Search results for: pressure gain combustion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6155

Search results for: pressure gain combustion

5915 Estimation of Pressure Loss Coefficients in Combining Flows Using Artificial Neural Networks

Authors: Shahzad Yousaf, Imran Shafi

Abstract:

This paper presents a new method for calculation of pressure loss coefficients by use of the artificial neural network (ANN) in tee junctions. Geometry and flow parameters are feed into ANN as the inputs for purpose of training the network. Efficacy of the network is demonstrated by comparison of the experimental and ANN based calculated data of pressure loss coefficients for combining flows in a tee junction. Reynolds numbers ranging from 200 to 14000 and discharge ratios varying from minimum to maximum flow for calculation of pressure loss coefficients have been used. Pressure loss coefficients calculated using ANN are compared to the models from literature used in junction flows. The results achieved after the application of ANN agrees reasonably to the experimental values.

Keywords: artificial neural networks, combining flow, pressure loss coefficients, solar collector tee junctions

Procedia PDF Downloads 361
5914 Implementation of Model Reference Adaptive Control in Tuning of Controller Gains for Following-Vehicle System with Fixed Time Headway

Authors: Fatemeh Behbahani, Rubiyah Yusof

Abstract:

To avoid collision between following vehicles and vehicles in front, it is vital to keep appropriate, safe spacing between both vehicles over all speeds. Therefore, the following vehicle needs to have exact information regarding the speed and spacing between vehicles. This project is conducted to simulate the tuning of controller gain for a vehicle-following system through the selected control strategy, spacing control policy and fixed-time headway policy. In addition, the paper simulates and designs an adaptive gain controller for a road-vehicle-following system which uses information on the spacing, velocity and also acceleration of a preceding vehicle in the proposed one-vehicle look-ahead strategy. The mathematical model is implemented using Kirchhoff and Newton’s Laws, and stability simulated. The trial-error method was used to obtain a suitable value of controller gain. However, the adaptive-based controller system was able to optimize the gain value automatically. Model Reference Adaptive Control (MRAC) is designed and utilized and based on firstly the Gradient and secondly the Lyapunov approach. The Lyapunov approach considers stability. The Gradient approach was found to improve the best value of gain in the controller system with fixed-time headway.

Keywords: one-vehicle look-ahead, model reference adaptive, stability, tuning gain controller, MRAC

Procedia PDF Downloads 211
5913 Water Distribution Uniformity of Solid-Set Sprinkler Irrigation under Low Operating Pressure

Authors: Manal Osman

Abstract:

Sprinkler irrigation system became more popular to reduce water consumption and increase irrigation efficiency. The water distribution uniformity plays an important role in the performance of the sprinkler irrigation system. The use of low operating pressure instead of high operating pressure can be achieved many benefits including energy and water saving. An experimental study was performed to investigate the water distribution uniformity of the solid-set sprinkler irrigation system under low operating pressure. Different low operating pressures (62, 82, 102 and 122 kPa) were selected. The range of operating pressure was lower than the recommended in the previous studies to investigate the effect of low pressure on the water distribution uniformity. Different nozzle diameters (4, 5, 6 and 7 mm) were used. The outdoor single sprinkler test was performed. The water distribution of single sprinkler, the coefficients of uniformity such as coefficient of uniformity (CU), distribution uniformity of low quarter (DUlq), distribution uniformity of low half (DUlh), coefficient of variation (CV) and the distribution characteristics like rotation speed, throw radius and overlapping distance are presented in this paper.

Keywords: low operating pressure, sprinkler irrigation system, water distribution uniformity

Procedia PDF Downloads 559
5912 Exergy Analysis of Poultry Litter-to-Energy Production by the Advanced Combustion System

Authors: Samuel Oludayo Alamu, Seong Lee

Abstract:

The need for generating energy from biomass in an efficient way as well as maximizing the yield of total energy from the thermal conversion process has been a major concern for researchers. A holistic approach which involves the combination of First law of thermodynamics (FLT) and the second law of thermodynamics (SLT) is required for conducting an effective assessment of an energy plant since FLT analysis alone fails to identify the quality of the dissipated energy and how much work potential is available. The overall purpose of this study is to investigate the exergy analysis of direct combustion of poultry waste being converted to energy with a handful of environmental assessment of the conversion processes in order to maximize thermal efficiency. The exergy analysis around the shell and tube heat exchanger (STHE) was investigated primarily by varying the operating parameters for different tube shapes and flow direction, and an exergy model was obtained from estimations of the higher heating value and standard entropy of poultry waste from the elemental compositions. The STHE was designed and fabricated by Lee Research Group at Morgan State University. The analysis conducted on theSTHE using the flue gas temperature entering and exiting show that only about one-third of the energy input to the STHE was available to do work with an overall efficiency of 13.8%, while a huge amount was lost to the surrounding. By recirculating the flue gas, the exergy efficiency of the combustion system can be maximized with a greater reduction in the amount of exergy loss.

