Search results for: plasma expansion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2178

Search results for: plasma expansion

1908 Fabrication of Aluminum Nitride Thick Layers by Modified Reactive Plasma Spraying

Authors: Cécile Dufloux, Klaus Böttcher, Heike Oppermann, Jürgen Wollweber

Abstract:

Hexagonal aluminum nitride (AlN) is a promising candidate for several wide band gap semiconductor compound applications such as deep UV light emitting diodes (UVC LED) and fast power transistors (HEMTs). To date, bulk AlN single crystals are still commonly grown from the physical vapor transport (PVT). Single crystalline AlN wafers obtained from this process could offer suitable substrates for a defect-free growth of ultimately active AlGaN layers, however, these wafers still lack from small sizes, limited delivery quantities and high prices so far.Although there is already an increasing interest in the commercial availability of AlN wafers, comparatively cheap Si, SiC or sapphire are still predominantly used as substrate material for the deposition of active AlGaN layers. Nevertheless, due to a lattice mismatch up to 20%, the obtained material shows high defect densities and is, therefore, less suitable for high power devices as described above. Therefore, the use of AlN with specially adapted properties for optical and sensor applications could be promising for mass market products which seem to fulfill fewer requirements. To respond to the demand of suitable AlN target material for the growth of AlGaN layers, we have designed an innovative technology based on reactive plasma spraying. The goal is to produce coarse grained AlN boules with N-terminated columnar structure and high purity. In this process, aluminum is injected into a microwave stimulated nitrogen plasma. AlN, as the product of the reaction between aluminum powder and the plasma activated N2, is deposited onto the target. We used an aluminum filament as the initial material to minimize oxygen contamination during the process. The material was guided through the nitrogen plasma so that the mass turnover was 10g/h. To avoid any impurity contamination by an erosion of the electrodes, an electrode-less discharge was used for the plasma ignition. The pressure was maintained at 600-700 mbar, so the plasma reached a temperature high enough to vaporize the aluminum which subsequently was reacting with the surrounding plasma. The obtained products consist of thick polycrystalline AlN layers with a diameter of 2-3 cm. The crystallinity was determined by X-ray crystallography. The grain structure was systematically investigated by optical and scanning electron microscopy. Furthermore, we performed a Raman spectroscopy to provide evidence of stress in the layers. This paper will discuss the effects of process parameters such as microwave power and deposition geometry (specimen holder, radiation shields, ...) on the topography, crystallinity, and stress distribution of AlN.

Keywords: aluminum nitride, polycrystal, reactive plasma spraying, semiconductor

Procedia PDF Downloads 258
1907 The Structural System Concept of Reinforced Concrete Pier Accompanied with Friction Device plus Gap in Numerical Analysis

Authors: Angga S. Fajar, Y. Takahashi, J. Kiyono, S. Sawada

Abstract:

The problem of medium span bridge bearing support in the extreme temperatures fluctuation region is deterioration in case the suppression of superstructure that sustains temperature expansion. The other hand, the behavior and the parameter of RC column accompanied with friction damping mechanism were determined successfully based on the experiment and numerical analysis. This study proposes the structural system of RC pier accompanied with multi sliding friction damping mechanism to substitute the conventional system of pier together with bearing support. In this system, the pier has monolith behavior to the superstructure with flexible small deformation to accommodate thermal expansion of the superstructure. The flexible small deformation behavior is realized by adding the gap mechanism in the multi sliding friction devices form. The important performances of this system are sufficient lateral flexibility in small deformation, sufficient elastic deformation capacity, sufficient lateral force resistance, and sufficient energy dissipation. Numerical analysis performed for this system with fiber element model. It shows that the structural system has good performance not only under small deformation due to thermal expansion of the superstructure but also under seismic load.

Keywords: RC Pier, thermal expansion, multi sliding friction device, flexible small deformation

Procedia PDF Downloads 278
1906 Optimization of Alkali Silicate Glass Heat Treatment for the Improvement of Thermal Expansion and Flexural Strength

Authors: Stephanie Guerra-Arias, Stephani Nevarez, Calvin Stewart, Rachel Grodsky, Denis Eichorst

Abstract:

The objective of this study is to describe the framework for optimizing the heat treatment of alkali silicate glasses, to enhance the performance of hermetic seals in extreme environments. When connectors are exposed to elevated temperatures, residual stresses develop due to the mismatch of thermal expansions between the glass, metal pin, and metal shell. Excessive thermal expansion mismatch compromises the reliability of hermetic seals. In this study, a series of heat treatment schedules will be performed on two commercial sealing glasses (one conventional sealing glass and one crystallizable sealing glass) using a design of experiments (DOE) approach. The coefficient of thermal expansion (CTE) will be measured pre- and post-heat treatment using thermomechanical analysis (TMA). Afterwards, the flexural strength of the specimen will be measured using a four-point bend fixture mounted in a static universal testing machine. The measured material properties will be statistically analyzed using MiniTab software to determine which factors of the heat treatment process have a strong correlation to the coefficient of thermal expansion and/or flexural strength. Finally, a heat-treatment will be designed and tested to ensure the optimal performance of the hermetic seals in connectors.

Keywords: glass-ceramics, design of experiment, hermetic connectors, material characterization

Procedia PDF Downloads 124
1905 Development of Al-5%Cu/Si₃N₄, B₄C or BN Composites for Piston Applications

Authors: Ahmed Lotfy, Andrey V. Pozdniakov, Vadim C. Zolotorevskiy

Abstract:

The purpose of this research is to provide a competitive alternative to aluminum silicon alloys used in automotive applications. This alternative was created by developing three types of composites Al-5%Cu- (B₄C, BN or Si₃N₄) particulates with a low coefficient of thermal expansion. Stir casting was used to synthesis composites containing 2, 5 and 7 wt. % of B₄C, Si₃N₄ and 2, 5 of BN followed by squeeze casting. The squeeze casting process decreased the porosity of the final composites. The composites exhibited a fairly uniform particle distribution throughout the matrix alloy. The microstructure and XRD results of the composites suggested a significant reaction occurred at the interface between the particles and alloy. Increasing the aging temperature from 200 to 250°C decreased the hardness values of the matrix and the composites and decreased the time required to reach the peak. Turner model was used to calculate the expected values of thermal expansion coefficient CTE of matrix and its composites. Deviations between calculated and experimental values of CTE were not exceeded 10%. Al-5%Cu-B₄C composites experimentally showed the lowest values of CTE (17-19)·10-6 °С-1 and (19-20) ·10-6 °С-1 in the temperature range 20-100 °С and 20-200 °С respectively.

