Search results for: single protein functioning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7301

Search results for: single protein functioning

7001 Functional Significance of Qatari Camels Milk: Antioxidant Content and Antimicrobial Activity of Protein Fractions

Authors: Tahra ElObeid, Omnya Ahmed, Reem Al-Sharshani, Doaa Dalloul, Jannat Alnattei

Abstract:

Background: Camelus dormedarius camels are also called ‘the Arabian camels’ and are present in the desert area of North Africa and the Middle East. Recently, camel’s milk has a great attention globally because of their proteins and peptides that have been reported to be beneficial for the health and in the management of many diseases. Objectives: This study was designed to investigate the antioxidant, antimicrobial activity and to evaluate the total phenolic content of camel’s milk proteins in Qatar. Methods: Fresh two camel’s milk samples from Omani breed and called Muhajer (camel’s milk A and B) were collected on the 1st of the December. Both samples were from the same location Al- Shahaniyah, Doha, Qatar, but from different local private farms and feeding system. Camel’s milk A and B were defatted by centrifugation and their proteins were extracted by acid and thermal precipitation. The antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Total phenolic compound (TPC) was evaluated by Folin-Ciocalteu reagent (FCR). On the other hand, the antimicrobial activity against eight different type of pathogenic bacteria was evaluated by disc diffusion method and the zone of inhibition was measured. Results: The of the total phenolic content of whole milk in both camel’s milk A and B were significantly the highest among the protein extracts. The % of the DPPH radical inhibition of casein protein in both camel’s milk A and B were significantly the highest among the protein extracts. In this study, there were marked changes in the antibacterial activity in the different camel milk protein extracts. All extracts showed bacterial overgrowth. Conclusion: The antioxidant activity of the camel milk protein extracts correlated to their unique phenolic compounds and bioactive protein peptides. The antimicrobial activity was not detected perhaps due to the technique, the quality, or the extraction method. Overall, camel's milk exhibits a high antioxidant activity, which is responsible for many health benefits besides the nutritional values.

Keywords: camels milk, antioxidant content, antimicrobial activity, proteins, Qatar

Procedia PDF Downloads 185
7000 Day-To-Day Variations in Health Behaviors and Daily Functioning: Two Intensive Longitudinal Studies

Authors: Lavinia Flueckiger, Roselind Lieb, Andrea H. Meyer, Cornelia Witthauer, Jutta Mata

Abstract:

Objective: Health behaviors tend to show a high variability over time within the same person. However, most existing research can only assess a snapshot of a person’s behavior and not capture this natural daily variability. Two intensive longitudinal studies examine the variability in health behavior over one academic year and their implications for other aspects of daily life such as affect and academic performance. Can already a single day of increased physical activity, snacking, or improved sleep have beneficial effects? Methods: In two intensive longitudinal studies with up to 65 assessment days over an entire academic year, university students (Study 1: N = 292; Study 2: N = 304) reported sleep quality, physical activity, snacking, positive and negative affect, and learning goal achievement. Results: Multilevel structural equation models showed that on days on which participants reported better sleep quality or more physical activity than usual, they also reported increased positive affect, decreased negative affect, and better learning goal achievement. Higher day-to-day snacking was only associated with increased positive affect. Both, increased day-to-day sleep quality and physical activity were indirectly associated with better learning goal achievement through changes in positive and negative affect; results for snacking were mixed. Importantly, day-to-day sleep quality was a stronger predictor for affect and learning goal achievement than physical activity or snacking. Conclusion: One day of better sleep or more physical activity than usual is associated with improved affect and academic performance. These findings have important implications for low-threshold interventions targeting the improvement of daily functioning.

Keywords: sleep quality, physical activity, snacking, affect, academic performance, multilevel structural equation model

Procedia PDF Downloads 550
6999 Study of Magnetic Nanoparticles’ Endocytosis in a Single Cell Level

Authors: Jefunnie Matahum, Yu-Chi Kuo, Chao-Ming Su, Tzong-Rong Ger

Abstract:

Magnetic cell labeling is of great importance in various applications in biomedical fields such as cell separation and cell sorting. Since analytical methods for quantification of cell uptake of magnetic nanoparticles (MNPs) are already well established, image analysis on single cell level still needs more characterization. This study reports an alternative non-destructive quantification methods of single-cell uptake of positively charged MNPs. Magnetophoresis experiments were performed to calculate the number of MNPs in a single cell. Mobility of magnetic cells and the area of intracellular MNP stained by Prussian blue were quantified by image processing software. ICP-MS experiments were also performed to confirm the internalization of MNPs to cells. Initial results showed that the magnetic cells incubated at 100 µg and 50 µg MNPs/mL concentration move at 18.3 and 16.7 µm/sec, respectively. There is also an increasing trend in the number and area of intracellular MNP with increasing concentration. These results could be useful in assessing the nanoparticle uptake in a single cell level.

Keywords: magnetic nanoparticles, single cell, magnetophoresis, image analysis

Procedia PDF Downloads 305
6998 How to Talk about It without Talking about It: Cognitive Processing Therapy Offers Trauma Symptom Relief without Violating Cultural Norms

Authors: Anne Giles

Abstract:

Humans naturally wish they could forget traumatic experiences. To help prevent future harm, however, the human brain has evolved to retain data about experiences of threat, alarm, or violation. When given compassionate support and assistance with thinking helpfully and realistically about traumatic events, most people can adjust to experiencing hardships, albeit with residual sad, unfortunate memories. Persistent, recurrent, intrusive memories, difficulty sleeping, emotion dysregulation, and avoidance of reminders, however, may be symptoms of Post-traumatic Stress Disorder (PTSD). Brain scans show that PTSD affects brain functioning. We currently have no physical means of restoring the system of brain structures and functions involved with PTSD. Medications may ease some symptoms but not others. However, forms of "talk therapy" with cognitive components have been found by researchers to reduce, even resolve, a broad spectrum of trauma symptoms. Many cultures have taboos against talking about hardships. Individuals may present themselves to mental health care professionals with severe, disabling trauma symptoms but, because of cultural norms, be unable to speak about them. In China, for example, relationship expectations may include the belief, "Bad things happening in the family should stay in the family (jiāchǒu bùkě wàiyán 家丑不可外扬)." The concept of "family (jiā 家)" may include partnerships, close and extended families, communities, companies, and the nation itself. In contrast to many trauma therapies, Cognitive Processing Therapy (CPT) for Post-traumatic Stress Disorder asks its participants to focus not on "what" happened but on "why" they think the trauma(s) occurred. The question "why" activates and exercises cognitive functioning. Brain scans of individuals with PTSD reveal executive functioning portions of the brain inadequately active, with emotion centers overly active. CPT conceptualizes PTSD as a network of cognitive distortions that keep an individual "stuck" in this under-functioning and over-functioning dynamic. Through asking participants forms of the question "why," plus offering a protocol for examining answers and relinquishing unhelpful beliefs, CPT assists individuals in consciously reactivating the cognitive, executive functions of their brains, thus restoring normal functioning and reducing distressing trauma symptoms. The culturally sensitive components of CPT that allow people to "talk about it without talking about it" may offer the possibility for worldwide relief from symptoms of trauma.

