possible landslide.

Keywords: landslide, landslide protection, inclinometer measurement, bored piles

Procedia PDF Downloads 115
3369 The Effect of Gross Vehicle Weight on the Stability of Heavy Vehicle during Cornering

Authors: Nurzaki Ikhsan, Ahmad Saifizul Abdullah, Rahizar Ramli

Abstract:

One of the functions of the commercial heavy vehicle is to safely and efficiently transport goods and people. Due to its size and carrying capacity, it is important to study the vehicle dynamic stability during cornering. Study has shown that there are a number of overloaded heavy vehicles or permissible gross vehicle weight (GVW) violations recorded at selected areas in Malaysia assigned by its type and category. Thus, the objective of this study is to investigate the correlation and effect of the GVW on heavy vehicle stability during cornering event using simulation. Various selected heavy vehicle types and category are simulated using IPG/Truck Maker® with different GVW and road condition (coefficient of friction of road surface), while the speed, driver characteristic, center of gravity of load and road geometry are constant. Based on the analysis, the relationship between GVW and lateral acceleration were established. As expected, on the same value of coefficient of friction, the maximum lateral acceleration would be increased as the GVW increases.

Keywords: heavy vehicle, road safety, vehicle stability, lateral acceleration, gross vehicle weight

Procedia PDF Downloads 504
3368 Runoff Simulation by Using WetSpa Model in Garmabrood Watershed of Mazandaran Province, Iran

Authors: Mohammad Reza Dahmardeh Ghaleno, Mohammad Nohtani, Saeedeh Khaledi

Abstract:

Hydrological models are applied to simulation and prediction floods in watersheds. WetSpa is a distributed, continuous and physically model with daily or hourly time step that explains of precipitation, runoff and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave Equation which depend on the slope, velocity and flow route characteristics. Garmabrood watershed located in Mazandaran province in Iran and passing over coordinates 53° 10´ 55" to 53° 38´ 20" E and 36° 06´ 45" to 36° 25´ 30"N. The area of the catchment is about 1133 km2 and elevations in the catchment range from 213 to 3136 m at the outlet, with average slope of 25.77 %. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe Model Efficiency Coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 61% and 83.17 % respectively.

Keywords: watershed simulation, WetSpa, runoff, flood prediction

Procedia PDF Downloads 309
3367 Effects of Bacterial Inoculants and Enzymes Inoculation on the Fermentation and Aerobic Stability of Potato Hash Silage

Authors: B. D. Nkosi, T. F. Mutavhatsindi, J. J. Baloyi, R. Meeske, T. M. Langa, I. M. M. Malebana, M. D. Motiang

Abstract:

Potato hash (PH), a by-product from food production industry, contains 188.4 g dry matter (DM)/kg and 3.4 g water soluble carbohydrate (WSC)/kg DM, and was mixed with wheat bran (70:30 as is basis) to provide 352 g DM/kg and 315 g WSC/kg DM. The materials were ensiled with or without silage additives in 1.5L anaerobic jars (3 jars/treatment) that were kept at 25-280 C for 3 months. Four types of silages were produced which were: control (no additive, denoted as T1), celluclast enzyme (denoted as T2), emsilage bacterial inoculant (denoted as T3) and silosolve bacterial inoculant (denoted as T4). Three jars per treatment were opened after 3 months of ensiling for the determination of nutritive values, fermentation characteristics and aerobic stability. Aerobic stability was done by exposing silage samples to air for 5 days. The addition of enzyme (T2) was reduced (P<0.05) silage pH, fiber fractions (NDF and ADF) while increasing (P < 0.05) residual WSC and lactic acid (LA) production, compared to other treatments. Silage produced had pH of < 4.0, indications of well-preserved silage. Bacterial inoculation (T3 and T4) improved (P < 0.05) aerobic stability of the silage, as indicated by increased number of hours and lower CO2 production, compared to other treatments. However, the aerobic stability of silage was worsen (P < 0.05) with the addition of an enzyme (T2). Further work to elucidate these effects on nutrient digestion and growth performance on ruminants fed the silage is needed.