Keywords: exergy analysis, shell and tube heat exchanger, thermodynamics, combustion system, thermal efficiency

Procedia PDF Downloads 81
5911 The Correlation of Physical Activity and Plantar Pressure in Young Adults

Authors: Lovro Štefan

Abstract:

Background: The main purpose of the present study was to explore the correlations between physical activity and peak plantar pressure in dynamic mode. Methods: Participants were one hundred forty-six first-year university students (30.8% girls). Plantar pressure generated under each region of the foot (forefoot, midfoot, and heel) was measured by using Zebris dynamometric platform (Isny, Germany). The level of physical activity (PA) was calculated with the International Physical Activity questionnaire (IPAQ - short form). Results: In boys, forefoot peak plantar pressure was correlated with moderate PA (MPA; r=-0.21), vigorous PA (VPA; r=-0.18), and moderate-to-vigorous PA (MVPA; r=-0.28). No significant correlations with other foot regions (p>0.05) were observed. In girls, forefoot peak plantar pressure was correlated with MPA (r =-0.30), VPA (r=-0.39) and MVPA (r=-0.38). Also, heel peak pressure was significantly correlated with MPA (r=-0.33), while no significant correlations with VPA (r=0.05) and MVPA (r=-0.15) were observed. Conclusion: This study shows that different intensities of PA were mostly correlated with forefoot peak plantar pressure in both boys and girls. Therefore, strategies that reduce plantar pressure through a more active lifestyle should be implemented within the education system.

Keywords: pedobarography, youth, exercise, associations

Procedia PDF Downloads 74
5910 A 500 MWₑ Coal-Fired Power Plant Operated under Partial Oxy-Combustion: Methodology and Economic Evaluation

Authors: Fernando Vega, Esmeralda Portillo, Sara Camino, Benito Navarrete, Elena Montavez

Abstract:

The European Union aims at strongly reducing their CO₂ emissions from energy and industrial sector by 2030. The energy sector contributes with more than two-thirds of the CO₂ emission share derived from anthropogenic activities. Although efforts are mainly focused on the use of renewables by energy production sector, carbon capture and storage (CCS) remains as a frontline option to reduce CO₂ emissions from industrial process, particularly from fossil-fuel power plants and cement production. Among the most feasible and near-to-market CCS technologies, namely post-combustion and oxy-combustion, partial oxy-combustion is a novel concept that can potentially reduce the overall energy requirements of the CO₂ capture process. This technology consists in the use of higher oxygen content in the oxidizer that should increase the CO₂ concentration of the flue gas once the fuel is burnt. The CO₂ is then separated from the flue gas downstream by means of a conventional CO₂ chemical absorption process. The production of a higher CO₂ concentrated flue gas should enhance the CO₂ absorption into the solvent, leading to further reductions of the CO₂ separation performance in terms of solvent flow-rate, equipment size, and energy penalty related to the solvent regeneration. This work evaluates a portfolio of CCS technologies applied to fossil-fuel power plants. For this purpose, an economic evaluation methodology was developed in detail to determine the main economical parameters for CO₂ emission removal such as the levelized cost of electricity (LCOE) and the CO₂ captured and avoided costs. ASPEN Plus™ software was used to simulate the main units of power plant and solve the energy and mass balance. Capital and investment costs were determined from the purchased cost of equipment, also engineering costs and project and process contingencies. The annual capital cost and operating and maintenance costs were later obtained. A complete energy balance was performed to determine the net power produced in each case. The baseline case consists of a supercritical 500 MWe coal-fired power plant using anthracite as a fuel without any CO₂ capture system. Four cases were proposed: conventional post-combustion capture, oxy-combustion and partial oxy-combustion using two levels of oxygen-enriched air (40%v/v and 75%v/v). CO₂ chemical absorption process using monoethanolamine (MEA) was used as a CO₂ separation process whereas the O₂ requirement was achieved using a conventional air separation unit (ASU) based on Linde's cryogenic process. Results showed a reduction of 15% of the total investment cost of the CO₂ separation process when partial oxy-combustion was used. Oxygen-enriched air production also reduced almost half the investment costs required for ASU in comparison with oxy-combustion cases. Partial oxy-combustion has a significant impact on the performance of both CO₂ separation and O₂ production technologies, and it can lead to further energy reductions using new developments on both CO₂ and O₂ separation processes.

Keywords: carbon capture, cost methodology, economic evaluation, partial oxy-combustion

Procedia PDF Downloads 123
5909 Comparative Analysis of High Lift Airfoils for Motorsports Applications

Authors: M. Fozan Ur Rab, Mahrukh, M. Alam, N. Sheikh

Abstract:

The purpose of this study is to analyze various high lift low Reynolds number airfoils using two-dimensional Computational Fluid Dynamics (CFD) code in the isolated flow field and select optimum airfoil to suit the motorsports application. The airfoil is selected after comparing the stall behavior, transition location, pressure recovery, pressure distribution and boundary layer characteristics of various airfoils. The prime consideration while selecting airfoil is highest Cl while achieving the sustainable performance over a range of Reynolds numbers encountered on the race track. The increase in Cl is always accompanied by the increase in Cd but this must be compromised since the main goal is to increase an aerodynamic grip. It is always desirable to increase the down-force in Formula One (F1)/Formula Student (FS) to gain reduction in lap time. This paper establishes the criteria for selection of high lift low Reynolds number airfoil while considering various parameters which affect the performance of airfoils.

Keywords: aerodynamics, airfoil, downforce, formula student, lap time

Procedia PDF Downloads 251
5908 Experimental Demonstration of Broadband Erbium-Doped Fiber Amplifier

Authors: Belloui Bouzid

Abstract:

In this paper, broadband design of erbium doped fiber amplifier (EDFA) is demonstrated and proved experimentally. High and broad gain is covered in C and L bands. The used technique combines, in one configuration, two double passes with split band structure for the amplification of two traveled signals one for the C band and the other for L band. This new topology is to investigate the trends of high gain and wide amplification at different status of pumping power, input wavelength, and input signal power. The presented paper is to explore the performance of EDFA gain using what it can be called double pass double branch wide band amplification configuration. The obtained results show high gain and wide broadening range of 44.24 dB and 80 nm amplification respectively.