Keywords: aluminum matrix composites, coefficient of thermal expansion, X-ray diffraction, squeeze casting, electron microscopy,

Procedia PDF Downloads 371
1904 Role of Ionic Solutions Affect Water Treeing Propagation in XLPE Insulation for High Voltage Cable

Authors: T. Boonraksa, B. Marungsri

Abstract:

This paper presents the experimental results on role of ionic solutions affect water treeing propagation in cross-linked polyethylene insulation for high voltage cable. To study the water treeing expansion due to the ionic solutions, discs of 4mm thickness and 4cm diameter were taken from 115 kV XLPE insulation cable and were used as test specimen in this study. Ionic solutions composed of CuSO4, FeSO4, Na2SO4 and K2SO4 were used. Each specimen was immersed in 0.1 mole ionic solutions and was tested for 120 hrs. under a voltage stress at 7 kV AC rms, 1000 Hz. The results show that Na2SO4 and CuSO4solutions play an important role in the expansion of water treeing and cause degradation of the cross-linked polyethylene (XLPE) in the presence of the applied electric field.

Keywords: ionic solutions, water treeing, water treeing expansion, cross-linked polyethylene (XLPE)

Procedia PDF Downloads 358
1903 Biomarkers for Rectal Adenocarcinoma Identified by Lipidomic and Bioinformatic

Authors: Patricia O. Carvalho, Marcia C. F. Messias, Laura Credidio, Carlos A. R. Martinez

Abstract:

Lipidomic strategy can provide important information regarding cancer pathogenesis mechanisms and could reveal new biomarkers to enable early diagnosis of rectal adenocarcinoma (RAC). This study set out to evaluate lipoperoxidation biomarkers, and lipidomic signature by gas chromatography (GC) and electrospray ionization-qToF-mass spectrometry (ESI-qToF-MS) combined with multivariate data analysis in plasma from 23 RAC patients (early- or advanced-stages cancer) and 18 healthy controls. The most abundant ions identified in the RAC patients were those of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) while those of lisophosphatidylcholine (LPC), identified as LPC (16:1), LPC (18:1) and LPC (18:2), were down-regulated. LPC plasmalogen containing palmitoleic acid (LPC (P-16:1)), with highest VIP score, showed a low tendency in the cancer patients. Malondialdehyde plasma levels were higher in patients with advanced cancer (III/IV stages) than in the early stages groups and the healthy group (p<0.05). No differences in F2-isoprostane levels were observed between these groups. This study shows that the reduction in plasma levels of LPC plasmalogens associated to an increase in MDA levels may indicate increased oxidative stress in these patients and identify the metabolite LPC (P-16:1) as new biomarkers for RAC.

Keywords: biomarkers, lipidomic, plasmalogen, rectal adenocarcinoma

Procedia PDF Downloads 198
1902 Electron Bernstein Wave Heating in the Toroidally Magnetized System

Authors: Johan Buermans, Kristel Crombé, Niek Desmet, Laura Dittrich, Andrei Goriaev, Yurii Kovtun, Daniel López-Rodriguez, Sören Möller, Per Petersson, Maja Verstraeten

Abstract:

The International Thermonuclear Experimental Reactor (ITER) will rely on three sources of external heating to produce and sustain a plasma; Neutral Beam Injection (NBI), Ion Cyclotron Resonance Heating (ICRH), and Electron Cyclotron Resonance Heating (ECRH). ECRH is a way to heat the electrons in a plasma by resonant absorption of electromagnetic waves. The energy of the electrons is transferred indirectly to the ions by collisions. The electron cyclotron heating system can be directed to deposit heat in particular regions in the plasma (https://www.iter.org/mach/Heating). Electron Cyclotron Resonance Heating (ECRH) at the fundamental resonance in X-mode is limited by a low cut-off density. Electromagnetic waves cannot propagate in the region between this cut-off and the Upper Hybrid Resonance (UHR) and cannot reach the Electron Cyclotron Resonance (ECR) position. Higher harmonic heating is hence preferred in heating scenarios nowadays to overcome this problem. Additional power deposition mechanisms can occur above this threshold to increase the plasma density. This includes collisional losses in the evanescent region, resonant power coupling at the UHR, tunneling of the X-wave with resonant coupling at the ECR, and conversion to the Electron Bernstein Wave (EBW) with resonant coupling at the ECR. A more profound knowledge of these deposition mechanisms can help determine the optimal plasma production scenarios. Several ECRH experiments are performed on the TOroidally MAgnetized System (TOMAS) to identify the conditions for Electron Bernstein Wave (EBW) heating. Density and temperature profiles are measured with movable Triple Langmuir Probes in the horizontal and vertical directions. Measurements of the forwarded and reflected power allow evaluation of the coupling efficiency. Optical emission spectroscopy and camera images also contribute to plasma characterization. The influence of the injected power, magnetic field, gas pressure, and wave polarization on the different deposition mechanisms is studied, and the contribution of the Electron Bernstein Wave is evaluated. The TOMATOR 1D hydrogen-helium plasma simulator numerically describes the evolution of current less magnetized Radio Frequency plasmas in a tokamak based on Braginskii’s legal continuity and heat balance equations. This code was initially benchmarked with experimental data from TCV to determine the transport coefficients. The code is used to model the plasma parameters and the power deposition profiles. The modeling is compared with the data from the experiments.

Keywords: electron Bernstein wave, Langmuir probe, plasma characterization, TOMAS

Procedia PDF Downloads 65
1901 Effects of Acacia Honey Drink Ingestion during Rehydration after Exercise Compared to Sports Drink on Physiological Parameters and Subsequent Running Performance in the Heat

Authors: Foong Kiew Ooi, Aidi Naim Mohamad Samsani, Chee Keong Chen, Mohamed Saat Ismail

Abstract:

Introduction: Prolonged exercise in a hot and humid environment can result in glycogen depletion and associated with loss of body fluid. Carbohydrate contained in sports beverages is beneficial for improving sports performance and preventing dehydration. Carbohydrate contained in honey is believed can be served as an alternative form of carbohydrate for enhancing sports performance. Objective: To investigate the effectiveness of honey drink compared to sports drink as a recovery aid for running performance and physiological parameters in the heat. Method: Ten male recreational athletes (age: 22.2 ± 2.0 years, VO2max: 51.5 ± 3.7 ml.kg-1.min-1) participated in this randomized cross-over study. On each trial, participants were required to run for 1 hour in the glycogen depletion phase (Run-1), followed by a rehydration phase for 2 hours and subsequently a 20 minutes time trial performance (Run-2). During Run-1, subjects were required to run on the treadmill in the heat (31°C) with 70% relative humidity at 70 % of their VO2max. During rehydration phase, participants drank either honey drink or sports drink, or plain water with amount equivalent to 150% of body weight loss in dispersed interval (60 %, 50 % and 40 %) at 0 min, 30 min and 60 min respectively. Subsequently, time trial was performed by the participants in 20 minutes and the longest distance covered was recorded. Physiological parameters were analysed using two-way ANOVA with repeated measure and time trial performance was analysed using one-way ANOVA. Results: Result showed that Acacia honey elicited a better time trial performance with significantly longer distance compared to water trial (P<0.05). However, there was no significant difference between Acacia honey and sport drink trials (P > 0.05). Acacia honey and sports drink trials elicited 249 m (8.24 %) and 211 m (6.79 %) longer in distance compared to the water trial respectively. For physiological parameters, plasma glucose, plasma insulin and plasma free fatty acids in Acacia honey and sports drink trials were significantly higher compared to the water trial respectively during rehydration phase and time trial running performance phase. There were no significant differences in body weight changes, oxygen uptake, hematocrit, plasma volume changes and plasma cortisol in all the trials. Conclusion: Acacia honey elicited greatest beneficial effects on sports performance among the drinks, thus it has potential to be used for rehydration in athletes who train and compete in hot environment.

Keywords: honey drink, rehydration, sports performance, plasma glucose, plasma insulin, plasma cortisol

Procedia PDF Downloads 281
1900 Effects of Two Cross Focused Intense Laser Beams On THz Generation in Rippled Plasma

Authors: Sandeep Kumar, Naveen Gupta

Abstract:

Terahertz (THz) generation has been investigated by beating two cosh-Gaussian laser beams of the same amplitude but different wavenumbers and frequencies through rippled collisionless plasma. The ponderomotive force is operative which is induced due to the intensity gradient of the laser beam over the cross-section area of the wavefront. The electrons evacuate towards a low-intensity regime, which modifies the dielectric function of the medium and results in cross focusing of cosh-Gaussian laser beams. The evolution of spot size of laser beams has been studied by solving nonlinear Schrodinger wave equation (NLSE) with variational technique. The laser beams impart oscillations to electrons which are enhanced with ripple density. The nonlinear oscillatory motion of electrons gives rise to a nonlinear current density driving THz radiation. It has been observed that the periodicity of the ripple density helps to enhance the THz radiation.

Keywords: rippled collisionless plasma, cosh-gaussian laser beam, ponderomotive force, variational technique, nonlinear current density

Procedia PDF Downloads 167
1899 Evaluation of Transfusion-Related Acute Lung Injury

Authors: Hossein Barri Ghazani

Abstract:

Transfusion-related acute lung injury is the main reason of transfusion-related death, and it’s assigned to white blood cell reactive antibodies present in the blood product (anti-HLA class I and class II or anti granulocyte antibodies). TRALI may occur in the COVID-19 patients who are treated by convalescent plasma. The rate of TRALI’s reactions is the same in both males and females and can happen in all age groups. TRALI’s occurrence is higher for people who receive plasma from female donors because the parous female donors have multiple HLA antibodies in their plasma. Patients with chronic liver disease have an augmented risk of transfusion-related acute lung injuries from plasma containing blood products like FFP and PRP. The condition of TRALI suddenly starts with a non‐cardiogenic pulmonary Edema, often accompanied by marked systemic hypovolemic and hypotension. The conditions occur during or within a few hours of transfusion. Chest X-ray shows a nodular penetration or bats’ wing pattern of Edema which can be seen in acute respiratory distress syndrome as well. TRALI can occur with any type of blood products and can occur with as little as one unit. The blood donor center should be informed of the suspected TRALI reactions when the symptoms of TRALI are observed. After a review of the clinical data, the donors must be screened for granulocyte and HLA antibodies. The diagnosis and management of TRALI is not simple and is best done with a professional team and a specialty skilled nurse experienced with the upkeep of these patients.

Keywords: TRALI, transfusion-related death, anti-granulocyte antibodies, anti-HLA antibodies, COVID-19

Procedia PDF Downloads 137
1898 Adhesion Enhancement of Boron Carbide Coatings on Aluminum Substrates Utilizing an Intermediate Adhesive Layer

Authors: Sharon Waichman, Shahaf Froim, Ido Zukerman, Shmuel Barzilai, Shmual Hayun, Avi Raveh

Abstract:

Boron carbide is a ceramic material with superior properties such as high chemical and thermal stability, high hardness and high wear resistance. Moreover, it has a big cross section for neutron absorption and therefore can be employed in nuclear based applications. However, an efficient attachment of boron carbide to a metal such as aluminum can be very challenging, mainly because of the formation of aluminum-carbon bonds that are unstable in humid environment, the affinity of oxygen to the metal and the different thermal expansion coefficients of the two materials that may cause internal stresses and a subsequent failure of the bond. Here, we aimed to achieving a strong and a durable attachment between the boron carbide coating and the aluminum substrate. For this purpose, we applied Ti as a thin intermediate layer that provides a gradual change in the thermal expansion coefficients of the configured layers. This layer is continuous and therefore prevents the formation of aluminum-carbon bonds. Boron carbide coatings with a thickness of 1-5 µm were deposited on the aluminum substrate by pulse-DC magnetron sputtering. Prior to the deposition of the boron carbide layer, the surface was pretreated by energetic ion plasma followed by deposition of the Ti intermediate adhesive layer in a continuous process. The properties of the Ti intermediate layer were adjusted by the bias applied to the substrate. The boron carbide/aluminum bond was evaluated by various methods and complementary techniques, such as SEM/EDS, XRD, XPS, FTIR spectroscopy and Glow Discharge Spectroscopy (GDS), in order to explore the structure, composition and the properties of the layers and to study the adherence mechanism of the boron carbide/aluminum contact. Based on the interfacial bond characteristics, we propose a desirable solution for improved adhesion of boron carbide to aluminum using a highly efficient intermediate adhesive layer.