Keywords: cognitive processing therapy (CPT), cultural norms, post-traumatic stress disorder (PTSD), trauma recovery

Procedia PDF Downloads 181
6997 Segmental Motion of Polymer Chain at Glass Transition Probed by Single Molecule Detection

Authors: Hiroyuki Aoki

Abstract:

The glass transition phenomenon has been extensively studied for a long time. The glass transition of polymer materials is assigned to the transition of the dynamics of the chain backbone segment. However, the detailed mechanism of the transition behavior of the segmental motion is still unclear. In the current work, the single molecule detection technique was employed to reveal the trajectory of the molecular motion of the single polymer chain. The center segment of poly(butyl methacrylate) chain was labeled by a perylenediimide dye molecule and observed by a highly sensitive fluorescence microscope in a defocus condition. The translational and rotational diffusion of the center segment in a single polymer chain was analyzed near the glass transition temperature. The direct observation of the individual polymer chains revealed the intermittent behavior of the segmental motion, indicating the spatial inhomogeneity.

Keywords: glass transition, molecular motion, polymer materials, single molecule

Procedia PDF Downloads 294
6996 Homology Modelling of Beta Defensin 3 of Bos taurus and Its Docking Studies with Molecules Responsible for Formation of Biofilm

Authors: Ravinder Singh, Ankita Gurao, Saroj Bandhan, Sudhir Kumar Kashyap

Abstract:

The Bos taurus Beta defensin 3 is a defensin peptide secreted by neutrophils and epithelial that exhibits anti-microbial activity. It is one of the crucial components forming an innate defense against intra mammary infections in livestock. The beta defensin 3 by virtue of its anti-microbial activity inhibits major mastitis pathogens including Staphylococcus aureus and Pseudomonas aeruginosa etc, which are also responsible for biofilm formation leading to antibiotic resistance phenomenon. Therefore, the defensin may prove as a non-conventional option to treat mastitis. In this study, computational analysis has been performed including sequence comparison among species and homology modeling of Bos taurus beta defensin 3 protein. The assessments of protein structure were done using the protein structure and model assessment tools integrated in Swiss Model server, which employs various local and global quality evaluation parameters. Further, molecular docking was also carried out between the defensin peptide and the components of biofilm to gain insight into various interactions and structural differences crucial for functionality of this protein.

Keywords: beta defensin 3, bos taurus, docking, homology modeling

Procedia PDF Downloads 266
6995 The Importance of Functioning and Disability Status Follow-Up in People with Multiple Sclerosis

Authors: Sanela Slavkovic, Congor Nad, Spela Golubovic

Abstract:

Background: The diagnosis of multiple sclerosis (MS) is a major life challenge and has repercussions on all aspects of the daily functioning of those attained by it – personal activities, social participation, and quality of life. Regular follow-up of only the neurological status is not informative enough so that it could provide data on the sort of support and rehabilitation that is required. Objective: The aim of this study was to establish the current level of functioning of persons attained by MS and the factors that influence it. Methods: The study was conducted in Serbia, on a sample of 108 persons with relapse-remitting form of MS, aged 20 to 53 (mean 39.86 years; SD 8.20 years). All participants were fully ambulatory. Methods applied in the study include Expanded Disability Status Scale-EDSS and World Health Organization Disability Assessment Schedule, WHODAS 2.0 (36-item version, self-administered). Results: Participants were found to experience the most problems in the domains of Participation, Mobility, Life activities and Cognition. The least difficulties were found in the domain of Self-care. Symptom duration was the only control variable with a significant partial contribution to the prediction of the WHODAS scale score (β=0.30, p < 0.05). The total EDSS score correlated with the total WHODAS 2.0 score (r=0.34, p=0.00). Statistically significant differences in the domain of EDSS 0-5.5 were found within categories (0-1.5; 2-3.5; 4-5.5). The more pronounced a participant’s EDSS score was, although not indicative of large changes in the neurological status, the more apparent the changes in the functional domain, i.e. in all areas covered by WHODAS 2.0. Pyramidal (β=0.34, p < 0.05) and Bowel and bladder (β=0.24, p < 0.05) functional systems were found to have a significant partial contribution to the prediction of the WHODAS score. Conclusion: Measuring functioning and disability is important in the follow-up of persons suffering from MS in order to plan rehabilitation and define areas in which additional support is needed.

Keywords: disability, functionality, multiple sclerosis, rehabilitation

Procedia PDF Downloads 97
6994 Expression Regulation of Membrane Protein by Codon Variation of Amino Acid at N-Terminal Region

Authors: Ahreum Choi, Otgontuya Tsogbadrakh, Kwang-Hwan Jung

Abstract:

Microbial rhodopsins are well-known seven-transmembrane proteins that have been extensively studied. These retinal-binding proteins have divided into two types. The type I is microbial rhodopsin, and type II (visual pigment) is expressed mostly in mammalian eyes. For type I rhodopsin, there are two main functions that are ion pumping activity and sensory transduction. Anabaena sensory rhodopsin (ASR) is one of the microbial rhodopsin with main function as photo-sensory transduction. Although ASR is expressed fairly well in Escherichia coli, the expression level is relatively less compare to Proteorhodopsin. In this study, full length of ASR was used to test for the expression influence by codon usage in E. coli. Eight amino acids of codon at N-terminal part of ASR were changed randomly with designed primers, which allow 8,192 nucleotide different cases. The codon changes were screened for the preferable codons of each residue, which have given higher expression yield. Among those 57 selected mutations, there are 24 color-enhanced E. coli colonies that contain ASR proteins, and it showed better expression level than the wild type ASR codon usage. This strongly suggests that high codon usage of only partial N-terminal of protein can increase the expression level of whole protein.