Keywords: erbium doped fiber amplifier, erbium doped fiber laser, optical amplification, fiber laser

Procedia PDF Downloads 231
5907 Intermittent Effect of Coupled Thermal and Acoustic Sources on Combustion: A Spatial Perspective

Authors: Pallavi Gajjar, Vinayak Malhotra

Abstract:

Rockets have been known to have played a predominant role in spacecraft propulsion. The quintessential aspect of combustion-related requirements of a rocket engine is the minimization of the surrounding risks/hazards. Over time, it has become imperative to understand the combustion rate variation in presence of external energy source(s). Rocket propulsion represents a special domain of chemical propulsion assisted by high speed flows in presence of acoustics and thermal source(s). Jet noise leads to a significant loss of resources and every year a huge amount of financial aid is spent to prevent it. External heat source(s) induce high possibility of fire risk/hazards which can sufficiently endanger the operation of a space vehicle. Appreciable work had been done with justifiable simplification and emphasis on the linear variation of external energy source(s), which yields good physical insight but does not cater to accurate predictions. Present work experimentally attempts to understand the correlation between inter-energy conversions with the non-linear placement of external energy source(s). The work is motivated by the need to have better fire safety and enhanced combustion. The specific objectives of the work are a) To interpret the related energy transfer for combustion in presence of alternate external energy source(s) viz., thermal and acoustic, b) To fundamentally understand the role of key controlling parameters viz., separation distance, the number of the source(s), selected configurations and their non-linear variation to resemble real-life cases. An experimental setup was prepared using incense sticks as potential fuel and paraffin wax candles as the external energy source(s). The acoustics was generated using frequency generator, and source(s) were placed at selected locations. Non-equidistant parametric experimentation was carried out, and the effects were noted on regression rate changes. The results are expected to be very helpful in offering a new perspective into futuristic rocket designs and safety.

Keywords: combustion, acoustic energy, external energy sources, regression rate

Procedia PDF Downloads 113
5906 The Impact of Temperature on the Threshold Capillary Pressure of Fine-Grained Shales

Authors: Talal Al-Bazali, S. Mohammad

Abstract:

The threshold capillary pressure of shale caprocks is an important parameter in CO₂ storage modeling. A correct estimation of the threshold capillary pressure is not only essential for CO₂ storage modeling but also important to assess the overall economical and environmental impact of the design process. A standard step by step approach has to be used to measure the threshold capillary pressure of shale and non-wetting fluids at different temperatures. The objective of this work is to assess the impact of high temperature on the threshold capillary pressure of four different shales as they interacted with four different oil based muds, air, CO₂, N₂, and methane. This study shows that the threshold capillary pressure of shale and non-wetting fluid is highly impacted by temperature. An empirical correlation for the dependence of threshold capillary pressure on temperature when different shales interacted with oil based muds and gasses has been developed. This correlation shows that the threshold capillary pressure decreases exponentially as the temperature increases. In this correlation, an experimental constant (α) appears, and this constant may depend on the properties of shale and non-wetting fluid. The value for α factor was found to be higher for gasses than for oil based muds. This is consistent with our intuition since the interfacial tension for gasses is higher than those for oil based muds. The author believes that measured threshold capillary pressure at ambient temperature is misleading and could yield higher values than those encountered at in situ conditions. Therefore one must correct for the impact of temperature when measuring threshold capillary pressure of shale at ambient temperature.

Keywords: capillary pressure, shale, temperature, thresshold

Procedia PDF Downloads 341
5905 Laboratory Scale Experimental Studies on CO₂ Based Underground Coal Gasification in Context of Clean Coal Technology

Authors: Geeta Kumari, Prabu Vairakannu

Abstract:

Coal is the largest fossil fuel. In India, around 37 % of coal resources found at a depth of more than 300 meters. In India, more than 70% of electricity production depends on coal. Coal on combustion produces greenhouse and pollutant gases such as CO₂, SOₓ, NOₓ, and H₂S etc. Underground coal gasification (UCG) technology is an efficient and an economic in-situ clean coal technology, which converts these unmineable coals into valuable calorific gases. The UCG syngas (mainly H₂, CO, CH₄ and some lighter hydrocarbons) which can utilized for the production of electricity and manufacturing of various useful chemical feedstock. It is an inherent clean coal technology as it avoids ash disposal, mining, transportation and storage problems. Gasification of underground coal using steam as a gasifying medium is not an easy process because sending superheated steam to deep underground coal leads to major transportation difficulties and cost effective. Therefore, for reducing this problem, we have used CO₂ as a gasifying medium, which is a major greenhouse gas. This paper focus laboratory scale underground coal gasification experiment on a coal block by using CO₂ as a gasifying medium. In the present experiment, first, we inject oxygen for combustion for 1 hour and when the temperature of the zones reached to more than 1000 ºC, and then we started supplying of CO₂ as a gasifying medium. The gasification experiment was performed at an atmospheric pressure of CO₂, and it was found that the amount of CO produced due to Boudouard reaction (C+CO₂  2CO) is around 35%. The experiment conducted to almost 5 hours. The maximum gas composition observed, 35% CO, 22 % H₂, and 11% CH4 with LHV 248.1 kJ/mol at CO₂/O₂ ratio 0.4 by volume.