Keywords: adhesion, boron carbide coatings, ceramic/metal bond, intermediate layer, pulsed-DC magnetron sputtering

Procedia PDF Downloads 139
1897 Drug-Drug Plasma Protein Binding Interactions of Ivacaftor

Authors: Elena K. Schneider, Johnny X. Huang, Vincenzo Carbone, Mark Baker, Mohammad A. K. Azad, Matthew A. Cooper, Jian Li, Tony Velkov

Abstract:

Ivacaftor is a novel CF trans-membrane conductance regulator (CFTR) potentiator that improves the pulmonary function for cystic fibrosis patients bearing a G551D CFTR-protein mutation. Because ivacaftor is highly bound (>97%) to plasma proteins, there is the strong possibility that co-administered CF drugs that compete for the same plasma protein binding sites and impact the free drug concentration. This in turn could lead to drastic changes in the in vivo efficacy of ivacaftor and therapeutic outcomes. This study compares the binding affinity of ivacaftor and co-administered CF drugs for human serum albumin (HSA) and α1-acid glycoprotein (AGP) using surface plasmon resonance and fluorimetric binding assays that measure the displacement of site selective probes. Due to their high plasma protein binding affinities, drug-drug interactions between ivacaftor are to be expected with ducosate, montelukast, ibuprofen, dicloxacillin, omeprazole and loratadine. The significance of these drug-drug interactions is interpreted in terms of the pharmacodynamic/pharmacokinetic parameters and molecular docking simulations. The translational outcomes of the data are presented as recommendations for a staggered treatment regimen for future clinical trials which aims to maximize the effective free drug concentration and clinical efficacy of ivacaftor.

Keywords: human α-1-acid glycoprotein, binding affinity, human serum albumin, ivacaftor, cystic fibrosis

Procedia PDF Downloads 278
1896 The Soliton Solution of the Quadratic-Cubic Nonlinear Schrodinger Equation

Authors: Sarun Phibanchon, Yuttakarn Rattanachai

Abstract:

The quadratic-cubic nonlinear Schrodinger equation can be explained the weakly ion-acoustic waves in magnetized plasma with a slightly non-Maxwellian electron distribution by using the Madelung's fluid picture. However, the soliton solution to the quadratic-cubic nonlinear Schrodinger equation is determined by using the direct integration. By the characteristics of a soliton, the solution can be claimed that it's a soliton by considering its time evolution and their collisions between two solutions. These results are shown by applying the spectral method.

Keywords: soliton, ion-acoustic waves, plasma, spectral method

Procedia PDF Downloads 379
1895 Analytical Terahertz Characterization of In0.53Ga0.47As Transistors and Homogenous Diodes

Authors: Abdelmadjid Mammeri, Fatima Zohra Mahi, Luca Varani, H. Marinchoi

Abstract:

We propose an analytical model for the admittance and the noise calculations of the InGaAs transistor and diode. The development of the small-signal admittance takes into account the longitudinal and transverse electric fields through a pseudo two-dimensional approximation of the Poisson equation. The frequency-dependent of the small-signal admittance response is determined by the total currents and the potentials matrix relation between the gate and the drain terminals. The noise is evaluated by using the real part of the transistor/diode admittance under a small-signal perturbation. The analytical results show that the admittance spectrum exhibits a series of resonant peaks corresponding to the excitation of plasma waves. The appearance of the resonance is discussed and analyzed as functions of the channel length and the temperature. The model can be used, on one hand; to control the appearance of the plasma resonances, and on other hand; can give significant information about the noise frequency dependence in the InGaAs transistor and diode.

Keywords: InGaAs transistors, InGaAs diode, admittance, resonant peaks, plasma waves, analytical model

Procedia PDF Downloads 281
1894 3D Printing of Cold Atmospheric Plasma Treated Poly(ɛ-Caprolactone) for Bone Tissue Engineering

Authors: Dong Nyoung Heo, Il Keun Kwon

Abstract:

Three-dimensional (3D) technology is a promising method for bone tissue engineering. In order to enhance bone tissue regeneration, it is important to have ideal 3D constructs with biomimetic mechanical strength, structure interconnectivity, roughened surface, and the presence of chemical functionality. In this respect, a 3D printing system combined with cold atmospheric plasma (CAP) was developed to fabricate a 3D construct that has a rough surface with polar functional chemical groups. The CAP-etching process leads to oxidation of chemical groups existing on the polycaprolactone (PCL) surface without conformational change. The surface morphology, chemical composition, mean roughness of the CAP-treated PCL surfaces were evaluated. 3D printed constructs composed of CAP-treated PCL showed an effective increment in the hydrophilicity and roughness of the PCL surface. Also, an in vitro study revealed that CAP-treated 3D PCL constructs had higher cellular behaviors such as cell adhesion, cell proliferation, and osteogenic differentiation. Therefore, a 3D printing system with CAP can be a highly useful fabrication method for bone tissue regeneration.

Keywords: bone tissue engineering, cold atmospheric plasma, PCL, 3D printing

Procedia PDF Downloads 84
1893 Photoresponse of Epitaxial GaN Films Grown by Plasma-Assisted Molecular Beam Epitaxy

Authors: Nisha Prakash, Kritika Anand, Arun Barvat, Prabir Pal, Sonachand Adhikari, Suraj P. Khanna

Abstract:

Group-III nitride semiconductors (GaN, AlN, InN and their ternary and quaternary compounds) have attracted a great deal of attention for the development of high-performance Ultraviolet (UV) photodetectors. Any midgap defect states in the epitaxial grown film have a direct influence on the photodetectors responsivity. The proportion of the midgap defect states can be controlled by the growth parameters. To study this we have grown high quality epitaxial GaN films on MOCVD- grown GaN template using plasma-assisted molecular beam epitaxy (PAMBE) with different growth parameters. Optical and electrical properties of the films were characterized by room temperature photoluminescence and photoconductivity measurements, respectively. The observed persistent photoconductivity behaviour is proportional to the yellow luminescence (YL) and the absolute responsivity has been found to decrease with decreasing YL. The results will be discussed in more detail later.