Keywords: 7-transmembrane, all-trans retinal, rhodopsin, codon-usage, protein expression

Procedia PDF Downloads 161
6993 Study on the Work-Life Balance of Selected Working Single Mothers in the Coastal Community of La Huerta, Paranaque

Authors: Idette Sheirina Biyo, Rhodora Lynn C. Lintag

Abstract:

This paper explores how the work-life balance of selected working single mothers situated in a coastal community is affecting their well-being. Working single mothers carry the responsibility of earning for their family while simultaneously exercising their motherhood. This study utilized a purposeful qualitative research through semi-structured interviews among ten working single mothers living in the coastal community of La Huerta, Parañaque in order to identify the following: a) experiences of the working single mothers, b) problems usually encountered, and c) how these problems are affecting their well-being. Dorothy Smith’s Feminist Standpoint theory is used as a theoretical lens in order to explain their work-life balance. Results have shown that despite their dual roles as the main income earners and heads of the households, they are not neglecting to care for their well-being. They consider getting sufficient rest, eating well, and going to church as forms of caring for their well-being. Other factors that affect their work-life balance include living arrangements, work hours, type of work, and income.

Keywords: coastal community, well-being, work-life balance, Working single mother

Procedia PDF Downloads 172
6992 Pharmacokinetic Model of Warfarin and Its Application in Personalized Medicine

Authors: Vijay Kumar Kutala, Addepalli Pavani, M. Amresh Rao, Naushad Sm

Abstract:

In this study, we evaluated the impact of CYP2C9*2 and CYP2C9*3 variants on binding and hydroxylation of warfarin. In silico data revealed that warfarin forms two hydrogen bonds with protein backbone i.e. I205 and S209, one hydrogen bond with protein side chain i.e. T301 and stacking interaction with F100 in CYP2C9*1. In CYP2C9*2 and CYP2C9*3 variants, two hydrogen bonds with protein backbone are disrupted. In double variant, all the hydrogen bonds are disrupted. The distances between C7 of S-warfarin and Fe-O in CYP2C9*1, CYP2C9*2, CYP2C9*3 and CYP2C9*2/*3 were 5.81A°, 7.02A°, 7.43° and 10.07°, respectively. The glide scores (Kcal/mol) were -7.698, -7.380, -6.821 and -6.986, respectively. Increase in warfarin/7-hydroxy warfarin ratio was observed with increase in variant alleles. To conclude, CYP2C9*2 and CYP2C9*3 variants result in disruption of hydrogen bonding interactions with warfarin and longer distance between C7 and Fe-O thus impairing warfarin 7-hydroxylation due to lower binding affinity of warfarin.

Keywords: warfarin, CYP2C9 polymorphism, personalized medicine, in Silico

Procedia PDF Downloads 293
6991 Identification of the Putative Interactome of Escherichia coli Glutaredoxin 2 by Affinity Chromatography

Authors: Eleni Poulou-Sidiropoulou, Charalampos N. Bompas, Martina Samiotaki, Alexios Vlamis-Gardikas

Abstract:

The glutaredoxin (Grx) and thioredoxin (Trx) systems keep the intracellular environment reduced in almost all organisms. In Escherichia coli (E. coli), the Grx system relies on NADPH+ to reduce GSH reductase (GR), the latter reducing oxidized diglutathione to glutathione (GSH) which in turn reduces cytosolic Grxs, the electron donors for different intracellular substrates. In the Trx system, GR and GSH are replaced by Trx reductase (TrxR). Three of the Grxs of E. coli (Grx1, 2, 3) are reduced by GSH, while Grx4 is likely reduced by TrxR. Trx1 and Grx1 from E. coli may reduce ribonucleotide reductase Ia to ensure a constant supply of deoxyribonucleotides for the synthesis of DNA. The role of the other three Grxs is relatively unknown, especially for Grx2 that may amount up to 1 % of total cellular protein in the stationary phase of growth. The protein is known as a potent antioxidant, but no specific functions have been attributed to it. Herein, affinity chromatography of cellular extracts on immobilized Grx2, followed by MS analysis of the resulting eluates, was employed to identify protein ligands that could provide insights into the biological role of Grx2. Ionic, strong non-covalent, and covalent (disulfide) interactions with relevant proteins were detected. As a means of verification, the identified ligands were subjected to in silico docking with monothiol Grx2. In other experiments, protein extracts from E. coli cells lacking the gene for Grx2 (grxB) were compared to those of wild type. Taken together, the two approaches suggest that Grx2 is involved in protein synthesis, nucleotide metabolism, DNA damage repair, stress responses, and various metabolic processes. Grx2 appears as a versatile protein that may participate in a wide range of biological pathways beyond its known general antioxidant function.

Keywords: Escherichia coli, glutaredoxin 2, interactome, thiol-disulfide oxidoreductase

Procedia PDF Downloads 21
6990 A Recombinant Group a Streptococcus (GAS-2W) Strain Elicits Protective Immunity in Mice through Induction of an IFN-γ Dependent Humoral Response

Authors: Shiva Emami, Jenny Persson, Bengt Johansson Lindbom

Abstract:

Group A streptococcus (GAS) is a prevalent human pathogen, causing a wide range of infections and diseases. One of the most well-known virulence factors in GAS is M protein, a surface protein that facilitates bacterial invasion. In this study, we used a recombinant GAS strain (GAS-2W) expressing M protein containing a hyper immunogenic peptide (2W). Mice were immunized three times with heat-killed-GAS subcutaneously at three weeks intervals. Three weeks post last immunization, mice were challenged intraperitoneally with a lethal dose of live GAS. In order to investigate the impact of IFN-ƴ and antibodies in protection against GAS infection, we used a mouse model knock-out for IFN-ƴ (IFN-ƴ KO). We observed immunization with GAS-2W strain can increase protection against GAS infection in mice compared with the original GAS strain. Higher levels of antibodies against M1 protein were measured in GAS-2W-immunized mice. There was also a significant increase in IgG2c response in mice immunized with GAS2W. By using IFN-ƴ KO mice, we showed that not a high level of total IgG, but IgG2c was correlated with protection through the i.p challenge. It also emphasizes the importance of IFN-ƴ cytokine to combat GAS by isotype switching to IgG2c (which is opsonic for phagocytosis). Our data indicate the crucial role of IFN-ƴ in the protective immune response that, together with IgG2c, can induce protection against GAS.

Keywords: Group A streptococcus, IgG2c, IFN-γ, protection

Procedia PDF Downloads 65
6989 Insights of Interaction Studies between HSP-60, HSP-70 Proteins and HSF-1 in Bubalus bubalis

Authors: Ravinder Singh, C Rajesh, Saroj Badhan, Shailendra Mishra, Ranjit Singh Kataria

Abstract:

Heat shock protein 60 and 70 are crucial chaperones that guide appropriate folding of denatured proteins under heat stress conditions. HSP60 and HSP70 provide assistance in correct folding of a multitude of denatured proteins. The heat shock factors are the family of some transcription factors which controls the regulation of gene expression of proteins involved in folding of damaged or improper folded proteins during stress conditions. Under normal condition heat shock proteins bind with HSF-1 and act as its repressor as well as aids in maintaining the HSF-1’s nonactive and monomeric confirmation. The experimental protein structure for all these proteins in Bubalus bubalis is not known till date. Therefore computational approach was explored to identify three-dimensional structure analysis of all these proteins. In this study, an extensive in silico analysis has been performed including sequence comparison among species to comparative modeling of Bubalus bubalis HSP60, HSP70 and HSF-1 protein. The stereochemical properties of proteins were assessed by utilizing several scrutiny bioinformatics tools to ensure model accuracy. Further docking approach was used to study interactions between Heat shock proteins and HSF-1.

