Search results for: sensor space
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4869

Search results for: sensor space

4719 Autonomic Sonar Sensor Fault Manager for Mobile Robots

Authors: Martin Doran, Roy Sterritt, George Wilkie

Abstract:

NASA, ESA, and NSSC space agencies have plans to put planetary rovers on Mars in 2020. For these future planetary rovers to succeed, they will heavily depend on sensors to detect obstacles. This will also become of vital importance in the future, if rovers become less dependent on commands received from earth-based control and more dependent on self-configuration and self-decision making. These planetary rovers will face harsh environments and the possibility of hardware failure is high, as seen in missions from the past. In this paper, we focus on using Autonomic principles where self-healing, self-optimization, and self-adaption are explored using the MAPE-K model and expanding this model to encapsulate the attributes such as Awareness, Analysis, and Adjustment (AAA-3). In the experimentation, a Pioneer P3-DX research robot is used to simulate a planetary rover. The sonar sensors on the P3-DX robot are used to simulate the sensors on a planetary rover (even though in reality, sonar sensors cannot operate in a vacuum). Experiments using the P3-DX robot focus on how our software system can be adapted with the loss of sonar sensor functionality. The autonomic manager system is responsible for the decision making on how to make use of remaining ‘enabled’ sonars sensors to compensate for those sonar sensors that are ‘disabled’. The key to this research is that the robot can still detect objects even with reduced sonar sensor capability.

Keywords: autonomic, self-adaption, self-healing, self-optimization

Procedia PDF Downloads 322
4718 Integrating Wearable-Textiles Sensors and IoT for Continuous Electromyography Monitoring

Authors: Bulcha Belay Etana, Benny Malengier, Debelo Oljira, Janarthanan Krishnamoorthy, Lieva Vanlangenhove

Abstract:

Electromyography (EMG) is a technique used to measure the electrical activity of muscles. EMG can be used to assess muscle function in a variety of settings, including clinical, research, and sports medicine. The aim of this study was to develop a wearable textile sensor for EMG monitoring. The sensor was designed to be soft, stretchable, and washable, making it suitable for long-term use. The sensor was fabricated using a conductive thread material that was embroidered onto a fabric substrate. The sensor was then connected to a microcontroller unit (MCU) and a Wi-Fi-enabled module. The MCU was programmed to acquire the EMG signal and transmit it wirelessly to the Wi-Fi-enabled module. The Wi-Fi-enabled module then sent the signal to a server, where it could be accessed by a computer or smartphone. The sensor was able to successfully acquire and transmit EMG signals from a variety of muscles. The signal quality was comparable to that of commercial EMG sensors. The development of this sensor has the potential to improve the way EMG is used in a variety of settings. The sensor is soft, stretchable, and washable, making it suitable for long-term use. This makes it ideal for use in clinical settings, where patients may need to wear the sensor for extended periods of time. The sensor is also small and lightweight, making it ideal for use in sports medicine and research settings. The data for this study was collected from a group of healthy volunteers. The volunteers were asked to perform a series of muscle contractions while the EMG signal was recorded. The data was then analyzed to assess the performance of the sensor. The EMG signals were analyzed using a variety of methods, including time-domain analysis and frequency-domain analysis. The time-domain analysis was used to extract features such as the root mean square (RMS) and average rectified value (ARV). The frequency-domain analysis was used to extract features such as the power spectrum. The question addressed by this study was whether a wearable textile sensor could be developed that is soft, stretchable, and washable and that can successfully acquire and transmit EMG signals. The results of this study demonstrate that a wearable textile sensor can be developed that meets the requirements of being soft, stretchable, washable, and capable of acquiring and transmitting EMG signals. This sensor has the potential to improve the way EMG is used in a variety of settings.

Keywords: EMG, electrode position, smart wearable, textile sensor, IoT, IoT-integrated textile sensor

Procedia PDF Downloads 45
4717 Comparative Analysis of Sigmoidal Feedforward Artificial Neural Networks and Radial Basis Function Networks Approach for Localization in Wireless Sensor Networks

Authors: Ashish Payal, C. S. Rai, B. V. R. Reddy

Abstract:

With the increasing use and application of Wireless Sensor Networks (WSN), need has arisen to explore them in more effective and efficient manner. An important area which can bring efficiency to WSNs is the localization process, which refers to the estimation of the position of wireless sensor nodes in an ad hoc network setting, in reference to a coordinate system that may be internal or external to the network. In this paper, we have done comparison and analysed Sigmoidal Feedforward Artificial Neural Networks (SFFANNs) and Radial Basis Function (RBF) networks for developing localization framework in WSNs. The presented work utilizes the Received Signal Strength Indicator (RSSI), measured by static node on 100 x 100 m2 grid from three anchor nodes. The comprehensive evaluation of these approaches is done using MATLAB software. The simulation results effectively demonstrate that FFANNs based sensor motes will show better localization accuracy as compared to RBF.