Keywords: by-products, digestibility, feeds, inoculation, ruminants, silage

Procedia PDF Downloads 411
3366 An Analytical Study of Small Unmanned Arial Vehicle Dynamic Stability Characteristics

Authors: Abdelhakam A. Noreldien, Sakhr B. Abudarag, Muslim S. Eltoum, Salih O. Osman

Abstract:

This paper presents an analytical study of Small Unmanned Aerial Vehicle (SUAV) dynamic stability derivatives. Simulating SUAV dynamics and analyzing its behavior at the earliest design stages is too important and more efficient design aspect. The approach suggested in this paper is using the wind tunnel experiment to collect the aerodynamic data and get the dynamic stability derivatives. AutoCAD Software was used to draw the case study (wildlife surveillance SUAV). The SUAV is scaled down to be 0.25% of the real SUAV dimensions and converted to a wind tunnel model. The model was tested in three different speeds for three different attitudes which are; pitch, roll and yaw. The wind tunnel results were then used to determine the case study stability derivative values, and hence it used to calculate the roots of the characteristic equation for both longitudinal and lateral motions. Finally, the characteristic equation roots were found and discussed in all possible cases.

Keywords: model, simulating, SUAV, wind tunnel

Procedia PDF Downloads 345
3365 Dual Solutions in Mixed Convection Boundary Layer Flow: A Stability Analysis

Authors: Anuar Ishak

Abstract:

The mixed convection stagnation point flow toward a vertical plate is investigated. The external flow impinges normal to the heated plate and the surface temperature is assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the mixed convection parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.

Keywords: dual solutions, heat transfer, mixed convection, stability analysis

Procedia PDF Downloads 352
3364 Geomechanical Technologies for Assessing Three-Dimensional Stability of Underground Excavations Utilizing Remote-Sensing, Finite Element Analysis, and Scientific Visualization

Authors: Kwang Chun, John Kemeny

Abstract:

Light detection and ranging (LiDAR) has been a prevalent remote-sensing technology applied in the geological fields due to its high precision and ease of use. One of the major applications is to use the detailed geometrical information of underground structures as a basis for the generation of a three-dimensional numerical model that can be used in a geotechnical stability analysis such as FEM or DEM. To date, however, straightforward techniques in reconstructing the numerical model from the scanned data of the underground structures have not been well established or tested. In this paper, we propose a comprehensive approach integrating all the various processes, from LiDAR scanning to finite element numerical analysis. The study focuses on converting LiDAR 3D point clouds of geologic structures containing complex surface geometries into a finite element model. This methodology has been applied to Kartchner Caverns in Arizona, where detailed underground and surface point clouds can be used for the analysis of underground stability. Numerical simulations were performed using the finite element code Abaqus and presented by 3D computing visualization solution, ParaView. The results are useful in studying the stability of all types of underground excavations including underground mining and tunneling.

Keywords: finite element analysis, LiDAR, remote-sensing, scientific visualization, underground stability

Procedia PDF Downloads 136
3363 The Anti-Allergic Activity of Prasaprohyai Preparation Extract after Accelerated Stability Testing

Authors: Sunita Makchuchit, Arunporn Itharat

Abstract:

Prasaprohyai, a Thai traditional medicine preparation listed in the Thai National List of Essential Medicines, is commonly used for treatment of fever and colds. Prasaprohyai preparation consists of 21 different plants, with Kaempferia galanga (50% w/w) as the main ingredient. The objective of this study was to investigate the anti-allergic activity of the crude extract from Prasaprohyai after accelerated stability test procedure. The method of extract used maceration in 95% ethanol and the crude extract was kept under accelerated condition at 40 ± 2 oC and 75 ± 5% relative humidity (RH) for six months. After six months of storage at 40 oC, the crude sample in various storage times (0, 15, 30, 45, 60, 90, 120, 150 and 180 days) were investigated for anti-allergic activity using IgE-sensitized RBL-2H3 cell lines. The results showed that the stability of crude ethanolic extract from Prasaprohyai under accelerated testing had no significant effect of anti-allergic activity when compared with day 0. The results showed that the ethanolic extract could be stored for two years at room temperature without loss of activity.