Keywords: underground coal gasification, clean coal technology, calorific value, syngas

Procedia PDF Downloads 199
5904 Effects of Pore-Water Pressure on the Motion of Debris Flow

Authors: Meng-Yu Lin, Wan-Ju Lee

Abstract:

Pore-water pressure, which mediates effective stress and shear strength at grain contacts, has a great influence on the motion of debris flow. The factors that control the diffusion of excess pore-water pressure play very important roles in the debris-flow motion. This research investigates these effects by solving the distribution of pore-water pressure numerically in an unsteady, surging motion of debris flow. The governing equations are the depth-averaged equations for the motion of debris-flow surges coupled with the one-dimensional diffusion equation for excess pore-water pressures. The pore-pressure diffusion equation is solved using a Fourier series, which may improve the accuracy of the solution. The motion of debris-flow surge is modelled using a Lagrangian particle method. From the computational results, the effects of pore-pressure diffusivities and the initial excess pore pressure on the formations of debris-flow surges are investigated. Computational results show that the presence of pore water can increase surge velocities and then changes the profiles of depth distribution. Due to the linear distribution of the vertical component of pore-water velocity, pore pressure dissipates rapidly near the bottom and forms a parabolic distribution in the vertical direction. Increases in the diffusivity of pore-water pressure cause the pore pressures decay more rapidly and then decrease the mobility of the surge.

Keywords: debris flow, diffusion, Lagrangian particle method, pore-pressure diffusivity, pore-water pressure

Procedia PDF Downloads 110
5903 A Numerical Study on the Influence of CO2 Dilution on Combustion Characteristics of a Turbulent Diffusion Flame

Authors: Yasaman Tohidi, Rouzbeh Riazi, Shidvash Vakilipour, Masoud Mohammadi

Abstract:

The objective of the present study is to numerically investigate the effect of CO2 replacement of N2 in air stream on the flame characteristics of the CH4 turbulent diffusion flame. The Open source Field Operation and Manipulation (OpenFOAM) has been used as the computational tool. In this regard, laminar flamelet and modified k-ε models have been utilized as combustion and turbulence models, respectively. Results reveal that the presence of CO2 in air stream changes the flame shape and maximum flame temperature. Also, CO2 dilution causes an increment in CO mass fraction.

Keywords: CH4 diffusion flame, CO2 dilution, OpenFOAM, turbulent flame

Procedia PDF Downloads 244
5902 Arc Plasma Thermochemical Preparation of Coal to Effective Combustion in Thermal Power Plants

Authors: Vladimir Messerle, Alexandr Ustimenko, Oleg Lavrichshev

Abstract:

This work presents plasma technology for solid fuel ignition and combustion. Plasma activation promotes more effective and environmentally friendly low-rank coal ignition and combustion. To realise this technology at coal fired power plants plasma-fuel systems (PFS) were developed. PFS improve efficiency of power coals combustion and decrease harmful emission. PFS is pulverized coal burner equipped with arc plasma torch. Plasma torch is the main element of the PFS. Plasma forming gas is air. It is blown through the electrodes forming plasma flame. Temperature of this flame is varied from 5000 to 6000 K. Plasma torch power is varied from 100 to 350 kW and geometrical sizes are the following: the height is 0.4-0.5 m and diameter is 0.2-0.25 m. The base of the PFS technology is plasma thermochemical preparation of coal for burning. It consists of heating of the pulverized coal and air mixture by arc plasma up to temperature of coal volatiles release and char carbon partial gasification. In the PFS coal-air mixture is deficient in oxygen and carbon is oxidised mainly to carbon monoxide. As a result, at the PFS exit a highly reactive mixture is formed of combustible gases and partially burned char particles, together with products of combustion, while the temperature of the gaseous mixture is around 1300 K. Further mixing with the air promotes intensive ignition and complete combustion of the prepared fuel. PFS have been tested for boilers start up and pulverized coal flame stabilization in different countries at power boilers of 75 to 950 t/h steam productivity. They were equipped with different types of pulverized coal burners (direct flow, muffle and swirl burners). At PFS testing power coals of all ranks (lignite, bituminous, anthracite and their mixtures) were incinerated. Volatile content of them was from 4 to 50%, ash varied from 15 to 48% and heat of combustion was from 1600 to 6000 kcal/kg. To show the advantages of the plasma technology before conventional technologies of coal combustion numerical investigation of plasma ignition, gasification and thermochemical preparation of a pulverized coal for incineration in an experimental furnace with heat capacity of 3 MW was fulfilled. Two computer-codes were used for the research. The computer simulation experiments were conducted for low-rank bituminous coal of 44% ash content. The boiler operation has been studied at the conventional mode of combustion and with arc plasma activation of coal combustion. The experiments and computer simulation showed ecological efficiency of the plasma technology. When a plasma torch operates in the regime of plasma stabilization of pulverized coal flame, NOX emission is reduced twice and amount of unburned carbon is reduced four times. Acknowledgement: This work was supported by Ministry of Education and Science of the Republic of Kazakhstan and Ministry of Education and Science of the Russian Federation (Agreement on grant No. 14.613.21.0005, project RFMEFI61314X0005).