Keywords: localization, wireless sensor networks, artificial neural network, radial basis function, multi-layer perceptron, backpropagation, RSSI, GPS

Procedia PDF Downloads 305
4716 Design of Strain Sensor Based on Cascaded Fiber Bragg Grating for Remote Sensing Monitoring Application

Authors: Arafat A. A. Shabaneh

Abstract:

Harsh environments demand a developed detection of an optical communication system to ensure a high level of security and safety. Fiber Bragg gratings (FBG) are emerging sensing instruments that respond to variations in strain and temperature via varying wavelengths. In this paper, cascaded uniform FBG as a strain sensor for 6 km length at 1550 nm wavelength with 30 oC is designed with analyzing of dynamic strain and wavelength shifts. FBG is placed in a small segment of optical fiber, which reflects light of a specific wavelength and passes the remaining wavelengths. This makes a periodic alteration in the refractive index within the fiber core. The alteration in the modal index of fiber produced due to strain consequences in a Bragg wavelength. When the developed sensor exposure to a strain of cascaded uniform FBG by 0.01, the wavelength is shifted to 0.0000144383 μm. The sensing accuracy of the developed sensor is 0.0012. Simulation results show reliable and effective strain monitoring sensors for remote sensing applications.

Keywords: Cascaded fiber Bragg gratings, Strain sensor, Remote sensing, Wavelength shift

Procedia PDF Downloads 167
4715 Friendly Public Spaces in Iran

Authors: Bibi Somayeh Aliakbari, Niknaz Kachooei, Fatemeh Amiri Najafabadi

Abstract:

According to the results of contemporary urbanism, social living moved into buildings and the quality of urban space has been declining. But still, there are life in open public space and it is one of reason attendance and activities of people in open public spaces.The purpose of this research is finding reason creation friendly public space in urban spaces and also use these in new urban spaces.The research methodology consisted of a qualitative model based on observation and graphical analysis. In this paper case study is public space historical, moderns in urban scales and local scales in Iran.This paper shows that Existence of friendly public space in cities cause is attendance and activities of people in open public spaces that it is reason the revitalization of public open spaces in cities.

Keywords: public space, public open space, friendly public space, Iran

Procedia PDF Downloads 535
4714 Analysis of Translational Ship Oscillations in a Realistic Environment

Authors: Chen Zhang, Bernhard Schwarz-Röhr, Alexander Härting

Abstract:

To acquire accurate ship motions at the center of gravity, a single low-cost inertial sensor is utilized and applied on board to measure ship oscillating motions. As observations, the three axes accelerations and three axes rotational rates provided by the sensor are used. The mathematical model of processing the observation data includes determination of the distance vector between the sensor and the center of gravity in x, y, and z directions. After setting up the transfer matrix from sensor’s own coordinate system to the ship’s body frame, an extended Kalman filter is applied to deal with nonlinearities between the ship motion in the body frame and the observation information in the sensor’s frame. As a side effect, the method eliminates sensor noise and other unwanted errors. Results are not only roll and pitch, but also linear motions, in particular heave and surge at the center of gravity. For testing, we resort to measurements recorded on a small vessel in a well-defined sea state. With response amplitude operators computed numerically by a commercial software (Seaway), motion characteristics are estimated. These agree well with the measurements after processing with the suggested method.

Keywords: extended Kalman filter, nonlinear estimation, sea trial, ship motion estimation

Procedia PDF Downloads 497
4713 Development of a Very High Sensitivity Magnetic Field Sensor Based on Planar Hall Effect

Authors: Arnab Roy, P. S. Anil Kumar

Abstract:

Hall bar magnetic field sensors based on planar hall effect were fabricated from permalloy (Ni¬80Fe20) thin films grown by pulsed laser ablation. As large as 400% planar Hall voltage change was observed for a magnetic field sweep within ±4 Oe, a value comparable with present day TMR sensors at room temperature. A very large planar Hall sensitivity of 1200 Ω/T was measured close to switching fields, which was not obtained so far apart from 2DEG Hall sensors. In summary, a highly sensitive low magnetic field sensor has been constructed which has the added advantage of simple architecture, good signal to noise ratio and robustness.

Keywords: planar hall effect, permalloy, NiFe, pulsed laser ablation, low magnetic field sensor, high sensitivity magnetic field sensor

Procedia PDF Downloads 490
4712 Design and Study of a Hybrid Micro-CSP/Biomass Boiler System for Water and Space Heating in Traditional Hammam

Authors: Said Lamghari, Abdelkader Outzourhit, Hassan Hamdi, Mohamed Krarouch, Fatima Ait Nouh, Mickael Benhaim, Mehdi Khaldoun

Abstract:

Traditional Hammams are big consumers of water and wood-energy. Any approach to reduce this consumption will contribute to the preservation of these two resources that are more and more stressed in Morocco. In the InnoTherm/InnoBiomass 2014 project HYBRIDBATH, funded by the Research Institute for Solar Energy and New Energy (IRESEN), we will use a hybrid system consisting of a micro-CSP system and a biomass boiler for water and space heating of a Hammam. This will overcome the problem of intermittency of solar energy, and will ensure continuous supply of hot water and heat. We propose to use local agricultural residues (olive pomace, shells of walnuts, almonds, Argan ...). Underfloor heating using either copper or PEX tubing will perform the space heating. This work focuses on the description of the system and the activities carried out so far: The installation of the system, the principle operation of the system and some preliminary test results.