Keywords: Bubalus bubalis, comparative modelling, docking, heat shock protein

Procedia PDF Downloads 293
6988 A Multi-Arm Randomized Trial Comparing the Weight Gain of Very Low Birth Weight Neonates: High Glucose versus High Protein Intake

Authors: Farnaz Firuzian, Farhad Choobdar, Ali Mazouri

Abstract:

As Very Low Birth Weight (VLBW) neonates cannot tolerate enteral feeding, parenteral nutrition (PN) must be administered shortly after birth. To find an optimal combination of nutrition, in this study, we compare administering high glucose versus high protein intake as a component of total parenteral nutrition (TPN) to test their effect on birth weight (BW) regain in VLBW. This study employs a multi-arm randomized trial: 145 newborns with BW < 1500 g were randomized to control (C) or experimental groups: high glucose (G) or high protein (P). All samples in each group received the same TPN regimens except glucose and protein intake: Glocuse was provided by dextrose water (DW) serum: 7-15 g/kg/d (10% DW) in groups C and P versus 8.75-18.75 g/kg/d (12.5% DW) in group G. Protein provided by amino acids 3 g/kg/d for groups C and G versus 4 g/kg/d for group P. Outcomes (weight, height, and head circumference) was monitored on a daily basis until the BW was regained. Data has been gathered recently and is being processed. We hypothesize that neonates with higher amino acid intake will result in sooner BW regain than other groups. The result will be presented at the conference. The findings of this study not only can help optimize nutrition, cost reduction, and shorter NICU admission of VLBW neonates at the hospital level but eventually contribute to reduced healthcare-associated infections (HAIs) and an improved health economy.

Keywords: very low birth weight neonates, weight gain, parenteral nutrition, glucose, amino acids

Procedia PDF Downloads 59
6987 Human LACE1 Functions Pro-Apoptotic and Interacts with Mitochondrial YME1L Protease

Authors: Lukas Stiburek, Jana Cesnekova, Josef Houstek, Jiri Zeman

Abstract:

Cellular function depends on mitochondrial function and integrity that is therefore maintained by several classes of proteins possessing chaperone and/or proteolytic activities. In this work, we focused on characterization of LACE1 (lactation elevated 1) function in mitochondrial protein homeostasis maintenance. LACE1 is the human homologue of yeast mitochondrial Afg1 ATPase, a member of SEC18-NSF, PAS1, CDC48-VCP, TBP family. Yeast Afg1 was shown to be involved in mitochondrial complex IV biogenesis, and based on its similarity with CDC48 (p97/VCP) it was suggested to facilitate extraction of polytopic membrane proteins. Here we show that LACE1, which is a mitochondrial integral membrane protein, exists as part of three complexes of approx. 140, 400 and 500 kDa and is essential for maintenance of fused mitochondrial reticulum and lamellar cristae morphology. Using affinity purification of LACE1-FLAG expressed in LACE1 knockdown background we show that the protein physically interacts with mitochondrial inner membrane protease YME1L. We further show that human LACE1 exhibits significant pro-apoptotic activity and that the protein is required for normal function of the mitochondrial respiratory chain. Thus, our work establishes LACE1 as a novel factor with the crucial role in mitochondrial homeostasis maintenance.

Keywords: LACE1, mitochondria, apoptosis, protease

Procedia PDF Downloads 285
6986 Accessing Single Parenting and Disabled Children: A Case Study of Ghana

Authors: Edwina Owusu Panin

Abstract:

Families may face significant obstacles as a result of single parenting and disabilities. The amenities and support those single parents need to give their children with disabilities the care they need are frequently out of their reach. These can include financial hardship, limited access to health and education, and social isolation. In addition, cultural attitudes toward disability can worsen these challenges, making it difficult for families to get the support and resources they need. Despite these challenges, many single parents have shown resilience and strength to overcome these difficulties and defend the rights of their children; some, too, have failed in taking care of their disabled children in Ghana. The study traces the developmental process of how single parents cope with disabled children. There is a discouraging fact that single father’s face a much more dreadful task in taking care of their disabled children in Ghana, which is later highlighted in the article. Additional research and support are needed to address the unique needs of families facing these challenges. This case study explores the experiences of single parents raising children with disabilities in Ghana. Using a qualitative approach, the study examines the challenges facing lone parents in caring for children, including access to healthcare, education and social support. In addition, the study examines the impact of cultural disability attitudes on the experiences of single parents and their children and what causes it in Ghana. Findings indicate that single parents in Ghana face significant challenges in accessing resources and support for their children and that cultural attitudes toward disability may aggravate these challenges. However, the study recommends the tenacity and strengths of how to create awareness, protect the welfare and also by encouraging single parents to face these challenges and protect the rights of their children, swaying away influences of bad cultural attitudes.

Keywords: disability, single parenting, case study, assessing

Procedia PDF Downloads 57
6985 The Effects of Inoculation and N Fertilization on Soybean (Glycine max (L.) Merr.) Seed Yield and Protein Concentration under Drought Stress

Authors: Oqba Basal, Andras Szabo

Abstract:

Using mineral fertilization is increasing worldwide, as it is claimed to be majorly responsible for achieving high yields; however, the negative impacts of mineral fertilization on soil and environment are becoming more obvious, with alternative methods being more necessary and applicable, especially with the current climatic changes which have imposed serious abiotic stresses, such as drought. An experiment was made during 2017 growing season in Debrecen, Hungary to investigate the effects of inoculation and N fertilization on the seed yield and protein concentration of the soybean (Glycine max (L.) Merr.) cultivar (Panonia Kincse) under three different irrigation regimes: severe drought stress (SD), moderate drought stress (MD) and control with no drought stress (ND). Three N fertilizer rates were applied: no N fertilizer (0 N), 35 kg ha⁻¹ of N fertilizer (35 N) and 105 kg ha⁻¹ of N fertilizer (105 N). Half of the seeds in each treatment was inoculated with Bradyrhizobium japonicum inoculant, and the other half was not inoculated. The results showed significant differences in the seed yield associated with inoculation, irrigation and the interaction between them, whereas there were no significant differences in the seed yield associated with fertilization alone or in interaction with inoculation or irrigation or both. When seeds were inoculated, yield was increased when (35 N) was applied compared to (0 N) but not significantly; however, the high rate of N fertilizer (105 N) reduced the yield to a level even less than (0 N). When seeds were not inoculated, the highest rate of N increased the yield the most compared to the other two N fertilizer rates whenever the drought was present (moderate or severe). Under severe drought stress, inoculation was positively and significantly correlated with yield; however, adding N fertilizer increased the yield of uninoculated plants compared to the inoculated ones, regardless of the rate of N fertilizer. Protein concentration in the seeds was significantly affected by irrigation and by fertilization, but not by inoculation. Protein concentration increased as the N fertilization rate increased, regardless of the inoculation or irrigation treatments; moreover, increasing the N rate reduced the correlation coefficient of protein concentration with the irrigation. It was concluded that adding N fertilizer is not always recommended, especially when seeds are inoculated before being sown; however, it is very important under severe drought stress to sustain yield. Enhanced protein concentrations could be achieved by applying N fertilization, whether the seeds were pre-inoculated or not.