Keywords: coal, ignition, plasma-fuel system, plasma torch, thermal power plant

Procedia PDF Downloads 249
5901 Bench Tests of Two-Stroke Opposed Piston Aircraft Diesel Engine under Propeller Characteristics Conditions

Authors: A. Majczak, G. Baranski, K. Pietrykowski

Abstract:

Due to the growing popularity of light aircraft, it has become necessary to develop aircraft engines for this type of construction. One of engine system, designed to increase efficiency and reduce weight, is the engine with opposed pistons. In such an engine, the combustion chamber is formed by two pistons moving in one cylinder. Therefore, this type of engines run in a two-stroke cycle, so they have many advantages such as high power and torque, high efficiency, or a favorable power-to-weight ratio. Tests of one of the available aircraft engines with opposing piston system fueled with diesel oil were carried out on an engine dynamometer equipped with an eddy current brake and the necessary measuring and testing equipment. In order to get to know the basic parameters of the engine, the tests were carried out under partial load conditions for the following torque values: 40, 60, 80, 100 Nm. The rotational speed was changed from 1600 to 2500 rpm. Measurements were also taken for designated points of propeller characteristics. During the tests, the engine torque, engine power, fuel consumption, intake manifold pressure, and oil pressure were recorded. On the basis of the measurements carried out for particular loads, the power curve, hourly and specific fuel consumption curves were determined. Characteristics of charge pressure as a function of rotational speed as well as power, torque, hourly and specific fuel consumption curves for propeller characteristics were also prepared. The obtained characteristics make it possible to select the optimal points of engine operation.

Keywords: aircraft, diesel, engine testing, opposed piston

Procedia PDF Downloads 124
5900 CFD Simulation of the Inlet Pressure Effects on the Cooling Capacity Enhancement for Vortex Tube with Couple Vortex Chambers

Authors: Nader Pourmahmoud, Amir Hassanzadeh

Abstract:

This article investigates the effects of inlet pressure in a newly introduced vortex tube which has been equipped with an additional vortex chamber. A 3-D compressible turbulent flow computation has been carried out toward analysis of complex flow field in this apparatus. Numerical results of flows are derived by utilizing the standard k-ε turbulence model for analyzing high rotating complex flow field. The present research has focused on cooling effect and given a characteristics curve for minimum cool temperature. In addition, the effect of inlet pressure for both chambers has been studied in details. To be presented numerical results show that the effect of inlet pressure in second chamber has more important role in improving the performance of the vortex tube than first one. By increasing the pressure in the second chamber, cold outlet temperature reaches a higher decrease. When both chambers are fed with high pressure fluid, best operation condition of vortex tube occurs. However, it is not possible to feed both chambers with high pressure due to the conditions of working environment.

Keywords: energy separation, inlet pressure, numerical simulation, vortex chamber, vortex tube

Procedia PDF Downloads 345
5899 Analysis of Power Demand for the Common Rail Pump Drive in an Aircraft Engine

Authors: Rafal Sochaczewski, Marcin Szlachetka, Miroslaw Wendeker

Abstract:

Increasing requirements to reduce exhaust emissions and fuel consumption while increasing the power factor is increasingly becoming applicable to internal combustion engines intended for aircraft applications. As a result, intensive research work is underway to develop a diesel-powered unit for aircraft propulsion. Due to a number of advantages, such as lack of the head (lower heat loss) and timing system, opposite movement of pistons conducive to balancing the engine, the two-stroke compression-ignition engine with the opposite pistons has been developed and upgraded. Of course, such construction also has drawbacks. The main one is the necessity of using a gear connecting two crankshafts or a complicated crank system with one shaft. The peculiarity of the arrangement of pistons with sleeves, as well as the fulfillment of rigorous requirements, makes it necessary to apply the most modern technologies and constructional solutions. In the case of the fuel supply system, it was decided to use common rail system elements. The paper presents an analysis of the possibility of using a common rail pump to supply an aircraft compression-ignition engine. It is an engine with a two-stroke cycle, three cylinders, opposing pistons, and 100 kW power. Each combustion chamber is powered by two injectors controlled by electromagnetic valves. In order to assess the possibility of using a common rail pump, four high-pressure pumps were tested on a bench. They are piston pumps differing in the number and geometry of the pumping sections. The analysis included the torque on the pump drive shaft and the power needed to drive the pump depending on the rotational speed, pumping pressure and fuel dispenser settings. The research allowed to optimize the engine power supply system depending on the fuel demand and the way the pump is mounted on the engine. Acknowledgment: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A.’ and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish Nation-al Centre for Research and Development.

Keywords: diesel engine, fuel pump, opposing pistons, two-stroke

Procedia PDF Downloads 116
5898 Failure Analysis of Fuel Pressure Supply from an Aircraft Engine

Authors: M. Pilar Valles-gonzalez, Alejandro Gonzalez Meije, Ana Pastor Muro, Maria Garcia-Martinez, Beatriz Gonzalez Caballero

Abstract:

This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed of the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material has been mechanical, by hardness test, and microstructural characterized using a stereomicroscope and an optical microscope. The results confirmed that it is within specifications. To determine the macrofractographic features, a visual examination and a stereo microscope of the tube fracture surface have been carried out. The results revealed a tube plastic macrodeformation, surface damaged, and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with a microanalysis system by X-ray dispersive energy (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, have been observed. The origin of the fracture has been placed in defects located on the outer wall of the tube, leading to a final overload fracture.