Keywords: biomass boiler, hot water, hybrid systems, micro-CSP, parabolic sensor, solar energy, solar fraction, traditional hammam, underfloor heating

Procedia PDF Downloads 275
4711 Active Space Debris Removal by Extreme Ultraviolet Radiation

Authors: A. Anandha Selvan, B. Malarvizhi

Abstract:

In recent year the problem of space debris have become very serious. The mass of the artificial objects in orbit increased quite steadily at the rate of about 145 metric tons annually, leading to a total tally of approximately 7000 metric tons. Now most of space debris object orbiting in LEO region about 97%. The catastrophic collision can be mostly occurred in LEO region, where this collision generate the new debris. Thus, we propose a concept for cleaning the space debris in the region of thermosphere by passing the Extreme Ultraviolet (EUV) radiation to in front of space debris object from the re-orbiter. So in our concept the Extreme Ultraviolet (EUV) radiation will create the thermosphere expansion by reacting with atmospheric gas particles. So the drag is produced in front of the space debris object by thermosphere expansion. This drag force is high enough to slow down the space debris object’s relative velocity. Therefore the space debris object gradually reducing the altitude and finally enter into the earth’s atmosphere. After the first target is removed, the re-orbiter can be goes into next target. This method remove the space debris object without catching debris object. Thus it can be applied to a wide range of debris object without regard to their shapes or rotation. This paper discusses the operation of re-orbiter for removing the space debris in thermosphere region.

Keywords: active space debris removal, space debris, LEO, extreme ultraviolet, re-orbiter, thermosphere

Procedia PDF Downloads 431
4710 Paper-Like and Battery Free Sensor Patches for Wound Monitoring

Authors: Xiaodi Su, Xin Ting Zheng, Laura Sutarlie, Nur Asinah binte Mohamed Salleh, Yong Yu

Abstract:

Wound healing is a dynamic process with multiple phases. Rapid profiling and quantitative characterization of inflammation and infection remain challenging. We have developed paper-like battery-free multiplexed sensors for holistic wound assessment via quantitative detection of multiple inflammation and infection markers. In one of the designs, the sensor patch consists of a wax-printed paper panel with five colorimetric sensor channels arranged in a pattern resembling a five-petaled flower (denoted as a ‘Petal’ sensor). The five sensors are for temperature, pH, trimethylamine, uric acid, and moisture. The sensor patch is sandwiched between a top transparent silicone layer and a bottom adhesive wound contact layer. In the second design, a palm-like-shaped paper strip is fabricated by a paper-cutter printer (denoted as ‘Palm’ sensor). This sensor strip carries five sensor regions connected by a stem sampling entrance that enables rapid colorimetric detection of multiple bacteria metabolites (aldehyde, lactate, moisture, trimethylamine, tryptophan) from wound exudate. For both the “\’ Petal’ and ‘Palm’ sensors, color images can be captured by a mobile phone. According to the color changes, one can quantify the concentration of the biomarkers and then determine wound healing status and identify/quantify bacterial species in infected wounds. The ‘Petal’ and ‘Palm’ sensors are validated with in-situ animal and ex-situ skin wound models, respectively. These sensors have the potential for integration with wound dressing to allow early warning of adverse events without frequent removal of the plasters. Such in-situ and early detection of non-healing condition can trigger immediate clinical intervention to facilitate wound care management.

Keywords: wound infection, colorimetric sensor, paper fluidic sensor, wound care

Procedia PDF Downloads 47
4709 Analysis of Transformer by Gas and Moisture Sensor during Laboratory Time Monitoring

Authors: Miroslav Gutten, Daniel Korenciak, Milan Simko, Milan Chupac

Abstract:

Ensure the reliable and correct function of transformers is the main essence of on-line non-destructive diagnostic tool, which allows the accurately track of the status parameters. Devices for on-line diagnostics are very costly. However, there are devices, whose price is relatively low and when used correctly, they can be executed a complex diagnostics. One of these devices is sensor HYDRAN M2, which is used to detect the moisture and gas content in the insulation oil. Using the sensor HYDRAN M2 in combination with temperature, load measurement, and physicochemical analysis can be made the economically inexpensive diagnostic system, which use is not restricted to distribution transformers. This system was tested in educational laboratory environment at measured oil transformer 22/0.4 kV. From the conclusions referred in article is possible to determine, which kind of fault was occurred in the transformer and how was an impact on the temperature, evolution of gases and water content.