Keywords: drought stress, N fertilization, protein concentration, soybean

Procedia PDF Downloads 127
6984 Characterization of a Putative Type 1 Toxin-Antitoxin System in Shigella Flexneri

Authors: David Sarpong, Waleed Khursheed, Ernest Danquah, Erin Murphy

Abstract:

Shigella is a pathogenic bacterium responsible for shigellosis, a severe diarrheal disease that claims the lives of immunocompromised individuals worldwide. To develop therapeutics against this disease, an understanding of the molecular mechanisms underlying the pathogen’s physiology is crucial. Small non-coding RNAs (sRNAs) have emerged as important regulators of bacterial physiology, including as components of toxin-antitoxin systems. In this study, we investigated the role of RyfA in S. flexneri physiology and virulence. RyfA, originally identified as an sRNA in Escherichia coli, is conserved within the Enterobacteriaceae family, including Shigella. Whereas two copies of ryfA are present in S. dysenteriae, all other Shigella species contain only one copy of the gene. Additionally, we identified a putative open reading frame within the RyfA transcript, suggesting that it may be a dual-functioning gene encoding a small protein in addition to its sRNA function. To study ryfA in vitro, we cloned the gene into an inducible plasmid and observed the effect on bacterial growth. Here, we report that RyfA production inhibits the growth of S. flexneri, and this inhibition is dependent on the contained open reading frame. In-silico analyses have revealed the presence of two divergently transcribed sRNAs, RyfB1 and RyfB2, which share nucleotide complementarity with RyfA and thus are predicted to function as anti-toxins. Our data demonstrate that RyfB2 has a stronger antitoxin effect than RyfB1. This regulatory pattern suggests a novel form of a toxin-antitoxin system in which the activity of a single toxin is inhibited to varying degrees by two sRNA antitoxins. Studies are ongoing to investigate the regulatory mechanism(s) of the antitoxin genes, as well as the downstream targets and mechanism of growth inhibition by the RyfA toxin. This study offers distinct insights into the regulatory mechanisms underlying Shigella physiology and may inform the development of new anti-Shigella therapeutics.

Keywords: sRNA, shigella, toxin-antitoxin, Type 1 toxin antitoxin

Procedia PDF Downloads 17
6983 Full Characterization of Heterogeneous Antibody Samples under Denaturing and Native Conditions on a Hybrid Quadrupole-Orbitrap Mass Spectrometer

Authors: Rowan Moore, Kai Scheffler, Eugen Damoc, Jennifer Sutton, Aaron Bailey, Stephane Houel, Simon Cubbon, Jonathan Josephs

Abstract:

Purpose: MS analysis of monoclonal antibodies (mAbs) at the protein and peptide levels is critical during development and production of biopharmaceuticals. The compositions of current generation therapeutic proteins are often complex due to various modifications which may affect efficacy. Intact proteins analyzed by MS are detected in higher charge states that also provide more complexity in mass spectra. Protein analysis in native or native-like conditions with zero or minimal organic solvent and neutral or weakly acidic pH decreases charge state value resulting in mAb detection at higher m/z ranges with more spatial resolution. Methods: Three commercially available mAbs were used for all experiments. Intact proteins were desalted online using size exclusion chromatography (SEC) or reversed phase chromatography coupled on-line with a mass spectrometer. For streamlined use of the LC- MS platform we used a single SEC column and alternately selected specific mobile phases to perform separations in either denaturing or native-like conditions: buffer A (20 % ACN, 0.1 % FA) with Buffer B (100 mM ammonium acetate). For peptide analysis mAbs were proteolytically digested with and without prior reduction and alkylation. The mass spectrometer used for all experiments was a commercially available Thermo Scientific™ hybrid Quadrupole-Orbitrap™ mass spectrometer, equipped with the new BioPharma option which includes a new High Mass Range (HMR) mode that allows for improved high mass transmission and mass detection up to 8000 m/z. Results: We have analyzed the profiles of three mAbs under reducing and native conditions by direct infusion with offline desalting and with on-line desalting via size exclusion and reversed phase type columns. The presence of high salt under denaturing conditions was found to influence the observed charge state envelope and impact mass accuracy after spectral deconvolution. The significantly lower charge states observed under native conditions improves the spatial resolution of protein signals and has significant benefits for the analysis of antibody mixtures, e.g. lysine variants, degradants or sequence variants. This type of analysis requires the detection of masses beyond the standard mass range ranging up to 6000 m/z requiring the extended capabilities available in the new HMR mode. We have compared each antibody sample that was analyzed individually with mixtures in various relative concentrations. For this type of analysis, we observed that apparent native structures persist and ESI is benefited by the addition of low amounts of acetonitrile and formic acid in combination with the ammonium acetate-buffered mobile phase. For analyses on the peptide level we analyzed reduced/alkylated, and non-reduced proteolytic digests of the individual antibodies separated via reversed phase chromatography aiming to retrieve as much information as possible regarding sequence coverage, disulfide bridges, post-translational modifications such as various glycans, sequence variants, and their relative quantification. All data acquired were submitted to a single software package for analysis aiming to obtain a complete picture of the molecules analyzed. Here we demonstrate the capabilities of the mass spectrometer to fully characterize homogeneous and heterogeneous therapeutic proteins on one single platform. Conclusion: Full characterization of heterogeneous intact protein mixtures by improved mass separation on a quadrupole-Orbitrap™ mass spectrometer with extended capabilities has been demonstrated.