Keywords: aircraft engine, fatigue, FE-SEM, fractography, fracture, fuel tube, microstructure, stainless steel

Procedia PDF Downloads 125
5897 Numerical Study of Off-Design Performance of a Highly Loaded Low Pressure Turbine Cascade

Authors: Shidvash Vakilipour, Mehdi Habibnia, Rouzbeh Riazi, Masoud Mohammadi, Mohammad H. Sabour

Abstract:

The flow field passing through a highly loaded low pressure (LP) turbine cascade is numerically investigated at design and off-design conditions. The Field Operation And Manipulation (OpenFOAM) platform is used as the computational Fluid Dynamics (CFD) tool. Firstly, the influences of grid resolution on the results of k-ε, k-ω, and LES turbulence models are investigated and compared with those of experimental measurements. A numerical pressure under-shoot is appeared near the end of blade pressure surface which is sensitive to grid resolution and flow turbulence modeling. The LES model is able to resolve separation on a coarse and fine grid resolutions. Secondly, the off-design flow condition is modeled by negative and positive inflow incidence angles. The numerical experiments show that a separation bubble generated on blade pressure side is predicted by LES. The total pressure drop is also been calculated at incidence angle between -20◦ and +8◦. The minimum total pressure drop is obtained by k-ω and LES at the design point.

Keywords: low pressure turbine, off-design performance, openFOAM, turbulence modeling, flow separation

Procedia PDF Downloads 332
5896 Multifluid Computational Fluid Dynamics Simulation for Sawdust Gasification inside an Industrial Scale Fluidized Bed Gasifier

Authors: Vasujeet Singh, Pruthiviraj Nemalipuri, Vivek Vitankar, Harish Chandra Das

Abstract:

For the correct prediction of thermal and hydraulic performance (bed voidage, suspension density, pressure drop, heat transfer, and combustion kinetics), one should incorporate the correct parameters in the computational fluid dynamics simulation of a fluidized bed gasifier. Scarcity of fossil fuels, and to fulfill the energy demand of the increasing population, researchers need to shift their attention to the alternative to fossil fuels. The current research work focuses on hydrodynamics behavior and gasification of sawdust inside a 2D industrial scale FBG using the Eulerian-Eulerian multifluid model. The present numerical model is validated with experimental data. Further, this model extended for the prediction of gasification characteristics of sawdust by incorporating eight heterogeneous moisture release, volatile cracking, tar cracking, tar oxidation, char combustion, CO₂ gasification, steam gasification, methanation reaction, and five homogeneous oxidation of CO, CH₄, H₂, forward and backward water gas shift (WGS) reactions. In the result section, composition of gasification products is analyzed, along with the hydrodynamics of sawdust and sand phase, heat transfer between the gas, sand and sawdust, reaction rates of different homogeneous and heterogeneous reactions is being analyzed along the height of the domain.

Keywords: devolatilization, Eulerian-Eulerian, fluidized bed gasifier, mathematical modelling, sawdust gasification

Procedia PDF Downloads 70
5895 Feasibility Study of Particle Image Velocimetry in the Muzzle Flow Fields during the Intermediate Ballistic Phase

Authors: Moumen Abdelhafidh, Stribu Bogdan, Laboureur Delphine, Gallant Johan, Hendrick Patrick

Abstract:

This study is part of an ongoing effort to improve the understanding of phenomena occurring during the intermediate ballistic phase, such as muzzle flows. A thorough comprehension of muzzle flow fields is essential for optimizing muzzle device and projectile design. This flow characterization has heretofore been almost entirely limited to local and intrusive measurement techniques such as pressure measurements using pencil probes. Consequently, the body of quantitative experimental data is limited, so is the number of numerical codes validated in this field. The objective of the work presented here is to demonstrate the applicability of the Particle Image Velocimetry (PIV) technique in the challenging environment of the propellant flow of a .300 blackout weapon to provide accurate velocity measurements. The key points of a successful PIV measurement are the selection of the particle tracer, their seeding technique, and their tracking characteristics. We have experimentally investigated the aforementioned points by evaluating the resistance, gas dispersion, laser light reflection as well as the response to a step change across the Mach disk for five different solid tracers using two seeding methods. To this end, an experimental setup has been performed and consisted of a PIV system, the combustion chamber pressure measurement, classical high-speed schlieren visualization, and an aerosol spectrometer. The latter is used to determine the particle size distribution in the muzzle flow. The experimental results demonstrated the ability of PIV to accurately resolve the salient features of the propellant flow, such as the under the expanded jet and vortex rings, as well as the instantaneous velocity field with maximum centreline velocities of more than 1000 m/s. Besides, naturally present unburned particles in the gas and solid ZrO₂ particles with a nominal size of 100 nm, when coated on the propellant powder, are suitable as tracers. However, the TiO₂ particles intended to act as a tracer, surprisingly not only melted but also functioned as a combustion accelerator and decreased the number of particles in the propellant gas.