Keywords: transformer, diagnostics, gas and moisture sensor, monitoring

Procedia PDF Downloads 353
4708 Design and Implementation of Active Radio Frequency Identification on Wireless Sensor Network-Based System

Authors: Che Z. Zulkifli, Nursyahida M. Noor, Siti N. Semunab, Shafawati A. Malek

Abstract:

Wireless sensors, also known as wireless sensor nodes, have been making a significant impact on human daily life. The Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two complementary technologies; hence, an integrated implementation of these technologies expands the overall functionality in obtaining long-range and real-time information on the location and properties of objects and people. An approach for integrating ZigBee and RFID networks is proposed in this paper, to create an energy-efficient network improved by the benefits of combining ZigBee and RFID architecture. Furthermore, the compatibility and requirements of the ZigBee device and communication links in the typical RFID system which is presented with the real world experiment on the capabilities of the proposed RFID system.

Keywords: mesh network, RFID, wireless sensor network, zigbee

Procedia PDF Downloads 427
4707 A Location-based Authentication and Key Management Scheme for Border Surveillance Wireless Sensor Networks

Authors: Walid Abdallah, Noureddine Boudriga

Abstract:

Wireless sensor networks have shown their effectiveness in the deployment of many critical applications especially in the military domain. Border surveillance is one of these applications where a set of wireless sensors are deployed along a country border line to detect illegal intrusion attempts to the national territory and report this to a control center to undergo the necessary measures. Regarding its nature, this wireless sensor network can be the target of many security attacks trying to compromise its normal operation. Particularly, in this application the deployment and location of sensor nodes are of great importance for detecting and tracking intruders. This paper proposes a location-based authentication and key distribution mechanism to secure wireless sensor networks intended for border surveillance where the key establishment is performed using elliptic curve cryptography and identity-based public key scheme. In this scheme, the public key of each sensor node will be authenticated by keys that depend on its position in the monitored area. Before establishing a pairwise key between two nodes, each one of them must verify the neighborhood location of the other node using a message authentication code (MAC) calculated on the corresponding public key and keys derived from encrypted beacon messages broadcast by anchor nodes. We show that our proposed public key authentication and key distribution scheme is more resilient to node capture and node replication attacks than currently available schemes. Also, the achievement of the key distribution between nodes in our scheme generates less communication overhead and hence increases network performances.

Keywords: wireless sensor networks, border surveillance, security, key distribution, location-based

Procedia PDF Downloads 634
4706 Cost-Effective Indoor-Air Quality (IAQ) Monitoring via Cavity Enhanced Photoacoustic Technology

Authors: Jifang Tao, Fei Gao, Hong Cai, Yuan Jin Zheng, Yuan Dong Gu

Abstract:

Photoacoustic technology is used to measure effect absorption of a light by means of acoustic detection, which provides a high sensitive, low-cross response, cost-effective solution for gas molecular detection. In this paper, we proposed an integrated photoacoustic sensor for Indoor-air quality (IAQ) monitoring. The sensor consists of an acoustically resonant cavity, a high silicon acoustic transducer chip, and a low-cost light source. The light is modulated at the resonant frequency of the cavity to create an enhanced periodic heating and result in an amplified acoustic pressure wave. The pressure is readout by a novel acoustic transducer with low noise. Based on this photoacoustic sensor, typical indoor gases, including CO2, CO, O2, and H2O have been successfully detected, and their concentration are also evaluated with very high accuracy. It has wide potential applications in IAQ monitoring for agriculture, food industry, and ventilation control systems used in public places, such as schools, hospitals and airports.

Keywords: indoor-air quality (IAQ) monitoring, photoacoustic gas sensor, cavity enhancement, integrated gas sensor

Procedia PDF Downloads 634
4705 Real-Time Sensor Fusion for Mobile Robot Localization in an Oil and Gas Refinery

Authors: Adewole A. Ayoade, Marshall R. Sweatt, John P. H. Steele, Qi Han, Khaled Al-Wahedi, Hamad Karki, William A. Yearsley

Abstract:

Understanding the behavioral characteristics of sensors is a crucial step in fusing data from several sensors of different types. This paper introduces a practical, real-time approach to integrate heterogeneous sensor data to achieve higher accuracy than would be possible from any one individual sensor in localizing a mobile robot. We use this approach in both indoor and outdoor environments and it is especially appropriate for those environments like oil and gas refineries due to their sparse and featureless nature. We have studied the individual contribution of each sensor data to the overall combined accuracy achieved from the fusion process. A Sequential Update Extended Kalman Filter(EKF) using validation gates was used to integrate GPS data, Compass data, WiFi data, Inertial Measurement Unit(IMU) data, Vehicle Velocity, and pose estimates from Fiducial marker system. Results show that the approach can enable a mobile robot to navigate autonomously in any environment using a priori information.