Keywords: gallium nitride, plasma-assisted molecular beam epitaxy, photoluminescence, photoconductivity, persistent photoconductivity, yellow luminescence

Procedia PDF Downloads 287
1892 Investigation of Cold Atmospheric Plasma Exposure Protocol on Wound Healing in Diabetic Foot Ulcer

Authors: P. Akbartehrani, M. Khaledi Pour, M. Amini, M. Khani, M. Mohajeri Tehrani, E. Ghasemi, P. Charipoor, B. Shokri

Abstract:

A common problem between diabetic patients is foot ulcers which are chronic and require specialized treatment. Previous studies illustrate that Cold atmospheric plasma (CAP) has beneficial effects on wound healing and infection. Nevertheless, the comparison of different cap exposure protocols in diabetic ulcer wound healing remained to be studied. This study aims to determine the effect of two different exposure protocols on wound healing in diabetic ulcers. A prospective, randomized clinical trial was conducted at two clinics. Diabetic patients with G1 and G2 wanger classification diabetic foot ulcers were divided into two groups of study. One group was treated by the first protocol, which was treating wounds by argon-generated cold atmospheric plasma jet once a week for five weeks in a row. The other group was treated by the second protocol, which was treating wounds every three days for five weeks in a row. The wounds were treated for 40 seconds/cubic centimeter, while the nozzle tip was moved nonlocalized 1 cm above the wounds. A patient with one or more wounds could participate in different groups as wounds were separately randomized, which allow a participant to be treated several times during the study. The study's significant findings were two different reductions rate in wound size, microbial load, and two different healing speeds. This study concludes that CAP therapy by the second protocol yields more effective healing speeds, reduction in wound sizes, and microbial loads of foot ulcers in diabetic patients.

Keywords: wound healing, diabetic ulcers, cold atmospheric plasma, cold argon jet

Procedia PDF Downloads 192
1891 Nanoprofiling of GaAs Surface in a Combined Low-Temperature Plasma for Microwave Devices

Authors: Victor S. Klimin, Alexey A. Rezvan, Maxim S. Solodovnik, Oleg A. Ageev

Abstract:

In this paper, the problems of existing methods of profiling and surface modification of nanoscale arsenide-gallium structures are analyzed. The use of a combination of methods of local anodic oxidation and plasma chemical etching to solve this problem is considered. The main features that make this technology one of the promising areas of modification and profiling of near-surface layers of solids are demonstrated. In this paper, we studied the effect of formation stress and etching time on the geometrical parameters of the etched layer and the roughness of the etched surface. Experimental dependences of the thickness of the etched layer on the time and stress of formation were obtained. The surface analysis was carried out using atomic force microscopy methods, the corresponding profilograms were constructed from the obtained images, and the roughness of the etched surface was studied accordingly. It was shown that at high formation voltage, the depth of the etched surface increased, this is due to an increase in the number of active particles (oxygen ions and hydroxyl groups) formed as a result of the decomposition of water molecules in an electric field, during the formation of oxide nanostructures on the surface of gallium arsenide. Oxide layers were used as negative masks for subsequent plasma chemical etching by the STE ICPe68 unit. BCl₃ was chosen as the chlorine-containing gas, which differs from analogs in some parameters for the effect of etching of nanostructures based on gallium arsenide in the low-temperature plasma. The gas mixture of reaction chamber consisted of a buffer gas NAr = 100 cm³/min and a chlorine-containing gas NBCl₃ = 15 cm³/min at a pressure P = 2 Pa. The influence of these methods modes, which are formation voltage and etching time, on the roughness and geometric parameters, and corresponding dependences are demonstrated. Probe nanotechnology was used for surface analysis.

Keywords: nanostructures, GaAs, plasma chemical etching, modification structures

Procedia PDF Downloads 118
1890 Cord Blood Hematopoietic Stem Cell Expansion Ability of Mesenchymal Stem Cells Isolated From Different Sources

Authors: Ana M. Lara, Manuela Llano, Felipe Gaitán, Rosa H. Bustos, Ana Maria Perdomo-Arciniegas, Ximena Bonilla

Abstract:

Umbilical cord blood is used as a source of progenitor and stem cells for the regeneration of the hematopoietic and immune system to treat patients with different hematological or non-hematological diseases. This stem cell source represents an advantage over the use of bone marrow or mobilized peripheral blood because it has a lower incidence rate of graft-versus-host disease, probably due to fewer immunological compatibility restrictions. However, its low cellular dose limits its use in pediatric patients. This work proposes the standardization of a cell expansion technique to compensate for the dose of infused cells through the ex-vivo manipulation of hematopoietic progenitor cells from umbilical cord blood before transplantation. The expansion model is carried out through co-cultures with mesenchymal stem cells (MSC) from bone marrow (BM) and less explored fetal tissues such as Wharton's jelly (WJ) and umbilical cord blood (UCB). Initially, a master cell bank of primary mesenchymal stem cells isolated from different sources was established and characterized following International Society of Cell Therapies (ISCT) indications. Additionally, we assessed the effect of a short 25 Gy cycle of gamma irradiation on cell cycle arrest of mesenchymal cells over the support capacity for the expansion of hematopoietic stem cells from umbilical cord blood was evaluated. The results show that co-cultures with MSC from WJ and UCB allow the cellular dose of HSPC to be maximized between 5 and 16 times having a similar support capacity as BM. In addition, was evaluated the hematopoietic stem progenitor cell's HSPC functionality through the evaluation of migration capacity, their differentiation capacity during culture time by flow cytometry to evaluate the expression of membrane markers associated with lineage-committed progenitors, their clonogenic potential, and the evaluation of secretome profile in the expansion process was evaluated. So far, the treatment with gamma irradiation maintains the hematopoietic support capacity of mesenchymal stem cells from the three sources studied compared to treatments without irradiation, favoring the use of fetal tissues that are generally waste to obtain mesenchymal cell lines for ex-vivo expansion systems. With the results obtained, a standardized protocol that will contribute to the development of ex-vivo expansion with MSC on a larger scale will be achieved, enabling its clinical use and expanding its application in adults.

Keywords: ex-vivo expansion, hematopoietic stem cells, hematopoietic stem cell transplantation, mesenchymal stem cells, umbilical cord blood

Procedia PDF Downloads 83
1889 Effect of Post Circuit Resistance Exercise Glucose Feeding on Energy and Hormonal Indexes in Plasma and Lymphocyte in Free-Style Wrestlers

Authors: Miesam Golzadeh Gangraj, Younes Parvasi, Mohammad Ghasemi, Ahmad Abdi, Saeid Fazelifar

Abstract:

The purpose of the study was to determine the effect of glucose feeding on energy and hormonal indexes in plasma and lymphocyte immediately after wrestling – base techniques circuit exercise (WBTCE) in young male freestyle wrestlers. Sixteen wrestlers (weight = 75/45 ± 12/92 kg, age = 22/29 ± 0/90 years, BMI = 26/23 ± 2/64 kg/m²) were randomly divided into two groups: control (water), glucose (2 gr per kg body weight). Blood samples were obtained before, immediately, and 90 minutes of the post-exercise recovery period. Glucose (2 g/kg of body weight, 1W/5V) and water (equal volumes) solutions were given immediately after the second blood sampling. Data were analyzed by using an ANOVA (a repeated measure) and a suitable post hoc test (LSD). A significant decrease was observed in lymphocytes glycogen immediately after exercise (P < 0.001). In the experimental group, increase Lymphocyte glycogen concentration (P < 0.028) than in the control group in 90 min post-exercise. Plasma glucose concentrations increased in all groups immediately after exercise (P < 0.05). Plasma insulin concentrations in both groups decreased immediately after exercise, but at 90 min after exercise, its level was significantly increased only in glucose group (P < 0.001). Our results suggested that WBTCE protocol could be affected cellular energy sources and hormonal response. Furthermore, Glucose consumption can increase the lymphocyte glycogen and better energy within the cell.