Keywords: disulfide bond analysis, intact analysis, native analysis, mass spectrometry, monoclonal antibodies, peptide mapping, post-translational modifications, sequence variants, size exclusion chromatography, therapeutic protein analysis, UHPLC

Procedia PDF Downloads 339
6982 Folding Pathway and Thermodynamic Stability of Monomeric GroEL

Authors: Sarita Puri, Tapan K. Chaudhuri

Abstract:

Chaperonin GroEL is a tetradecameric Escherichia coli protein having identical subunits of 57 kDa. The elucidation of thermodynamic parameters related to stability for the native GroEL is not feasible as it undergoes irreversible unfolding because of its large size (800kDa) and multimeric nature. Nevertheless, it is important to determine the thermodynamic stability parameters for the highly stable GroEL protein as it helps in folding and holding of many substrate proteins during many cellular stresses. Properly folded monomers work as building-block for the formation of native tetradecameric GroEL. Spontaneous refolding behavior of monomeric GroEL makes it suitable for protein-denaturant interactions and thermodynamic stability based studies. The urea mediated unfolding is a three state process which means there is the formation of one intermediate state along with native and unfolded states. The heat mediated denaturation is a two-state process. The unfolding process is reversible as observed by the spontaneous refolding of denatured protein in both urea and head mediated refolding processes. Analysis of folding/unfolding data provides a measure of various thermodynamic stability parameters for the monomeric GroEL. The proposed mechanism of unfolding of monomeric GroEL is a three state process which involves formation of one stable intermediate having folded apical domain and unfolded equatorial, intermediate domains. Research in progress is to demonstrate the importance of specific residues in stability and oligomerization of GroEL protein. Several mutant versions of GroEL are under investigation to resolve the above mentioned issue.

Keywords: equilibrium unfolding, monomeric GroEl, spontaneous refolding, thermodynamic stability

Procedia PDF Downloads 251
6981 Effect of Whey Protein Based Edible Coating on the Moisture Loss and Sensory Attributes of Fresh Mutton

Authors: Saba Belgheisi

Abstract:

Food packaging, is an important discipline in the area of food technology, concerns preservation and protection of foods. The objective of this research was to determine of the effect of whey protein based edible coating on the moisture loss and sensory attributes of fresh mutton after 0, 1, 3 and 5 days at 5° C. The moisture content, moisture loss and sensory attributes (juiciness, color and odor) of the coated and uncoated samples were analyzed. The results showed that, moisture content, moisture loss, juiciness and color of the coated and uncoated samples have significant differences (p < 0.05) at the intervals of 0 to 1 and 1 to 3 days of storage. But no significant difference was observed at interval time 3 to 5 days of storage (p > 0.05). Also, there was no significant differences in the odor values of the coated and uncoated samples (p > 0.05). Therefore, the coated samples had consistently more moisture, juiciness and colored values than uncoated samples after 3 days at 5° C. So, whey protein edible coating could enhance product presentation and eliminate the need for placing absorbent pads at the bottom of the trays.

Keywords: coating, whey protein, mutton, moisture, sensory

Procedia PDF Downloads 435
6980 Construction and Cross-Linking of Polyelectrolyte Multilayers Based on Polysaccharides as Antifouling Coatings

Authors: Wenfa Yu, Thuva Gnanasampanthan, John Finlay, Jessica Clarke, Charlotte Anderson, Tony Clare, Axel Rosenhahn

Abstract:

Marine biofouling is a worldwide problem at vast economic and ecological costs. Historically it was combated with toxic coatings such as tributyltin. As those coatings being banned nowadays, finding environmental friendly antifouling solution has become an urgent topic. In this study antifouling coatings consisted of natural occurring polysaccharides hyaluronic acid (HA), alginic acid (AA), chitosan (Ch) and polyelectrolyte polyethylenimine (PEI) are constructed into polyelectrolyte multilayers (PEMs) in a Layer-by-Layer (LbL) method. LbL PEM construction is a straightforward way to assemble biomacromolecular coatings on surfaces. Advantages about PEM include ease of handling, highly diverse PEM composition, precise control over the thickness and so on. PEMs have been widely employed in medical application and there are numerous studies regarding their protein adsorption, elasticity and cell adhesive properties. With the adjustment of coating composition, termination layer charge, coating morphology and cross-linking method, it is possible to prepare low marine biofouling coatings with PEMs. In this study, using spin coating technology, PEM construction was achieved at smooth multilayers with roughness as low as 2nm rms and highly reproducible thickness around 50nm. To obtain stability in sea water, the multilayers were covalently cross-linked either thermally or chemically. The cross-linking method affected surface energy, which was reflected in water contact angle, thermal cross-linking led to hydrophobic surfaces and chemical cross-linking generated hydrophilic surfaces. The coatings were then evaluated regarding its protein resistance and biological species resistance. While the hydrophobic thermally cross-linked PEM had low resistance towards proteins, the resistance of chemically cross-linked PEM strongly depended on the PEM termination layer and the charge of the protein, opposite charge caused high adsorption and same charge low adsorption, indicating electrostatic interaction plays a crucial role in the protein adsorption processes. Ulva linza was chosen as the biological species for antifouling performance evaluation. Despite of the poor resistance towards protein adsorption, thermally cross-linked PEM showed good resistance against Ulva spores settlement, the chemically cross-linked multilayers showed poor resistance regardless of the termination layer. Marine species adhesion is a complex process, although it involves proteins as bioadhesives, protein resistance its own is not a fully indicator for its antifouling performance. The species will pre select the surface, responding to cues like surface energy, chemistry, or charge and so on. Thus making it difficult for one single factors to determine its antifouling performance. Preparing PEM coating is a comprehensive work involving choosing polyelectrolyte combination, determining termination layer and the method for cross-linking. These decisions will affect PEM properties such as surface energy, charge, which is crucial, since biofouling is a process responding to surface properties in a highly sensitive and dynamic way.

Keywords: hyaluronic acid, polyelectrolyte multilayers, protein resistance, Ulva linza zoospores

Procedia PDF Downloads 139
6979 Nutritional Characteristics, Phytochemical and Antimicrobial Properties Vaccinium Pavifolium (Ericacea) Leaf Protein Concentrates

Authors: Sodamade A., Bolaji K. A.