Keywords: inspection mobile robot, navigation, sensor fusion, sequential update extended Kalman filter

Procedia PDF Downloads 438
4704 India and Space Insurance Policy: An Analytical Insight

Authors: Shreyas Jayasimha, Suneel Anand Sundharesan, Rohan Tigadi

Abstract:

In the recent past, the United States of America and Russia were the only two dominant players in the field of space exploration and had a virtual monopoly in the field of space and technology. However, this has changed over the past few years. Many other nation states such as India, China, and the UK have made significant progress in this field. Amongst these nations, the growth and development of the Indian space program have been nothing short of a miracle. Starting recently, India has successfully launched a series of satellites including its much acclaimed Mangalyaan mission, which placed a satellite in Mars’ orbit. The fact that India was able to attain this feat in its attempt demonstrates the enormous growth potential and promise that the Indian space program holds for the coming years. However, unlike other space-faring nations, India does not have a comprehensive and consolidated space insurance policy. In this regard, it is pertinent to note that, the costs and risks involved in a administering a space program are enormous. Therefore, in the absence of a comprehensive space insurance policy, any losses from an unsuccessful will have to be borne by the state exchequer. Thus, in order to ensure that Indian space program continues on its upward trajectory, the Indian establishment should seriously consider formulating a comprehensive insurance policy. This paper intends to analyze the international best practices followed by other space-faring nations in relation to space insurance policy. Thereafter, the authors seek to examine the current regime in India relating to space insurance policy. Finally, the authors will conclude by providing a series of recommendations regarding the essential elements that should be part of any Indian space insurance policy regime.

Keywords: India, space insurance policy, space law, Indian space research organization

Procedia PDF Downloads 195
4703 On Boundary Values of Hardy Space Banach Space-Valued Functions

Authors: Irina Peterburgsky

Abstract:

Let T be a unit circumference of a complex plane, E be a Banach space, E* and E** be its conjugate and second conjugate, respectively. In general, a Hardy space Hp(E), p ≥1, where functions act from the open unit disk to E, could contain a function for which even weak nontangential (angular) boundary value in the space E** does not exist at any point of the unit circumference T (C. Grossetete.) The situation is "better" when certain restrictions to the Banach space of values are applied (more or less resembling a classical case of scalar-valued functions depending on constrains, as shown by R. Ryan.) This paper shows that, nevertheless, in the case of a Banach space of a general type, the following positive statement is true: Proposition. For any function f(z) from Hp(E), p ≥ 1, there exists a function F(eiθ) on the unit circumference T to E** whose Poisson (in the Pettis sense) is integral regains the function f(z) on the open unit disk. Some characteristics of the function F(eiθ) are demonstrated.

Keywords: hardy spaces, Banach space-valued function, boundary values, Pettis integral

Procedia PDF Downloads 214
4702 Selective Circular Dichroism Sensor Based on the Generation of Quantum Dots for Cadmium Ion Detection

Authors: Pradthana Sianglam, Wittaya Ngeontae

Abstract:

A new approach for the fabrication of cadmium ion (Cd2+) sensor is demonstrated. The detection principle is based on the in-situ generation of cadmium sulfide quantum dots (CdS QDs) in the presence of chiral thiol containing compound and detection by the circular dichroism spectroscopy (CD). Basically, the generation of CdS QDs can be done in the presence of Cd2+, sulfide ion and suitable capping compounds. In addition, the strong CD signal can be recorded if the generated QDs possess chiral property (from chiral capping molecule). Thus, the degree of CD signal change depends on the number of the generated CdS QDs which can be related to the concentration of Cd2+ (excess of other components). In this work, we use the mixture of cysteamine (Cys) and L-Penicillamine (LPA) as the capping molecules. The strong CD signal can be observed when the solution contains sodium sulfide, Cys, LPA, and Cd2+. Moreover, the CD signal is linearly related to the concentration of Cd2+. This approach shows excellence selectivity towards the detection of Cd2+ when comparing to other cation. The proposed CD sensor provides low limit detection limits around 70 µM and can be used with real water samples with satisfactory results.

Keywords: circular dichroism sensor, quantum dots, enaniomer, in-situ generation, chemical sensor, heavy metal ion

Procedia PDF Downloads 340
4701 Development of an Aptamer-Molecularly Imprinted Polymer Based Electrochemical Sensor to Detect Pathogenic Bacteria

Authors: Meltem Agar, Maisem Laabei, Hannah Leese, Pedro Estrela

Abstract:

Pathogenic bacteria and the diseases they cause have become a global problem. Their early detection is vital and can only be possible by detecting the bacteria causing the disease accurately and rapidly. Great progress has been made in this field with the use of biosensors. Molecularly imprinted polymers have gain broad interest because of their excellent properties over natural receptors, such as being stable in a variety of conditions, inexpensive, biocompatible and having long shelf life. These properties make molecularly imprinted polymers an attractive candidate to be used in biosensors. In this study it is aimed to produce an aptamer-molecularly imprinted polymer based electrochemical sensor by utilizing the properties of molecularly imprinted polymers coupled with the enhanced specificity offered by DNA aptamers. These ‘apta-MIP’ sensors were used for the detection of Staphylococcus aureus and Escherichia coli. The experimental parameters for the fabrication of sensor were optimized, and detection of the bacteria was evaluated via Electrochemical Impedance Spectroscopy. Sensitivity and selectivity experiments were conducted. Furthermore, molecularly imprinted polymer only and aptamer only electrochemical sensors were produced separately, and their performance were compared with the electrochemical sensor produced in this study. Aptamer-molecularly imprinted polymer based electrochemical sensor showed good sensitivity and selectivity in terms of detection of Staphylococcus aureus and Escherichia coli. The performance of the sensor was assessed in buffer solution and tap water.