Keywords: accelerated stability, anti-allergy, prasaprohyai, RBL-2H3 cell lines

Procedia PDF Downloads 450
3362 Improvement of Thermal Stability in Ethylene Methyl Acrylate Composites for Gasket Application

Authors: Pemika Ketsuwan, Pitt Supaphol, Manit Nithitanakul

Abstract:

A typical used of ethylene methyl acrylate (EMA) gasket is in the manufacture of optical lens, and often, they are deteriorated rapidly due to high temperature during the process. The objective of this project is to improve the thermal stability of the EMA copolymer gasket by preparing EMA with cellulose and silica composites. Hydroxy propyl methyl cellulose (HPMC) and Carboxy methyl cellulose (CMC) were used in preparing of EMA/cellulose composites and fumed silica (SiO2) was used in preparing EMA/silica composites with different amounts of filler (3, 5, 7, 10, 15 wt.%), using a twin screw extruder at 160 °C and the test specimens were prepared by the injection molding machine. The morphology and dispersion of fillers in the EMA matrix were investigated by field emission scanning electron microscopy (FESEM). The thermal stability of the composite was determined by thermal gravimetric analysis (TGA), and differential scanning calorimeter (DSC). Mechanical properties were evaluated by tensile testing. The developed composites were found to enhance thermal and mechanical properties when compared to that of the EMA copolymer alone.

Keywords: ethylene methyl acrylate, HPMC, Silica, Thermal stability

Procedia PDF Downloads 88
3361 The Threshold Values of Soil Water Index for Landslides on Country Road No.89

Authors: Ji-Yuan Lin, Yu-Ming Liou, Yi-Ting Chen, Chen-Syuan Lin

Abstract:

Soil water index obtained by tank model is now commonly used in soil and sand disaster alarm system in Japan. Comparing with the rainfall trigging index in Taiwan, the tank model is easy to predict the slope water content on large-scale landslide. Therefore, this study aims to estimate the threshold value of large-scale landslide using the soil water index Sixteen typhoons and heavy rainfall events, were selected to establish the, to relationship between landslide event and soil water index. Finally, the proposed threshold values for landslides on country road No.89 are suggested in this study. The study results show that 95% landslide cases occurred in soil water index more than 125mm, and 30% of the more serious slope failure occurred in the soil water index is greater than 250mm. Beside, this study speculates when soil water index more than 250mm and the difference value between second tank and third tank less than -25mm, it leads to large-scale landslide more probably.

Keywords: soil water index, tank model, landslide, threshold values

Procedia PDF Downloads 355
3360 In-Vitro Stability of Aspergillus terreus Phytases in Relation to Different Physico-Chemical Factors

Authors: Qaiser Akram, Ahsan Naeem, Hafiz Muhammad Rizwan, Waqas Ahmad, Rubeena Yasmeen

Abstract:

Aspergillus has good secretory potential for phytases. Morphologically and microscopically identified Aspergillus terreus (A. terreus) (n=20) were screened for phytase production and non-toxicity. Phytases produced by non-toxigenic A. terreus under optimum conditions were quantified. Phytases of highest producer A. terreus were evaluated for stability after exposure to temperature (35, 55, 75 and 95ºC) and pH (2, 4, 6 and 8). Effect of metal ions (Fe⁺³, Ba⁺², Ca⁺², Cu⁺², Mg⁺², Mn⁺², K⁺¹ and Na⁺¹) was assessed on phytase activity. Log reduction in phytase activity was calculated. The highest activity units of phytase produced by A. terreus were 271.49 ± 8.14 phytase unit / mL (FTU/ mL). The lowest reduction in phytase activity was 50.20 ± 7.36 (18.5%) and 68.22 ± 10.3 FTU/mL (25.13%) at 35ºC and pH 6, respectively for 15 minutes. The highest reduction 259 ± 0.84 (95.5%) and 211.99 ± 4.39 FTU/mL (78.1%) was recorded at 95ºC for 60 minutes and pH 2.0 for 45 minutes exposure, respectively. All metal ions negatively affected phytase activity. Phytase activity was inhibited minimum (45.32 ± 28.54 FTU/mL, 16.69%) by K⁺¹(1 mM) and maximum (231.48 ± 3.68 FTU/mL, 80.8%) by Cu⁺² (10 mM). It was concluded that A. terreus phytase stability and activity was dependent on physio-chemical factors.