Keywords: glucose feeding, lymphocyte, Wrestling – base techniques circuit , exercise

Procedia PDF Downloads 238
1888 Effect of Diet and Life Style Modification to Control the Plasma Glucose Level in the 60 Patients of Gestational Diabetes Mellitus

Authors: Vivek Saxena, Shreshtha Saxena

Abstract:

Background: Gestational diabetes mellitus (GDM) is defined as impaired glucose tolerance first recognized during pregnancy. Uncontrolled or untreated GDM is associated with various adverse outcomes to the maternal and fetal health. Overt diabetes mellitus may also develop in such patients. It is universally accepted fact that first and foremost management to treat GDM is dietary control and lifestyle modification even before starting any oral hypoglycemic agent (OHA) or insulin. So, proper dietary management and little changes in the patient’s lifestyle are very effective for reducing her plasma glucose level. Objectives: Proper counselling of the patients and flexibility in their lifestyle and diet can effectively control the plasma glucose level in GDM patients. Methods: Total 60 GDM patients of age > 18 years were taken. We had three counselling sessions with the patient and other members of the family like husband, parents, and in-laws at different intervals, discussed their lifestyle and diet pattern, helped them to eliminate the factors those had an adverse effect on plasma glucose level and promoted them to acquire a healthy lifestyle. We have counselled the patient and her family member separately and then together also. They have explained how increased plasma glucose level can be effectively controlled with the little modification in their diet and routine activities. They were also taught to remain stress-free during their rest of antenatal period. We have excluded the patients from our study who were diabetic before pregnancy and patients with other comorbid illnesses like hypothyroidism and valvular heart disease. Results and conclusions: Results were very rewarding as patients could acquire a lifestyle of their choice. They were happy because extra pill burden was not there. All the 60 patients were normoglycemic in remaining antenatal period, 48 patients were delivered normally and 12 patients underwent cesarean section due to various reasons.Regular counselling of the patients regarding their disease and little alterations in diet and lifestyle controlled the plasma glucose level much effectively. The things were more easier and effective when we included other family members during our counselling session because they play a major role in patient’s day to day activity and influence her life.

Keywords: dietary management, gestational diabetes mellitus, impaired glucose tolerance, oral hypoglycemic agent, pregnancy

Procedia PDF Downloads 132
1887 Enhanced Properties of Plasma-Induced Two-Dimensional Ga₂O₃/GaS Heterostructures on Liquid Alloy Substrate

Authors: S. Zhuiykov, M. Karbalaei Akbari

Abstract:

Ultra-low-level incorporation of trace impurities and dopants into two-dimensional (2D) semiconductors is a challenging step towards the development of functional electronic instruments based on 2D materials. Herein, the incorporation of sulphur atoms into 2D Ga2O3 surface oxide film of eutectic gallium-indium alloy (EGaIn) is achieved through plasma-enhanced metal-catalyst dissociation of H2S gas on EGaIn substrate. This process led to the growth of GaS crystalline nanodomains inside amorphous 2D Ga2O3 sublayer films. Consequently, 2D lateral heterophase was developed between the amorphous Ga2O3 and crystalline GaS nanodomains. The materials characterization revealed the alteration of photoluminescence (PL) characteristics and change of valence band maximum (VBM) of functionalized 2D films. The comprehensive studies by conductive atomic force microscopy (c-AFM) showed considerable enhancement of conductivity of 2D Ga2O3/GaS materials (300 times improvement) compared with that of 2D Ga2O3 film. This technique has a great potential for the fabrication of 2D metal oxide devices with tuneable electronic characteristics similar to nano junction memristors and transistors.

Keywords: 2D semiconductors, Ga₂O₃, GaS, plasma-induced functionalization

Procedia PDF Downloads 60
1886 Towards Learning Query Expansion

Authors: Ahlem Bouziri, Chiraz Latiri, Eric Gaussier

Abstract:

The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method.

Keywords: supervised leaning, classification, query expansion, association rules

Procedia PDF Downloads 300
1885 High Accuracy Analytic Approximations for Modified Bessel Functions I₀(x)

Authors: Pablo Martin, Jorge Olivares, Fernando Maass

Abstract:

A method to obtain analytic approximations for special function of interest in engineering and physics is described here. Each approximate function will be valid for every positive value of the variable and accuracy will be high and increasing with the number of parameters to determine. The general technique will be shown through an application to the modified Bessel function of order zero, I₀(x). The form and the calculation of the parameters are performed with the simultaneous use of the power series and asymptotic expansion. As in Padé method rational functions are used, but now they are combined with other elementary functions as; fractional powers, hyperbolic, trigonometric and exponential functions, and others. The elementary function is determined, considering that the approximate function should be a bridge between the power series and the asymptotic expansion. In the case of the I₀(x) function two analytic approximations have been already determined. The simplest one is (1+x²/4)⁻¹/⁴(1+0.24273x²) cosh(x)/(1+0.43023x²). The parameters of I₀(x) were determined using the leading term of the asymptotic expansion and two coefficients of the power series, and the maximum relative error is 0.05. In a second case, two terms of the asymptotic expansion were used and 4 of the power series and the maximum relative error is 0.001 at x≈9.5. Approximations with much higher accuracy will be also shown. In conclusion a new technique is described to obtain analytic approximations to some functions of interest in sciences, such that they have a high accuracy, they are valid for every positive value of the variable, they can be integrated and differentiated as the usual, functions, and furthermore they can be calculated easily even with a regular pocket calculator.