Keywords: aptamer, electrochemical sensor, staphylococcus aureus, molecularly imprinted polymer

Procedia PDF Downloads 85
4700 Legal and Contractual Framework for Private Experiments in Space

Authors: Linda Ana-Maria Ungureanu

Abstract:

As space exploration opens to new actors, we are faced with the interesting question of regulating more complex structures that enable private experiments. From intellectual property implications to private and public law, there is a multitude of factors and legal structures that need to be taken into consideration when opening space, and these structures need to be harmonized with the International Space Treaties governing space exploration. In this sense, this article presents an overview of the legal and contractual framework applicable to private experiments conducted in space and/or in relation to off-world environments. Additionally, the article analyses the manner in which national space agencies regulate agreements concluded with private actors and research institutions. Finally, the article sets a series of de lege ferenda proposals for the regulation of general research and development rules and intellectual property matters that are connected to experiments and research conducted in space and/or concerning off-world environments.

Keywords: private space, intellectual property, contracts, ESA guidelines, EU legislation, Intellectual property law, international IP treaties

Procedia PDF Downloads 66
4699 Vortex Separator for More Accurate Air Dry-Bulb Temperature Measurement

Authors: Ahmed N. Shmroukh, I. M. S. Taha, A. M. Abdel-Ghany, M. Attalla

Abstract:

Fog systems application for cooling and humidification is still limited, although these systems require less initial cost compared with that of other cooling systems such as pad-and-fan systems. The undesirable relative humidity and air temperature inside the space which have been cooled or humidified are the main reasons for its limited use, which results from the poor control of fog systems. Any accurate control system essentially needs air dry bulb temperature as an input parameter. Therefore, the air dry-bulb temperature in the space needs to be measured accurately. The Scope of the present work is the separation of the fog droplets from the air in a fogged space to measure the air dry bulb temperature accurately. The separation is to be done in a small device inside which the sensor of the temperature measuring instrument is positioned. Vortex separator will be designed and used. Another reference device will be used for measuring the air temperature without separation. A comparative study will be performed to reach at the best device which leads to the most accurate measurement of air dry bulb temperature. The results showed that the proposed devices improved the measured air dry bulb temperature toward the correct direction over that of the free junction. Vortex device was the best. It respectively increased the temperature measured by the free junction in the range from around 2 to around 6°C for different fog on-off duration.

Keywords: fog systems, measuring air dry bulb temperature, temperature measurement, vortex separator

Procedia PDF Downloads 264
4698 Modeling of Microelectromechanical Systems Diaphragm Based Acoustic Sensor

Authors: Vasudha Hegde, Narendra Chaulagain, H. M. Ravikumar, Sonu Mishra, Siva Yellampalli

Abstract:

Acoustic sensors are extensively used in recent days not only for sensing and condition monitoring applications but also for small scale energy harvesting applications to power wireless sensor networks (WSN) due to their inherent advantages. The natural frequency of the structure plays a major role in energy harvesting applications since the sensor key element has to operate at resonant frequency. In this paper, circular diaphragm based MEMS acoustic sensor is modelled by Lumped Element Model (LEM) and the natural frequency is compared with the simulated model using Finite Element Method (FEM) tool COMSOL Multiphysics. The sensor has the circular diaphragm of 3000 µm radius and thickness of 30 µm to withstand the high SPL (Sound Pressure Level) and also to withstand the various fabrication steps. A Piezoelectric ZnO layer of thickness of 1 µm sandwiched between two aluminium electrodes of thickness 0.5 µm and is coated on the diaphragm. Further, a channel with radius 3000 µm radius and length 270 µm is connected at the bottom of the diaphragm. The natural frequency of the structure by LEM method is approximately 16.6 kHz which is closely matching with that of simulated structure with suitable approximations.

Keywords: acoustic sensor, diaphragm based, lumped element modeling (LEM), natural frequency, piezoelectric

Procedia PDF Downloads 405
4697 Reduce the Impact of Wildfires by Identifying Them Early from Space and Sending Location Directly to Closest First Responders

Authors: Gregory Sullivan

Abstract:

The evolution of global warming has escalated the number and complexity of forest fires around the world. As an example, the United States and Brazil combined generated more than 30,000 forest fires last year. The impact to our environment, structures and individuals is incalculable. The world has learned to try to take this in stride, trying multiple ways to contain fires. Some countries are trying to use cameras in limited areas. There are discussions of using hundreds of low earth orbit satellites and linking them together, and, interfacing them through ground networks. These are all truly noble attempts to defeat the forest fire phenomenon. But there is a better, simpler answer. A bigger piece of the solutions puzzle is to see the fires while they are small, soon after initiation. The approach is to see the fires while they are very small and report their location (latitude and longitude) to local first responders. This is done by placing a sensor at geostationary orbit (GEO: 26,000 miles above the earth). By placing this small satellite in GEO, we can “stare” at the earth, and sense temperature changes. We do not “see” fires, but “measure” temperature changes. This has already been demonstrated on an experimental scale. Fires were seen at close to initiation, and info forwarded to first responders. it were the first to identify the fires 7 out of 8 times. The goal is to have a small independent satellite at GEO orbit focused only on forest fire initiation. Thus, with one small satellite, focused only on forest fire initiation, we hope to greatly decrease the impact to persons, property and the environment.

