Search results for: physical lengths of channel paths
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7501

Search results for: physical lengths of channel paths

7441 Product Line Design with Customization in the Presence of Demand Uncertainty

Authors: Parisa Bagheri Tookanlou

Abstract:

In this paper, we analyze a product line design problem faced by a manufacturing firm where the product line consists of a customized product in addition to a standard product and is offered in a market in which customers are heterogeneous on aesthetic attributes of the product. The customization level of a product is defined by the fraction of aesthetic attributes of the product that the manufacturer chooses to customize. In contrast to the existing literature on product line design that predominantly assumes deterministic demand, we consider the presence of demand uncertainty and frame the product line design problem in a single period (news vendor) setting. We examine the effect of demand uncertainty on product line decisions. Furthermore, we also examine how product line decisions are influenced by channel structure. While we use the centralized channel as a benchmark, we consider the decentralized dual channel where the customized product is sold through an online channel owned by the manufacturer and the standard product is sold through a retailer. We introduce a supply contract between the manufacturer and the retailer for improving channel efficiency and coordinate the distribution channel.

Keywords: product line design, demand uncertainty, customization level, distribution channel

Procedia PDF Downloads 153
7440 Flow Prediction of Boundary Shear Stress with Enlarging Flood Plains

Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua

Abstract:

River is our main source of water which is a form of open channel flow and the flow in open channel provides with many complex phenomenon of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress and depth averaged velocity. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, CES software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel and the results is compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented.

Keywords: depth average velocity, non prismatic compound channel, relative flow depth, velocity distribution

Procedia PDF Downloads 123
7439 An Empirical Investigation of Uncertainty and the Lumpy Investment Channel of Monetary Policy

Authors: Min Fang, Jiaxi Yang

Abstract:

Monetary policy could be less effective at stimulating investment during periods of elevated volatility than during normal times. In this paper, we argue that elevated volatility leads to a decrease in extensive margin investment incentive so that nominal stimulus generates less aggregate investment. To do this, we first empirically document that high volatility weakens firms’ investment responses to monetary stimulus. Such effects depend on the lumpiness nature of the firm-level investment. The findings are that the channel exists for all of the physical investment, innovation investment, and organization investment.

Keywords: investment, irreversibility, volatility, uncertainty, firm heterogeneity, monetary policy

Procedia PDF Downloads 71
7438 The Minimum Patch Size Scale for Seagrass Canopy Restoration

Authors: Aina Barcelona, Carolyn Oldham, Jordi Colomer, Teresa Serra

Abstract:

The loss of seagrass meadows worldwide is being tackled by formulating coastal restoration strategies. Seagrass loss results in a network of vegetated patches which are barely interconnected, and consequently, the ecological services they provide may be highly compromised. Hence, there is a need to optimize coastal management efforts in order to implement successful restoration strategies, not only through modifying the architecture of the canopies but also by gathering together information on the hydrodynamic conditions of the seabeds. To obtain information on the hydrodynamics within the patches of vegetation, this study deals with the scale analysis of the minimum lengths of patch management strategies that can be effectively used on. To this aim, a set of laboratory experiments were conducted in a laboratory flume where the plant densities, patch lengths, and hydrodynamic conditions were varied to discern the vegetated patch lengths that can provide optimal ecosystem services for canopy development. Two possible patch behaviours based on the turbulent kinetic energy (TKE) production were determined: one where plants do not interact with the flow and the other where plants interact with waves and produce TKE. Furthermore, this study determines the minimum patch lengths that can provide successful management restoration. A canopy will produce TKE, depending on its density, the length of the vegetated patch, and the wave velocities. Therefore, a vegetated patch will produce plant-wave interaction under high wave velocities when it presents large lengths and high canopy densities.

Keywords: seagrass, minimum patch size, turbulent kinetic energy, oscillatory flow

Procedia PDF Downloads 154
7437 Channel Estimation/Equalization with Adaptive Modulation and Coding over Multipath Faded Channels for WiMAX

Authors: B. Siva Kumar Reddy, B. Lakshmi

Abstract:

WiMAX has adopted an Adaptive Modulation and Coding (AMC) in OFDM to endure higher data rates and error free transmission. AMC schemes employ the Channel State Information (CSI) to efficiently utilize the channel and maximize the throughput and for better spectral efficiency. This CSI has given to the transmitter by the channel estimators. In this paper, LSE (Least Square Error) and MMSE (Minimum Mean square Error) estimators are suggested and BER (Bit Error Rate) performance has been analyzed. Channel equalization is also integrated with with AMC-OFDM system and presented with Constant Modulus Algorithm (CMA) and Least Mean Square (LMS) algorithms with convergence rates analysis. Simulation results proved that increment in modulation scheme size causes to improvement in throughput along with BER value. There is a trade-off among modulation size, throughput, BER value and spectral efficiency. Results also reported the requirement of channel estimation and equalization in high data rate systems.