Keywords: analytic approximations, mathematical-physics applications, quasi-rational functions, special functions

Procedia PDF Downloads 224
1884 Cyclic Etching Process Using Inductively Coupled Plasma for Polycrystalline Diamond on AlGaN/GaN Heterostructure

Authors: Haolun Sun, Ping Wang, Mei Wu, Meng Zhang, Bin Hou, Ling Yang, Xiaohua Ma, Yue Hao

Abstract:

Gallium nitride (GaN) is an attractive material for next-generation power devices. It is noted that the performance of GaN-based high electron mobility transistors (HEMTs) is always limited by the self-heating effect. In response to the problem, integrating devices with polycrystalline diamond (PCD) has been demonstrated to be an efficient way to alleviate the self-heating issue of the GaN-based HEMTs. Among all the heat-spreading schemes, using PCD to cap the epitaxial layer before the HEMTs process is one of the most effective schemes. Now, the mainstream method of fabricating the PCD-capped HEMTs is to deposit the diamond heat-spreading layer on the AlGaN surface, which is covered by a thin nucleation dielectric/passivation layer. To achieve the pattern etching of the diamond heat spreader and device preparation, we selected SiN as the hard mask for diamond etching, which was deposited by plasma-enhanced chemical vapor deposition (PECVD). The conventional diamond etching method first uses F-based etching to remove the SiN from the special window region, followed by using O₂/Ar plasma to etch the diamond. However, the results of the scanning electron microscope (SEM) and focused ion beam microscopy (FIB) show that there are lots of diamond pillars on the etched diamond surface. Through our study, we found that it was caused by the high roughness of the diamond surface and the existence of the overlap between the diamond grains, which makes the etching of the SiN hard mask insufficient and leaves micro-masks on the diamond surface. Thus, a cyclic etching method was proposed to solve the problem of the residual SiN, which was left in the F-based etching. We used F-based etching during the first step to remove the SiN hard mask in the specific region; then, the O₂/Ar plasma was introduced to etch the diamond in the corresponding region. These two etching steps were set as one cycle. After the first cycle, we further used cyclic etching to clear the pillars, in which the F-based etching was used to remove the residual SiN, and then the O₂/Ar plasma was used to etch the diamond. Whether to take the next cyclic etching depends on whether there are still SiN micro-masks left. By using this method, we eventually achieved the self-terminated etching of the diamond and the smooth surface after the etching. These results demonstrate that the cyclic etching method can be successfully applied to the integrated preparation of polycrystalline diamond thin films and GaN HEMTs.

Keywords: AlGaN/GaN heterojunction, O₂/Ar plasma, cyclic etching, polycrystalline diamond

Procedia PDF Downloads 82
1883 Properties of the CsPbBr₃ Quantum Dots Treated by O₃ Plasma for Integration in the Perovskite Solar Cell

Authors: Sh. Sousani, Z. Shadrokh, M. Hofbauerová, J. Kollár, M. Jergel, P. Nádaždy, M. Omastová, E. Majková

Abstract:

Perovskite quantum dots (PQDs) have the potential to increase the performance of the perovskite solar cell (PSCs). The integration of PQDs into PSCs can extend the absorption range and enhance photon harvesting and device efficiency. In addition, PQDs can stabilize the device structure by passivating surface defects and traps in the perovskite layer and enhance its stability. The integration of PQDs into PSCs is strongly affected by the type of ligands on the surface of PQDs. The ligands affect the charge transport properties of PQDs, as well as the formation of well-defined interfaces and stability of PSCs. In this work, the CsPbBr₃ QDs were synthesized by the conventional hot-injection method using cesium oleate, PbBr₂ and two different ligands, namely oleic acid (OA) oleylamine (OAm) and didodecyldimethylammonium bromide (DDAB). The STEM confirmed regular shape and relatively monodisperse cubic structure with an average size of about 10-14 nm of the prepared CsPbBr₃ QDs. Further, the photoluminescent (PL) properties of the PQDs/perovskite bilayer with the ligand OA, OAm and DDAB were studied. For this purpose, ITO/PQDs as well as ITO/PQDs/MAPI perovskite structures were prepared by spin coating and the effect of the ligand and oxygen plasma treatment was analyzed. The plasma treatment of the PQDs layer could be beneficial for the deposition of the MAPI perovskite layer and the formation of a well-defined PQDs/MAPI interface. The absorption edge in UV-Vis absorption spectra for OA, OAm CsPbBr₃ QDs is placed around 513 nm (the band gap 2.38 eV); for DDAB CsPbBr₃ QDs, it is located at 490 nm (the band gap 2.33 eV). The photoluminescence (PL) spectra of CsPbBr₃ QDs show two peaks located around 514 nm (503 nm) and 718 nm (708 nm) for OA, OAm (DDAB). The peak around 500 nm corresponds to the PL of PQDs, and the peak close to 710 nm belongs to the surface states of PQDs for both types of ligands. These surface states are strongly affected by the O₃ plasma treatment. For PQDs with DDAB ligand, the O₃ exposure (5, 10, 15 s) results in the blue shift of the PQDs peak and a non-monotonous change of the amplitude of the surface states' peak. For OA, OAm ligand, the O₃ exposition did not cause any shift of the PQDs peak, and the intensity of the PL peak related to the surface states is lower by one order of magnitude in comparison with DDAB, being affected by O₃ plasma treatment. The PL results indicate the possibility of tuning the position of the PL maximum by the ligand of the PQDs. Similar behavior of the PQDs layer was observed for the ITO/QDs/MAPI samples, where an additional strong PL peak at 770 nm coming from the perovskite layer was observed; for the sample with PQDs with DDAB ligands, a small blue shift of the perovskite PL maximum was observed independently of the plasma treatment. These results suggest the possibility of affecting the PL maximum position and the surface states of the PQDs by the combination of a suitable ligand and the O₃ plasma treatment.