Keywords: space detection, wildfire early warning, demonstration wildfire detection and action from space, space detection to first responders

Procedia PDF Downloads 35
4696 Volatile Organic Compounds Detection by Surface Acoustic Wave Sensors with Nanoparticles Embedded in Polymer Sensitive Layers

Authors: Cristian Viespe, Dana Miu

Abstract:

Surface acoustic wave (SAW) sensors with nanoparticles (NPs) of various dimensions and concentrations embedded in different types of polymer sensing films for detecting volatile organic compounds (VOCs) were studied. The sensors were ‘delay line’ type with a center frequency of 69.4 MHz on ST-X quartz substrates. NPs with different diameters of 7 nm or 13 nm were obtained by laser ablation with lasers having 5 ns or 10 ps pulse durations, respectively. The influence of NPs dimensions and concentrations on sensor properties such as frequency shift, sensitivity, noise and response time were investigated. To the best of our knowledge, the influence of NP dimensions on SAW sensor properties with has not been investigated. The frequency shift and sensitivity increased with increasing NP concentration in the polymer for a given NP dimension and with decreasing NP diameter for a given concentration. The best performances were obtained for the smallest NPs used. The SAW sensor with NPs of 7 nm had a limit of detection (LOD) of 65 ppm (almost five times better than the sensor with polymer alone), and a response time of about 9 s for ethanol.

Keywords: surface acoustic wave sensor, nanoparticles, volatile organic compounds, laser ablation

Procedia PDF Downloads 119
4695 Power Management in Wireless Combustible Gas Sensors

Authors: Denis Spirjakin, Alexander Baranov, Saba Akbari, Natalia Kalenova, Vladimir Sleptsov

Abstract:

In this paper we propose the approach to power management in wireless combustible gas sensors. This approach makes possible drastically prolong sensor nodes autonomous lifetime. That is necessary to tie battery replacement to every year technical service procedures which are claimed by safety standards. Using this approach the current consumption of the wireless combustible gas sensor node was decreased from 80 mA to less than 2 mA and the power consumption from more than 220 mW to 4.6 mW. These values provide autonomous lifetime of the node more than one year.

Keywords: Gas sensors, power management, wireless sensor network

Procedia PDF Downloads 689
4694 The Position of Space weather in Africa-Education and Outreach

Authors: Babagana Abubakar, Alhaji Kuya

Abstract:

Although the field of Space weather science is a young field among the space sciences, but yet history has it that activities related to this science began since the year 1859 when the great solar storm happened which resulted in the disruptions of telegraphs operations around the World at that particular time subsequently making it possible for the scientist Richard Carrington to be able to connect the Solar flare observed a day earlier before the great storm and the great deflection of the Earth’s Magnetic field (geometric storm) simultaneous with the telegraph disruption. However years later as at today with the advent of and the coming into existence of the Explorer 1, the Luna 1 and the establishments of the United States International Space Weather Program, International Geophysical Year (IGY) as well as the International Center for Space Weather Sciences and Education (ICSWSE) have made us understand the Space weather better and enable us well define the field of Space weather science. Despite the successes recorded in the development of Space sciences as a whole over the last century and the coming onboard of specialized bodies/programs on space weather like the International Space Weather Program and the ICSWSE, the majority of Africans including institutions, research organizations and even some governments are still ignorant about the existence of theSpace weather science,because apart from some very few countries like South Africa, Nigeria and Egypt among some few others the majority of the African nations and their academic institutions have no knowledge or idea about the existence of this field of Space science (Space weather).

Keywords: Africa, space, weather, education, science

Procedia PDF Downloads 416
4693 Structural Analysis on the Composition of Video Game Virtual Spaces

Authors: Qin Luofeng, Shen Siqi

Abstract:

For the 58 years since the first video game came into being, the video game industry is getting through an explosive evolution from then on. Video games exert great influence on society and become a reflection of public life to some extent. Video game virtual spaces are where activities are taking place like real spaces. And that’s the reason why some architects pay attention to video games. However, compared to the researches on the appearance of games, we observe a lack of theoretical comprehensive on the construction of video game virtual spaces. The research method of this paper is to collect literature and conduct theoretical research about the virtual space in video games firstly. And then analogizing the opinions on the space phenomena from the theory of literature and films. Finally, this paper proposes a three-layer framework for the construction of video game virtual spaces: “algorithmic space-narrative space players space”, which correspond to the exterior, expressive, affective parts of the game space. Also, we illustrate each sub-space according to numerous instances of published video games. Hoping this writing could promote the interactive development of video games and architecture.