Keywords: intermediate ballistic, muzzle flow fields, particle image velocimetry, propellant gas, particle size distribution, under expanded jet, solid particle tracers

Procedia PDF Downloads 135
5894 [Keynote Speech]: Experimental Study on the Effects of Water-in-Oil Emulsions to the Pressure Drop in Pipeline Flow

Authors: S. S. Dol, M. S. Chan, S. F. Wong, J. S. Lim

Abstract:

Emulsion formation is unavoidable and can be detrimental to an oil field production. The presence of stable emulsions also reduces the quality of crude oil and causes more problems in the downstream refinery operations, such as corrosion and pipeline pressure drop. Hence, it is important to know the effects of emulsions in the pipeline. Light crude oil was used for the continuous phase in the W/O emulsions where the emulsions pass through a flow loop to test the pressure drop across the pipeline. The results obtained shows that pressure drop increases as water cut is increased until it peaks at the phase inversion of the W/O emulsion between 30% to 40% water cut. Emulsions produced by gradual constrictions show a lower stability as compared to sudden constrictions. Lower stability of emulsions in gradual constriction has the higher influence of pressure drop compared to a sudden sharp decrease in diameter in sudden constriction. Generally, sudden constriction experiences pressure drop of 0.013% to 0.067% higher than gradual constriction of the same ratio. Lower constriction ratio cases cause larger pressure drop ranging from 0.061% to 0.241%. Considering the higher profitability in lower emulsion stability and lower pressure drop at the developed flow region of different constrictions, an optimum design of constriction is found to be gradual constriction with a ratio of 0.5.

Keywords: constriction, pressure drop, turbulence, water-in-oil emulsions

Procedia PDF Downloads 299
5893 Effect of Swelling Pressure on Drug Release from Polyelectrolyte Micro-Hydrogel Particles

Authors: Mina Boroujerdi, Javad Tavakoli

Abstract:

Hydrogels are extensively studied as matrices for the controlled release of drugs. To evaluate the mobility of embedded molecules, these drug delivery systems are usually characterized by release studies. In this contribution, an electronic device for swelling pressure measurement during drug release from hydrogel network was developed. Also, poly acrylic acid micro particles were prepared for prolonged and sustained controlled acetaminophen release. Effect of swelling pressure on drug release from micro particles studied under different environment pH in order to predict release profile in gastro-intestine medium. Swelling ratio and swelling pressure were measured in different pH.

Keywords: swelling pressure, drug delivery, hydrogel, polyelectrolyte

Procedia PDF Downloads 270
5892 Design of 900 MHz High Gain SiGe Power Amplifier with Linearity Improved Bias Circuit

Authors: Guiheng Zhang, Wei Zhang, Jun Fu, Yudong Wang

Abstract:

A 900 MHz three-stage SiGe power amplifier (PA) with high power gain is presented in this paper. Volterra Series is applied to analyze nonlinearity sources of SiGe HBT device model clearly. Meanwhile, the influence of operating current to IMD3 is discussed. Then a β-helper current mirror bias circuit is applied to improve linearity, since the β-helper current mirror bias circuit can offer stable base biasing voltage. Meanwhile, it can also work as predistortion circuit when biasing voltages of three bias circuits are fine-tuned, by this way, the power gain and operating current of PA are optimized for best linearity. The three power stages which fabricated by 0.18 μm SiGe technology are bonded to the printed circuit board (PCB) to obtain impedances by Load-Pull system, then matching networks are done for best linearity with discrete passive components on PCB. The final measured three-stage PA exhibits 21.1 dBm of output power at 1 dB compression point (OP1dB) with power added efficiency (PAE) of 20.6% and 33 dB power gain under 3.3 V power supply voltage.

Keywords: high gain power amplifier, linearization bias circuit, SiGe HBT model, Volterra series

Procedia PDF Downloads 308
5891 Effect of Number of Baffles on Pressure Drop and Heat Transfer in a Shell and Tube Heat Exchanger

Authors: A. Falavand Jozaei, A. Ghafouri, M. Mosavi Navaei

Abstract:

In this paper for a given heat duty, study of number of baffles on pressure drop and heat transfer is considered in a STHX (Shell and Tube Heat Exchanger) with single segmental baffles. The effect of number of baffles from 9 to 52 baffles (baffle spacing variations from 4 to 24 inches) over OHTC (Overall Heat Hransfer Coefficient) to pressure drop ratio (U/Δp ratio). The results show that U/Δp ratio is low when baffle spacing is minimum (4 inches) because pressure drop is high; however, heat transfer coefficient is very significant. Then, with the increase of baffle spacing, pressure drop rapidly decreases and OHTC also decreases, but the decrease of OHTC is lower than pressure drop, so (U/Δp) ratio increases. After increasing baffles more than 12 inches, variation in pressure drop is gradual and approximately constant and OHTC decreases; Consequently, U/Δp ratio decreases again. If baffle spacing reaches to 24 inches, STHX will have minimum pressure drop, but OHTC decreases, so required heat transfer surface increases and U/Δp ratio decreases. After baffle spacing more than 12 inches, variation of shell side pressure drop is negligible. So optimum baffle spacing is suggested between 8 to 12 inches (43 to 63 percent of inside shell diameter) for a sufficient heat duty and low pressure drop.

Keywords: shell and tube heat exchanger, single segmental baffle, overall heat transfer coefficient, pressure drop

Procedia PDF Downloads 510
5890 Energy Conversion from Waste Paper Industry Using Fluidized Bed Combustion

Authors: M. Dyah Ayu Yuli, S. Faisal Dhio, P. Johandi, P. Muhammad Sofyan

Abstract:

Pulp and paper mills generate various quantities of energy-rich biomass as wastes, depending on technological level, pulp and paper grades and wood quality. These wastes are produced in all stages of the process: wood preparation, pulp and paper manufacture, chemical recovery, recycled paper processing, waste water treatment. Energy recovery from wastes of different origin has become a generally accepted alternative to their disposal. Pulp and paper industry expresses an interest in adapting and integrating advanced biomass energy conversion technologies into its mill operations using Fluidized Bed Combustion. Industrial adoption of these new technologies has the potential for higher efficiency, lower capital cost, and safer operation than conventional operations that burn fossil fuels for energy. Incineration with energy recovery has the advantage of hygienic disposal, volume reduction, and the recovery of thermal energy by means of steam or super heated water that can be used for heating and power generation.