Abstract:

Problems associated with protein malnutrition are still prevalent in third-world countries, leading to the constant search for plants that could serve as nutrients and medicinal purposes. Huckleberry is one of the plants that has been proven useful locally in the treatment of numerous ailments and diseases. A fresh sample of the plant (Vaccinium pavifolium) was collected from a vegetable garden situated near the Erelu dam of the Emmanuel Alayande College of Education Campus, Oyo. The sample was authenticated at the Forestry Research Institute of Nigeria (FRIN) Ibadan. The leaves of the plant were plucked and processed for leaf protein concentrates before proximate composition, mineral analysis phytochemical and antimicrobial properties were determined using a standard method of analysis. The results of proximate constituents showed; moisture content; 9.89±0.051g/100g, Ash; 3.23±0.12g/100g, crude fat; 3.96±0.11g/100g and 61.27±0.56g/100g of Nitrogen free extractive. The mineral analysis of the sample showed; Mg; 0.081±0.00mg/100g, Ca; 42.30±0.05mg/100g, Na; 27.57±0.09mg/100g, K; 6.81±0.01mg/100g, P; 8.90±0.03mg/100g, Fe; 0.51±0.00mg/100g, Zn; 0.021±0.00mg/100g, Cd; 0.04±0.04mg/100g, Pb; 0.002±0.00mg/100g, Cr; 0.041±0.00mg/100g Cadmium and Mercury were not detected in the sample. The result of phytochemical analysis of leaf protein concentrates of the Huckleberry showed the presence of Alkaloid, Saponin, Flavonoid, Tanin, Coumarin, Steroids, Terpenoids, Cardiac glycosides, Glycosides, Quinones, Anthocyanin, phytosterols, and phenols. Ethanolic extracts of the Vaccinium parvifolium L. leaf protein concentrates showed that it contains bioactive compounds that are capable of combating the following microorganisms; Staphylococcus aureus, Streptococcus pyogenes, Streptococcus faecalis, Pseudomonas aeruginosa, Klebisialae pneumonia and Proteus mirabilis. The results of the analysis of Vaccinium parvifolium L. leaf protein concentrates showed that the sample contains valuable nutrient and mineral constituents, and phytochemical compounds that could make the sample useful for medicinal activities.

Keywords: leaf protein concentrates, vaccinium parvifolium, nutritional characteristics, mineral composition, antimicrobial activity

Procedia PDF Downloads 45
6978 Development of Low Glycemic Gluten Free Bread from Barnyard Millet and Lentil Flour

Authors: Hemalatha Ganapathyswamy, Thirukkumar Subramani

Abstract:

Celiac disease is an autoimmune response to dietary wheat gluten. Gluten is the main structure forming protein in bread and hence developing gluten-free bread is a technological challenge. The study aims at using nonwheat flours like barnyard millet and lentil flour to replace wheat in bread formulations. Other characteristics of these grains, such as high protein, soluble fiber, mineral content and bioactive components make them attractive alternatives to traditional gluten-free ingredients in the production of high protein, gluten-free bread. The composite flour formulations for the development of gluten-free bread were optimized using lentil flour (50 to 70 g), barnyard millet flour (0 to 30 g) and corn flour (0 to 30 g) by means of response surface methodology with various independent variables for physical, sensorial and nutritional characteristics. The optimized composite flour which had a desirability value of 0.517, included lentil flour –62.94 g, barnyard millet flour– 24.34 g and corn flour– 12.72 g with overall acceptability score 8.00/9.00. The optimized gluten-free bread formulation had high protein (14.99g/100g) and fiber (1.95g/100g) content. The glycemic index of the gluten-free bread was 54.58 rendering it as low glycemic which enhances the functional benefit of the gluten-free bread. Since the standardised gluten-free bread from barnyard millet and lentil flour are high protein, and gluten-free with low glycemic index, the product would serve as an ideal therapeutic food in the management of both celiac disease and diabetes mellitus with better nutritional value.

Keywords: gluten free bread, lentil, low glycemic index, response surface methodology

Procedia PDF Downloads 161
6977 Non-Linear Finite Element Analysis of Bonded Single Lap Joint in Composite Material

Authors: A. Benhamena, L. Aminallah, A. Aid, M. Benguediab, A. Amrouche

Abstract:

The goal of this work is to analyze the severity of interfacial stress distribution in the single lap adhesive joint under tensile loading. The three-dimensional and non-linear finite element method based on the computation of the peel and shear stresses was used to analyze the fracture behaviour of single lap adhesive joint. The effect of the loading magnitude and the overlap length on the distribution of peel and shear stresses was highlighted. A good correlation was found between the FEM simulations and the analytical results.

Keywords: aluminum 2024-T3 alloy, single-lap adhesive joints, Interface stress distributions, material nonlinear analysis, adhesive, bending moment, finite element method

Procedia PDF Downloads 543
6976 Siderophore Receptor Protein from Klebsiella pneumoniae as a Promising Immunogen for Serotype-Independent Therapeutic Lead Development

Authors: Sweta Pandey, Samridhi Dhyani, Susmita Chaudhuri

Abstract:

Klebsiella pneumoniae causes a wide range of infections, including urinary tract infections, sepsis, bacteremia, pneumonia, and liver abscesses. The emergence of multi-drug resistance in this bacterium led to a major setback for clinical management. WHO also endorsed a need for finding alternative therapy to antibiotics for the treatment of these infections. Development of vaccines and passive antibody therapy has been proven as a potent alternative to antibiotics in the case of MDR, XDR, and PDR Klebsiella infections. Siderophore receptors have been demonstrated to be overexpressed for the internalization of iron siderophore complexes during infections in most Gram-negative bacteria. For the present study, immune response to siderophore receptors to establish this protein as a potential immunogen for the development of therapeutic leads was explored. Clinical strains of Klebsiella pneumoniae were grown in iron-deficient conditions, and the iron-regulated outer membrane proteins were extracted and characterized through mass spectrometry for specific identification. The gene for identified protein was cloned in pET- 28a vector and expressed in E. coli. The native protein and the recombinant protein were isolated and purified and used as antigens for the generation of immune response in BALB/c mice. The native protein of Klebsiella pneumoniae grown in iron-deficient conditions was identified as FepA (Ferrienterobactin receptor) and other siderophore receptors. This 80 kDa protein generated an immune response in BALB/c mice. The antiserum from mice after subsequent booster doses was collected and showed binding with FepA protein in western blot and phagocytic uptake of the K. pneumoniae in the presence antiserum from immunized mice also observed from the animal studies after bacterial challenge post immunisation in mice have shown bacterial clearance. The antiserum from mice showed binding and clearance of the Klebsiella pneumoniae bacteria in vitro and in vivo. These antigens used for generating an active immune response in mice can further be used for therapeutic monoclonal antibody development against Klebsiella pneumoniae infections.