Keywords: stability, phytase, aspergillus terreus, physio-chemical factors and metal ions

Procedia PDF Downloads 242
3359 Thermal Conductivity of Al2O3/Water-Based Nanofluids: Revisiting the Influences of pH and Surfactant

Authors: Nizar Bouguerra, Ahmed Khabou, Sébastien Poncet, Saïd Elkoun

Abstract:

The present work focuses on the preparation and the stabilization of Al2O3-water based nanofluids. Though they have been widely considered in the past, to the best of our knowledge, there is no clear consensus about a proper way to prepare and stabilize them by the appropriate surfactant. In this paper, a careful experimental investigation is performed to quantify the combined influence of pH and the surfactant on the stability of Al2O3-water based nanofluids. Two volume concentrations of nanoparticles and three nanoparticle sizes have been considered. The good preparation and stability of these nanofluids are evaluated through thermal conductivity measurements. The results show that the optimum value for the thermal conductivity is obtained mainly by controlling the pH of the mixture and surfactants are not necessary to stabilize the solution.

Keywords: nanofluid, thermal conductivity, pH, transient hot wire, surfactant, Al2O3, stability, dispersion, preparation

Procedia PDF Downloads 322
3358 Flood Susceptibility Assessment of Mandaluyong City Using Analytic Hierarchy Process

Authors: Keigh D. Guinto, Ma. Romina M. Santos

Abstract:

One of the most catastrophic natural disasters in the Philippines is floods. Twelve (12) million people reside in Metro Manila, National Capital Region (NCR), prone to flooding. A flood can cause widespread devastation resulting in damaged properties and infrastructures and loss of life. By using the analytical hierarchy process, six (6) parameters were selected, namely elevation, slope, lithology, distance from the river, river network density, and flow accumulation. Ranking of these parameters demonstrates that distance from the river with 25.31% and river density with 17.30% ranked the highest causative factor to flooding. This is followed by flow accumulation with 16.72%, elevation with 15.33%, slope with 13.53%, and the least flood causative factor is lithology with 11.8%. The generated flood susceptibility map of Mandaluyong has three (3) classes: high susceptibility, moderate susceptibility, and low susceptibility. The flood susceptibility map generated in this study can be used as an aid for planning flood mitigation, land use planning, and general public awareness. This study can also be used for emergency management and can be applied in the disaster risk management of Mandaluyong.

Keywords: analytical hierarchy process, assessment, flood, geographic information system

Procedia PDF Downloads 162
3357 Stability Enhancement of a Large-Scale Power System Using Power System Stabilizer Based on Adaptive Neuro Fuzzy Inference System

Authors: Agung Budi Muljono, I Made Ginarsa, I Made Ari Nrartha

Abstract:

A large-scale power system (LSPS) consists of two or more sub-systems connected by inter-connecting transmission. Loading pattern on an LSPS always changes from time to time and varies depend on consumer need. The serious instability problem is appeared in an LSPS due to load fluctuation in all of the bus. Adaptive neuro-fuzzy inference system (ANFIS)-based power system stabilizer (PSS) is presented to cover the stability problem and to enhance the stability of an LSPS. The ANFIS control is presented because the ANFIS control is more effective than Mamdani fuzzy control in the computation aspect. Simulation results show that the presented PSS is able to maintain the stability by decreasing peak overshoot to the value of −2.56 × 10−5 pu for rotor speed deviation Δω2−3. The presented PSS also makes the settling time to achieve at 3.78 s on local mode oscillation. Furthermore, the presented PSS is able to improve the peak overshoot and settling time of Δω3−9 to the value of −0.868 × 10−5 pu and at the time of 3.50 s for inter-area oscillation.