Keywords: biomass, fluidized bed combustion, pulp and paper mills, waste

Procedia PDF Downloads 445
5889 Importance of Solubility and Bubble Pressure Models to Predict Pressure of Nitrified Oil Based Drilling Fluid in Dual Gradient Drilling

Authors: Sajjad Negahban, Ruihe Wang, Baojiang Sun

Abstract:

Gas-lift dual gradient drilling is a solution for deepwater drilling challenges. As well, Continuous development of drilling technology leads to increase employment of mineral oil based drilling fluids and synthetic-based drilling fluids, which have adequate characteristics such as: high rate of penetration, lubricity, shale inhibition and low toxicity. The paper discusses utilization of nitrified mineral oil base drilling for deepwater drilling and for more accurate prediction of pressure in DGD at marine riser, solubility and bubble pressure were considered in steady state hydraulic model. The Standing bubble pressure and solubility correlations, and two models which were acquired from experimental determination were applied in hydraulic model. The effect of the black oil correlations, and new solubility and bubble pressure models was evaluated on the PVT parameters such as oil formation volume factor, density, viscosity, volumetric flow rate. Eventually, the consequent simulated pressure profile due to these models was presented.

Keywords: solubility, bubble pressure, gas-lift dual gradient drilling, steady state hydraulic model

Procedia PDF Downloads 245
5888 By-Product Alcohol: Fusel Oil as an Alternative Fuel in Spark Ignition Engine

Authors: Omar Awad, R. Mamat, F. Yusop, M. M. Noor, I. M. Yusri

Abstract:

Fusel oil is a by-product obtained through the fermentation of some agricultural products. The fusel oil properties are closer to other alternative combustible types and the limited number of studies on the use of fusel oil as an alcohol derivative in SI engines constitutes to the base of this study. This paper experimentally examined the impacts of a by-product of alcohol, which is fusel oil by blending it with gasoline, on engine performance, combustion characteristics, and emissions in a 4-cylinder SI engine. The test was achieved at different engine speeds and a 60 % throttle valve (load). As results, brake power, BTE, and BSFC of F10 are higher at all engine speeds. Maximum engine BTE was 33.9%, at the lowest BSFC with F10. Moreover, it is worth seeing that the F10 under rich air-fuel ratio has less variation of COVIMEP compared to the F20 and gasoline. F10 represents shorter combustion duration, thereby, the engine power increased. NOx emission for F10 at 4500 rpm was lower than gasoline. The highest value of HC emission is obtained with F10 compared to gasoline and F20 with an average increase of 11% over the engine speed range. CO and CO2 emissions increased when using fusel oil blends.

Keywords: fusel oil, spark ignition engine, by-product alcohol, combustion characteristics, engine emissions, alternative fuel

Procedia PDF Downloads 451
5887 Design of a Rectifier with Enhanced Efficiency and a High-gain Antenna for Integrated and Compact-size Rectenna Circuit

Authors: Rawaa Maher, Ahmed Allam, Haruichi Kanaya, Adel B. Abdelrahman

Abstract:

In this paper, a compact, high-efficiency integrated rectenna is presented to operate in the 2.45 GHz band. A comparison between two rectifier topologies is performed to verify the benefits of removing the matching network from the rectifier. A rectifier high conversion efficiency of 74.1% is achieved. To complete the rectenna system, a novel omnidirectional antenna with high gain (3.72 dB) and compact size (25 mm * 29 mm) is designed and fabricated. The same antenna is used with a reflector for raising the gain to nearly 8.3 dB. The simulation and measurement results of the antenna are in good agreement.

Keywords: internet of things, integrated rectenna, rectenna, RF energy harvesting, wireless sensor networks(WSN)

Procedia PDF Downloads 153
5886 Genetic Evaluation of Locally Flock Sheep in Gabaraka Village

Authors: Salim Omar Raoof

Abstract:

This study was conducted in a private local sheep herd at Gabaraka village-Kirkuk-Iraq. Analysis of 77 ewes recorded and 7 Rams of local sheep presented in Gabaraka village farm plain, the age of ewes ranged between (2-4) years. The aim of this study is to investigate the genetic and non-genetic factors (type of birth, sex, and age of dam) affecting daily milk yield (DMY), birth weight (BW), weaning weight (WW) and Gain characteristics of local sheep raised under Iraq conditions, and it also aims at estimating heritability’s, BLUP. The overall mean of daily milk yield, (BW), (WW), and gain. Was 444.15gm,4.92kg,43.08kg, and 38.16kg, respectively. The results showed there was a significant effect of the type of birth and sex on (BW) and (WW). Also, the age of the dam had a significant effect on daily milk yield (BW), (WW), and gain. Generally, the estimate of heritability of DMP, BWT, WWT, and Gain tend to be 0.22, 0.17, 0.27, and 0.22, respectively. The breeding value (BLUP) for rams ranged between (-0.1684 to 0.188), (-0.205 to 0.310), and ( -0.0171 to 0.029) according to growth traits of Lambs BW, WW, and Gain, respectively. It concluded that the selection of ewes and rams at the population level in planned selection schemes is based on BLUP value and heritability.

Keywords: locally sheep, milk yield, Genetic parameters, BLUP value

Procedia PDF Downloads 45