Keywords: antiserum, FepA, Klebsiella pneumoniae, multi drug resistance, siderophore receptor

Procedia PDF Downloads 74
6975 On the Homology Modeling, Structural Function Relationship and Binding Site Prediction of Human Alsin Protein

Authors: Y. Ruchi, A. Prerna, S. Deepshikha

Abstract:

Amyotrophic lateral sclerosis (ALS), also known as “Lou Gehrig’s disease”. It is a neurodegenerative disease associated with degeneration of motor neurons in the cerebral cortex, brain stem, and spinal cord characterized by distal muscle weakness, atrophy, normal sensation, pyramidal signs and progressive muscular paralysis reflecting. ALS2 is a juvenile autosomal recessive disorder, slowly progressive, that maps to chromosome 2q33 and is associated with mutations in the alsin gene, a putative GTPase regulator. In this paper we have done homology modeling of alsin2 protein using multiple templates (3KCI_A, 4LIM_A, 402W_A, 4D9S_A, and 4DNV_A) designed using the Prime program in Schrödinger software. Further modeled structure is used to identify effective binding sites on the basis of structural and physical properties using sitemap program in Schrödinger software, structural and function analysis is done by using Prosite and ExPASy server that gives insight into conserved domains and motifs that can be used for protein classification. This paper summarizes the structural, functional and binding site property of alsin2 protein. These binding sites can be potential drug target sites and can be used for docking studies.

Keywords: ALS, binding site, homology modeling, neuronal degeneration

Procedia PDF Downloads 364
6974 New Recombinant Netrin-a Protein of Lucilia Sericata Larvae by Bac to Bac Expression Vector System in Sf9 Insect Cell

Authors: Hamzeh Alipour, Masoumeh Bagheri, Abbasali Raz, Javad Dadgar Pakdel, Kourosh Azizi, Aboozar Soltani, Mohammad Djaefar Moemenbellah-Fard

Abstract:

Background: Maggot debridement therapy is an appropriate, effective, and controlled method using sterilized larvae of Luciliasericata (L.sericata) to treat wounds. Netrin-A is an enzyme in the Laminins family which secreted from salivary gland of L.sericata with a central role in neural regeneration and angiogenesis. This study aimed to production of new recombinant Netrin-A protein of Luciliasericata larvae by baculovirus expression vector system (BEVS) in SF9. Material and methods: In the first step, gene structure was subjected to the in silico studies, which were include determination of Antibacterial activity, Prion formation risk, homology modeling, Molecular docking analysis, and Optimization of recombinant protein. In the second step, the Netrin-A gene was cloned and amplified in pTG19 vector. After digestion with BamH1 and EcoR1 restriction enzymes, it was cloned in pFastBac HTA vector. It was then transformed into DH10Bac competent cells, and the recombinant Bacmid was subsequently transfected into insect Sf9 cells. The expressed recombinant Netrin-A was thus purified in the Ni-NTA agarose. This protein evaluation was done using SDS-PAGE and western blot, respectively. Finally, its concentration was calculated with the Bradford assay method. Results: The Bacmid vector structure with Netrin-A was successfully constructed and then expressed as Netrin-A protein in the Sf9 cell lane. The molecular weight of this protein was 52 kDa with 404 amino acids. In the in silico studies, fortunately, we predicted that recombinant LSNetrin-A have Antibacterial activity and without any prion formation risk.This molecule hasa high binding affinity to the Neogenin and a lower affinity to the DCC-specific receptors. Signal peptide located between amino acids 24 and 25. The concentration of Netrin-A recombinant protein was calculated to be 48.8 μg/ml. it was confirmed that the characterized gene in our previous study codes L. sericata Netrin-A enzyme. Conclusions: Successful generation of the recombinant Netrin-A, a secreted protein in L.sericata salivary glands, and because Luciliasericata larvae are used in larval therapy. Therefore, the findings of the present study could be useful to researchers in future studies on wound healing.

Keywords: blowfly, BEVS, gene, immature insect, recombinant protein, Sf9

Procedia PDF Downloads 65
6973 Analysis of Nitrogenase Fe Protein Activity in Transplastomic Tobacco

Authors: Jose A. Aznar-Moreno, Xi Jiang, Stefan Burén, Luis M. Rubio

Abstract:

Integration of prokaryotic nitrogen fixation (nif) genes into the plastid genome for expression of functional nitrogenase components could render plants capable of assimilating atmospheric N2 making their crops less dependent of nitrogen fertilizers. The nitrogenase Fe protein component (NifH) has been used as proxy for expression and targeting of Nif proteins within plant and yeast cells. Here we use tobacco plants with the Azotobacter vinelandii nifH and nifM genes integrated into the plastid genome. NifH and its maturase NifM were constitutively produced in leaves, but not roots, during light and dark periods. Nif protein expression in transplastomic plants was stable throughout development. Chloroplast NifH was soluble, but it only showed in vitro activity when isolated from leaves collected at the end of the dark period. Exposing the plant extracts to elevated temperatures precipitated NifM and apo-NifH protein devoid of [Fe4S4] clusters, dramatically increasing the specific activity of remaining NifH protein. Our data indicate that the chloroplast endogenous [Fe-S] cluster biosynthesis was insufficient for complete NifH maturation, albeit a negative effect on NifH maturation due to excess NifM in the chloroplast cannot be excluded. NifH and NifM constitutive expression in transplastomic plants did not affect any of the following traits: seed size, germination time, germination ratio, seedling growth, emergence of the cotyledon and first leaves, chlorophyll content and plant height throughout development.

Keywords: NifH, chloroplast, nitrogen fixation, crop improvement, transplastomic plants, fertilizer, biotechnology

Procedia PDF Downloads 136
6972 Role of Biomaterial Surface Nanotopography on Protein Unfolding and Immune Response

Authors: Rahul Madathiparambil Visalakshan, Alex Cavallaro, John Hayball, Krasimir Vasilev

Abstract:

The role of biomaterial surface nanotopograhy on fibrinogen adsorption and unfolding, and the subsequent immune response were studied. Inconsistent topography and varying chemical functionalities along with a lack of reproducibility pose a challenge in determining the specific effects of nanotopography or chemistry on proteins and cells. It is important to have a well-defined nanotopography with a homogeneous chemistry to study the real effect of nanotopography on biological systems. Therefore, we developed a technique that can produce well-defined and highly reproducible topography to identify the role of specific roughness, size, height and density with the presence of homogeneous chemical functionality. Using plasma polymerisation of oxazoline monomers and immobilized gold nanoparticles we created surfaces with an equal number density of nanoparticles of different sizes. This surface was used to study the role of surface nanotopography and the interplay of surface chemistry on proteins and immune cells. The effect of nanotopography on fibrinogen adsorption was investigated using Quartz Cristal Microbalance with Dissipation and micro BCA. The mass of fibrinogen adsorbed on the surface increased with increasing size of nano-topography. Protein structural changes up on adsorption to the nano rough surface was studied using circular dichroism spectroscopy. Fibrinogen unfolding varied depending on the specific nanotopography of the surfaces. It was revealed that the in vitro immune response to the nanotopography surfaces changed due to this protein unfolding.

Keywords: biomaterial inflammation, protein and cell responses, protein unfolding, surface nanotopography

Procedia PDF Downloads 149