Keywords: perovskite quantum dots, photoluminescence, O₃ plasma., Perovskite Solar Cells

Procedia PDF Downloads 35
1882 Properties of the CsPbBr₃ Quantum Dots Treated by O₃ Plasma for Integration in the Perovskite Solar Cell

Authors: Sh. Sousani, Z. Shadrokh, M. Hofbauerová, J. Kollár, M. Jergel, P. Nádaždy, M. Omastová, E. Majková

Abstract:

Perovskite quantum dots (PQDs) have the potential to increase the performance of the perovskite solar cells (PSCs). The integration of PQDs into PSCs can extend the absorption range and enhance photon harvesting and device efficiency. In addition, PQDs can stabilize the device structure by passivating surface defects and traps in the perovskite layer and enhance its stability. The integration of PQDs into PSCs is strongly affected by the type of ligands on the surface of PQDs. The ligands affect the charge transport properties of PQDs, as well as the formation of well-defined interfaces and stability of PSCs. In this work, the CsPbBr₃ QDs were synthesized by the conventional hot-injection method using cesium oleate, PbBr₂, and two different ligands, namely oleic acid (OA)@oleylamine (OAm) and didodecyldimethylammonium bromide (DDAB). The STEM confirmed regular shape and relatively monodisperse cubic structure with an average size of about 10-14 nm of the prepared CsPbBr₃ QDs. Further, the photoluminescent (PL) properties of the PQDs/perovskite bilayer with the ligand OA@OAm and DDAB were studied. For this purpose, ITO/PQDs, as well as ITO/PQDs/MAPI perovskite structures, were prepared by spin coating, and the effect of the ligand and oxygen plasma treatment was analysed. The plasma treatment of the PQDs layer could be beneficial for the deposition of the MAPI perovskite layer and the formation of a well-defined PQDs/MAPI interface. The absorption edge in UV-Vis absorption spectra for OA@OAm CsPbBr₃ QDs is placed around 513 nm (the band gap 2.38 eV); for DDAB CsPbBr₃ QDs, it is located at 490 nm (the band gap 2.33 eV). The photoluminescence (PL) spectra of CsPbBr₃ QDs show two peaks located around 514 nm (503 nm) and 718 nm (708 nm) for OA@OAm (DDAB). The peak around 500 nm corresponds to the PL of PQDs, and the peak close to 710 nm belongs to the surface states of PQDs for both types of ligands. These surface states are strongly affected by the O₃ plasma treatment. For PQDs with DDAB ligand, the O₃ exposure (5, 10, 15 s) results in the blue shift of the PQDs peak and a non-monotonous change of the amplitude of the surface states' peak. For OA@OAm ligand, the O₃ exposition did not cause any shift of the PQDs peak, and the intensity of the PL peak related to the surface states is lower by one order of magnitude in comparison with DDAB, being affected by O₃ plasma treatment. The PL results indicate the possibility of tuning the position of the PL maximum by the ligand of the PQDs. Similar behaviour of the PQDs layer was observed for the ITO/QDs/MAPI samples, where an additional strong PL peak at 770 nm coming from the perovskite layer was observed; for the sample with PQDs with DDAB ligands, a small blue shift of the perovskite PL maximum was observed independently of the plasma treatment. These results suggest the possibility of affecting the PL maximum position and the surface states of the PQDs by the combination of a suitable ligand and the O₃ plasma treatment.

Keywords: perovskite quantum dots, photoluminescence, O₃ plasma., perovskite solar cells

Procedia PDF Downloads 38
1881 Electrotechnology for Silicon Refining: Plasma Generator and Arc Furnace Installations and Theoretical Base

Authors: Ashot Navasardian, Mariam Vardanian, Vladik Vardanian

Abstract:

The photovoltaic and the semiconductor industries are in growth and it is necessary to supply a large amount of silicon to maintain this growth. Since silicon is still the best material for the manufacturing of solar cells and semiconductor components so the pure silicon like solar grade and semiconductor grade materials are demanded. There are two main routes for silicon production: metallurgical and chemical. In this article, we reviewed the electrotecnological installations and systems for semiconductor manufacturing. The main task is to design the installation which can produce SOG Silicon from river sand by one work unit.

Keywords: metallurgical grade silicon, solar grade silicon, impurity, refining, plasma

Procedia PDF Downloads 459
1880 Dust Ion Acoustic Shock Waves in Dissipative Superthermal Plasmas

Authors: Hamid Reza Pakzad

Abstract:

In this paper, the properties of dust-ion-acoustic (DIA) shock waves in an unmagnetized dusty plasma, whose constituents are inertial ions, superthermal electrons, and stationary dust particles, are investigated by employing the reductive perturbation method. The dissipation is taken into account the kinematic viscosity among the plasma constituents. It is shown that the basic features of DIA shock waves are significantly modified by the effects of electron superthermality and ion kinematic viscosity.

Keywords: reductive perturbation method, dust ion acoustic shock wave, superthermal electron, dissipative plasmas

Procedia PDF Downloads 282
1879 Bioanalytical Method Development and Validation of Aminophylline in Rat Plasma Using Reverse Phase High Performance Liquid Chromatography: An Application to Preclinical Pharmacokinetics

Authors: S. G. Vasantharaju, Viswanath Guptha, Raghavendra Shetty

Abstract:

Introduction: Aminophylline is a methylxanthine derivative belonging to the class bronchodilator. From the literature survey, reported methods reveals the solid phase extraction and liquid liquid extraction which is highly variable, time consuming, costly and laborious analysis. Present work aims to develop a simple, highly sensitive, precise and accurate high-performance liquid chromatography method for the quantification of Aminophylline in rat plasma samples which can be utilized for preclinical studies. Method: Reverse Phase high-performance liquid chromatography method. Results: Selectivity: Aminophylline and the internal standard were well separated from the co-eluted components and there was no interference from the endogenous material at the retention time of analyte and the internal standard. The LLOQ measurable with acceptable accuracy and precision for the analyte was 0.5 µg/mL. Linearity: The developed and validated method is linear over the range of 0.5-40.0 µg/mL. The coefficient of determination was found to be greater than 0.9967, indicating the linearity of this method. Accuracy and precision: The accuracy and precision values for intra and inter day studies at low, medium and high quality control samples concentrations of aminophylline in the plasma were within the acceptable limits Extraction recovery: The method produced consistent extraction recovery at all 3 QC levels. The mean extraction recovery of aminophylline was 93.57 ± 1.28% while that of internal standard was 90.70 ± 1.30%. Stability: The results show that aminophylline is stable in rat plasma under the studied stability conditions and that it is also stable for about 30 days when stored at -80˚C. Pharmacokinetic studies: The method was successfully applied to the quantitative estimation of aminophylline rat plasma following its oral administration to rats. Discussion: Preclinical studies require a rapid and sensitive method for estimating the drug concentration in the rat plasma. The method described in our article includes a simple protein precipitation extraction technique with ultraviolet detection for quantification. The present method is simple and robust for fast high-throughput sample analysis with less analysis cost for analyzing aminophylline in biological samples. In this proposed method, no interfering peaks were observed at the elution times of aminophylline and the internal standard. The method also had sufficient selectivity, specificity, precision and accuracy over the concentration range of 0.5 - 40.0 µg/mL. An isocratic separation technique was used underlining the simplicity of the presented method.

Keywords: Aminophyllin, preclinical pharmacokinetics, rat plasma, RPHPLC

Procedia PDF Downloads 192