Keywords: ANFIS, large-scale, power system, PSS, stability enhancement

Procedia PDF Downloads 267
3356 Stability and Sensitivity Analysis of Cholera Model with Treatment Class

Authors: Yunusa Aliyu Hadejia

Abstract:

Cholera is a gastrointestinal disease caused by a bacterium called Vibrio Cholerae which spread as a result of eating food or drinking water contaminated with feaces from an infected person. In this work we proposed and analyzed the impact of isolating infected people and give them therapeutic treatment, the specific objectives of the research was to formulate a mathematical model of cholera transmission incorporating treatment class, to make analysis on stability of equilibrium points of the model, positivity and boundedness was shown to ensure that the model has a biological meaning, the basic reproduction number was derived by next generation matrix approach. The result of stability analysis show that the Disease free equilibrium was both locally and globally asymptotically stable when R_0< 1 while endemic equilibrium has locally asymptotically stable when R_0> 1. Sensitivity analysis was perform to determine the contribution of each parameter to the basic reproduction number. Numerical simulation was carried out to show the impact of the model parameters using MAT Lab Software.

Keywords: mathematical model, treatment, stability, sensitivity

Procedia PDF Downloads 63
3355 Motion of an Infinitesimal Particle in Binary Stellar Systems: Kepler-34, Kepler-35, Kepler-16, Kepler-413

Authors: Rajib Mia, Badam Singh Kushvah

Abstract:

The present research was motivated by the recent discovery of the binary star systems. In this paper, we use the restricted three-body problem in the binary stellar systems, considering photogravitational effects of both the stars. The aim of this study is to investigate the motion of the infinitesimal mass in the vicinity of the Lagrangian points. The stability and periodic orbits of collinear points and the stability and trajectories of the triangular points are studied in stellar binary systems Kepler-34, Kepler-35, Kepler-413 and Kepler-16 systems. A detailed comparison is made among periodic orbits and trajectories.

Keywords: exoplanetary systems, lagrangian points, periodic orbit, restricted three body problem, stability

Procedia PDF Downloads 398
3354 Influence of Physical Properties on Estimation of Mechanical Strength of Limestone

Authors: Khaled Benyounes

Abstract:

Determination of the rock mechanical properties such as unconfined compressive strength UCS, Young’s modulus E, and tensile strength by the Brazilian test Rtb is considered to be the most important component in drilling and mining engineering project. Research related to establishing correlation between strength and physical parameters of rocks has always been of interest to mining and reservoir engineering. For this, many rock blocks of limestone were collected from the quarry located in Meftah(Algeria), the cores were crafted in the laboratory using a core drill. This work examines the relationships between mechanical properties and some physical properties of limestone. Many empirical equations are established between UCS and physical properties of limestone (such as dry bulk density, velocity of P-waves, dynamic Young’s modulus, alteration index, and total porosity). Others correlations UCS-tensile strength, dynamic Young’s modulus-static Young’s modulus have been find. Based on the Mohr-Coulomb failure criterion, we were able to establish mathematical relationships that will allow estimating the cohesion and internal friction angle from UCS and indirect tensile strength. Results from this study can be useful for mining industry for resolve range of geomechanical problems such as slope stability.

Keywords: limestone, mechanical strength, Young’s modulus, porosity

Procedia PDF Downloads 424
3353 Stability Optimization of NABH₄ via PH and H₂O:NABH₄ Ratios for Large Scale Hydrogen Production

Authors: Parth Mehta, Vedasri Bai Khavala, Prabhu Rajagopal, Tiju Thomas

Abstract:

There is an increasing need for alternative clean fuels, and hydrogen (H₂) has long been considered a promising solution with a high calorific value (142MJ/kg). However, the storage of H₂ and expensive processes for its generation have hindered its usage. Sodium borohydride (NaBH₄) can potentially be used as an economically viable means of H₂ storage. Thus far, there have been attempts to optimize the life of NaBH₄ (half-life) in aqueous media by stabilizing it with sodium hydroxide (NaOH) for various pH values. Other reports have shown that H₂ yield and reaction kinetics remained constant for all ratios of H₂O to NaBH₄ > 30:1, without any acidic catalysts. Here we highlight the importance of pH and H₂O: NaBH₄ ratio (80:1, 40:1, 20:1 and 10:1 by weight), for NaBH₄ stabilization (half-life reaction time at room temperature) and corrosion minimization of H₂ reactor components. It is interesting to observe that at any particular pH>10 (e.g., pH = 10, 11 and 12), the H₂O: NaBH₄ ratio does not have the expected linear dependence with stability. On the contrary, high stability was observed at the ratio of 10:1 H₂O: NaBH₄ across all pH>10. When the H₂O: NaBH₄ ratio is increased from 10:1 to 20:1 and beyond (till 80:1), constant stability (% degradation) is observed with respect to time. For practical usage (consumption within 6 hours of making NaBH₄ solution), 15% degradation at pH 11 and NaBH₄: H₂O ratio of 10:1 is recommended. Increasing this ratio demands higher NaOH concentration at the same pH, thus requiring a higher concentration or volume of acid (e.g., HCl) for H₂ generation. The reactions are done with tap water to render the results useful from an industrial standpoint. The observed stability regimes are rationalized based on complexes associated with NaBH₄ when solvated in water, which depend sensitively on both pH and NaBH₄: H₂O ratio.

Keywords: hydrogen, sodium borohydride, stability optimization, H₂O:NaBH₄ ratio

Procedia PDF Downloads 90
3352 The Genesis of the Anomalous Sernio Fan (Valtellina, Northern Italy)

Authors: Erika De Finis, Paola Gattinoni, Laura Scesi

Abstract:

Massive rock avalanches formed some of the largest landslide deposits on Earth and they represent one of the major geohazards in high-relief mountains. This paper interprets a very large sedimentary fan (the Sernio fan, Valtellina, Northern Italy), located 20 Km SW from Val Pola Rock avalanche (1987), as the deposit of a partial collapse of a Deep Seated Gravitational Slope Deformation (DSGSD), afterwards eroded and buried by debris flows. The proposed emplacement sequence has been reconstructed based on geomorphological, structural and mechanical evidences. The Sernio fan is actually considered anomalous with reference to the very high ratio between the fan area (about 4.5km2) and the basin area (about 3km2). The morphology of the fan area is characterised by steep slopes (dip about 20%) and the fan apex is extended for 1.8 km inside the small catchment basin. This sedimentary fan was originated by a landslide that interested a part of a large deep-seated gravitational slope deformation, involving a wide area of about 55 km². The main controlling factor is tectonic and it is related to the proximity to regional fault systems and the consequent occurrence of fault weak rocks (GSI locally lower than 10 with compressive stress lower than 20MPa). Moreover, the fan deposit shows sedimentary evidences of recent debris flow events. The best current explanation of the Sernio fan involves an initial failure of some hundreds of Mm3. The run-out was quite limited because of the morphology of Valtellina’s valley floor, and the deposit filled the main valley forming a landslide dam, as confirmed by the lacustrine deposits detected upstream the fan. Nowadays the debris flow events represent the main hazard in the study area.

Keywords: anomalous sedimentary fans, deep seated gravitational slope deformation, Italy, rock avalanche

Procedia PDF Downloads 451
3351 Rainfall–Runoff Simulation Using WetSpa Model in Golestan Dam Basin, Iran

Authors: M. R. Dahmardeh Ghaleno, M. Nohtani, S. Khaledi

Abstract:

Flood simulation and prediction is one of the most active research areas in surface water management. WetSpa is a distributed, continuous, and physical model with daily or hourly time step that explains precipitation, runoff, and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave equation which depends on the slope, velocity, and flow route characteristics. Golestan Dam Basin is located in Golestan province in Iran and it is passing over coordinates 55° 16´ 50" to 56° 4´ 25" E and 37° 19´ 39" to 37° 49´ 28"N. The area of the catchment is about 224 km2, and elevations in the catchment range from 414 to 2856 m at the outlet, with average slope of 29.78%. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe model efficiency coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 59% and 80.18%, respectively.