Keywords: video game, virtual space, narrativity, social space, emotional connection

Procedia PDF Downloads 225
4692 Carboxylic Acid-Functionalized Multi-Walled Carbon Nanotubes-Polyindole/Ti2O3 Nanocomposite: Electrochemical Nanomolar Detection of α-Lipoic Acid in Vegetables

Authors: Ragu Sasikumar, Palraj Ranganathan, Shen-Ming Chen, Syang-Peng Rwei

Abstract:

A highly sensitive, and selective α-Lipoic acid (ALA) sensor based on a functionalized multi-walled carbon nanotubes-polyindole/Ti2O3 (f-MWCNTs-PIN/Ti2O3) nanocomposite modified glassy carbon electrode (GCE) was developed. The fabricated f-MWCNTs-PIN/Ti2O3/GCE displayed an enhanced voltammetric response for oxidation towards ALA relative to that of a f-MWCNTs/GCE, f-MWCNTs-PIN/GCE, Ti2O3/GCE, and a bare GCE. Under optimum conditions, the f-MWCNTs-PIN/Ti2O3/GCE showed a wide linear range at ALA concentrations of 0.39-115.8 µM. The limit of detection of 12 nM and sensitivity of about 6.39 µA µM-1cm-2. The developed sensor showed anti-interference, reproducibility, good repeatability, and operational stability. Applied possibility of the sensor has been confirmed in vegetable samples.

Keywords: f-MWCNT, polyindole, Ti2O3, Alzheimer’s diseases, ALA sensor

Procedia PDF Downloads 200
4691 A Tutorial on Model Predictive Control for Spacecraft Maneuvering Problem with Theory, Experimentation and Applications

Authors: O. B. Iskender, K. V. Ling, V. Dubanchet, L. Simonini

Abstract:

This paper discusses the recent advances and future prospects of spacecraft position and attitude control using Model Predictive Control (MPC). First, the challenges of the space missions are summarized, in particular, taking into account the errors, uncertainties, and constraints imposed by the mission, spacecraft and, onboard processing capabilities. The summary of space mission errors and uncertainties provided in categories; initial condition errors, unmodeled disturbances, sensor, and actuator errors. These previous constraints are classified into two categories: physical and geometric constraints. Last, real-time implementation capability is discussed regarding the required computation time and the impact of sensor and actuator errors based on the Hardware-In-The-Loop (HIL) experiments. The rationales behind the scenarios’ are also presented in the scope of space applications as formation flying, attitude control, rendezvous and docking, rover steering, and precision landing. The objectives of these missions are explained, and the generic constrained MPC problem formulations are summarized. Three key design elements used in MPC design: the prediction model, the constraints formulation and the objective cost function are discussed. The prediction models can be linear time invariant or time varying depending on the geometry of the orbit, whether it is circular or elliptic. The constraints can be given as linear inequalities for input or output constraints, which can be written in the same form. Moreover, the recent convexification techniques for the non-convex geometrical constraints (i.e., plume impingement, Field-of-View (FOV)) are presented in detail. Next, different objectives are provided in a mathematical framework and explained accordingly. Thirdly, because MPC implementation relies on finding in real-time the solution to constrained optimization problems, computational aspects are also examined. In particular, high-speed implementation capabilities and HIL challenges are presented towards representative space avionics. This covers an analysis of future space processors as well as the requirements of sensors and actuators on the HIL experiments outputs. The HIL tests are investigated for kinematic and dynamic tests where robotic arms and floating robots are used respectively. Eventually, the proposed algorithms and experimental setups are introduced and compared with the authors' previous work and future plans. The paper concludes with a conjecture that MPC paradigm is a promising framework at the crossroads of space applications while could be further advanced based on the challenges mentioned throughout the paper and the unaddressed gap.

Keywords: convex optimization, model predictive control, rendezvous and docking, spacecraft autonomy

Procedia PDF Downloads 86
4690 Classification of Traffic Complex Acoustic Space

Authors: Bin Wang, Jian Kang

Abstract:

After years of development, the study of soundscape has been refined to the types of urban space and building. Traffic complex takes traffic function as the core, with obvious design features of architectural space combination and traffic streamline. The acoustic environment is strongly characterized by function, space, material, user and other factors. Traffic complex integrates various functions of business, accommodation, entertainment and so on. It has various forms, complex and varied experiences, and its acoustic environment is turned rich and interesting with distribution and coordination of various functions, division and unification of the mass, separation and organization of different space and the cross and the integration of multiple traffic flow. In this study, it made field recordings of each space of various traffic complex, and extracted and analyzed different acoustic elements, including changes in sound pressure, frequency distribution, steady sound source, sound source information and other aspects, to make cluster analysis of each independent traffic complex buildings. It divided complicated traffic complex building space into several typical sound space from acoustic environment perspective, mainly including stable sound space, high-pressure sound space, rhythm sound space and upheaval sound space. This classification can further deepen the study of subjective evaluation and control of the acoustic environment of traffic complex.

Keywords: soundscape, traffic complex, cluster analysis, classification

Procedia PDF Downloads 224