Keywords: watershed simulation, WetSpa, stream flow, flood prediction

Procedia PDF Downloads 221
3350 Assessing the Effect of Grid Connection of Large-Scale Wind Farms on Power System Small-Signal Angular Stability

Authors: Wenjuan Du, Jingtian Bi, Tong Wang, Haifeng Wang

Abstract:

Grid connection of a large-scale wind farm affects power system small-signal angular stability in two aspects. Firstly, connection of the wind farm brings about the change of load flow and configuration of a power system. Secondly, the dynamic interaction is introduced by the wind farm with the synchronous generators (SGs) in the power system. This paper proposes a method to assess the two aspects of the effect of the wind farm on power system small-signal angular stability. The effect of the change of load flow/system configuration brought about by the wind farm can be examined separately by displacing wind farms with constant power sources, then the effect of the dynamic interaction of the wind farm with the SGs can be also computed individually. Thus, a clearer picture and better understanding on the power system small-signal angular stability as affected by grid connection of the large-scale wind farm are provided. In the paper, an example power system with grid connection of a wind farm is presented to demonstrate the proposed approach.

Keywords: power system small-signal angular stability, power system low-frequency oscillations, electromechanical oscillation modes, wind farms, double fed induction generator (DFIG)

Procedia PDF Downloads 452
3349 The Stability Study of Large-Scale Grid-Tied Photovoltaic System Containing Different Types of Inverter

Authors: Chen Zheng, Lin Zhou, Bao Xie, Xiao Du, Nianbin Shao

Abstract:

Power generated by large-scale photovoltaic plants (LSPVPs) is usually transmitted to the grid through several transformers and long distance overhead lines. Impedance of transformers and transmission lines results in complex interactions between the plant and the grid and among different inverters. In accordance with the topological structure of LSPV in reality, an equivalent model containing different inverters was built and then interactions between the plant and the grid and among different inverters were studied. Based on the vector composition principle of voltage at the point of common coupling (PCC), the mathematic function of PCC voltage in regard to the total power and grid impedance was deduced, from which the uttermost total power to guarantee the system stable is obtained. Taking the influence of different inverters numbers and the length of transmission lines to the system stability into account, the stability criterion of LSPV containing different inverters was derived. The result of simulation validated the theory analysis in the paper.

Keywords: LSPVPs, stability analysis, grid impedance, different types of inverter, PCC voltage

Procedia PDF Downloads 277
3348 Effect of Gas Boundary Layer on the Stability of a Radially Expanding Liquid Sheet

Authors: Soumya Kedia, Puja Agarwala, Mahesh Tirumkudulu

Abstract:

Linear stability analysis is performed for a radially expanding liquid sheet in the presence of a gas medium. A liquid sheet can break up because of the aerodynamic effect as well as its thinning. However, the study of the aforementioned effects is usually done separately as the formulation becomes complicated and is difficult to solve. Present work combines both, aerodynamic effect and thinning effect, ignoring the non-linearity in the system. This is done by taking into account the formation of the gas boundary layer whilst neglecting viscosity in the liquid phase. Axisymmetric flow is assumed for simplicity. Base state analysis results in a Blasius-type system which can be solved numerically. Perturbation theory is then applied to study the stability of the liquid sheet, where the gas-liquid interface is subjected to small deformations. The linear model derived here can be applied to investigate the instability for sinuous as well as varicose modes, where the former represents displacement in the centerline of the sheet and the latter represents modulation in sheet thickness. Temporal instability analysis is performed for sinuous modes, which are significantly more unstable than varicose modes, for a fixed radial distance implying local stability analysis. The growth rates, measured for fixed wavenumbers, predicated by the present model are significantly lower than those obtained by the inviscid Kelvin-Helmholtz instability and compare better with experimental results. Thus, the present theory gives better insight into understanding the stability of a thin liquid sheet.

Keywords: boundary layer, gas-liquid interface, linear stability, thin liquid sheet

Procedia PDF Downloads 199