Keywords: AMC, CSI, CMA, OFDM, OFDMA, WiMAX

Procedia PDF Downloads 370
7436 Efficient Signal Detection Using QRD-M Based on Channel Condition in MIMO-OFDM System

Authors: Jae-Jeong Kim, Ki-Ro Kim, Hyoung-Kyu Song

Abstract:

In this paper, we propose an efficient signal detector that switches M parameter of QRD-M detection scheme is proposed for MIMO-OFDM system. The proposed detection scheme calculates the threshold by 1-norm condition number and then switches M parameter of QRD-M detection scheme according to channel information. If channel condition is bad, the parameter M is set to high value to increase the accuracy of detection. If channel condition is good, the parameter M is set to low value to reduce complexity of detection. Therefore, the proposed detection scheme has better trade off between BER performance and complexity than the conventional detection scheme. The simulation result shows that the complexity of proposed detection scheme is lower than QRD-M detection scheme with similar BER performance.

Keywords: MIMO-OFDM, QRD-M, channel condition, BER

Procedia PDF Downloads 332
7435 Analysis of Cooperative Hybrid ARQ with Adaptive Modulation and Coding on a Correlated Fading Channel Environment

Authors: Ibrahim Ozkan

Abstract:

In this study, a cross-layer design which combines adaptive modulation and coding (AMC) and hybrid automatic repeat request (HARQ) techniques for a cooperative wireless network is investigated analytically. Previous analyses of such systems in the literature are confined to the case where the fading channel is independent at each retransmission, which can be unrealistic unless the channel is varying very fast. On the other hand, temporal channel correlation can have a significant impact on the performance of HARQ systems. In this study, utilizing a Markov channel model which accounts for the temporal correlation, the performance of non-cooperative and cooperative networks are investigated in terms of packet loss rate and throughput metrics for Chase combining HARQ strategy.

Keywords: cooperative network, adaptive modulation and coding, hybrid ARQ, correlated fading

Procedia PDF Downloads 110
7434 Multi-Path Signal Synchronization Model with Phase Length Constraints

Authors: Tzu-Jung Huang, Hsun-Jung Cho, Chien-Chia Liäm Huang

Abstract:

To improve the level of service (LoS) of urban arterial systems containing a series of signalized intersections, a proper design of offsets for all intersections associated is of great importance. The MAXBAND model has been the most common approach for this purpose. In this paper, we propose a MAXBAND model with phase constraints so that the lengths of the phases in a cycle are variable. In other words, the length of a cycle is also variable in our setting. We conduct experiments on a real-world traffic network, having several major paths, in Taiwan for numerical evaluations. Actual traffic data were collected through on-site experiments. Numerical evidences suggest that the improvements are around 32%, on average, in terms of total delay of the entire network.

Keywords: arterial progression, MAXBAND, signal control, offset

Procedia PDF Downloads 319
7433 Lateral Torsional Buckling of an Eccentrically Loaded Channel Section Beam

Authors: L. Dahmani, S. Drizi, M. Djemai, A. Boudjemia, M. O. Mechiche

Abstract:

Channel sections are widely used in practice as beams. However, design rules for eccentrically loaded (not through shear center) beams with channel cross- sections are not available in Eurocode 3. This paper compares the ultimate loads based on the adjusted design rules for lateral torsional buckling of eccentrically loaded channel beams in bending to the ultimate loads obtained with Finite Element (FE) simulations on the basis of a parameter study. Based on the proposed design rule, this study has led to a new design rule which conforms to Eurocode 3.

Keywords: ANSYS, Eurocode 3, finite element method, lateral torsional buckling, steel channel beam

Procedia PDF Downloads 363
7432 BER Analysis of Energy Detection Spectrum Sensing in Cognitive Radio Using GNU Radio

Authors: B. Siva Kumar Reddy, B. Lakshmi

Abstract:

Cognitive Radio is a turning out technology that empowers viable usage of the spectrum. Energy Detector-based Sensing is the most broadly utilized spectrum sensing strategy. Besides, it is a lot of generic as receivers does not like any information on the primary user's signals, channel data, of even the sort of modulation. This paper puts forth the execution of energy detection sensing for AM (Amplitude Modulated) signal at 710 KHz, FM (Frequency Modulated) signal at 103.45 MHz (local station frequency), Wi-Fi signal at 2.4 GHz and WiMAX signals at 6 GHz. The OFDM/OFDMA based WiMAX physical layer with convolutional channel coding is actualized utilizing USRP N210 (Universal Software Radio Peripheral) and GNU Radio based Software Defined Radio (SDR). Test outcomes demonstrated the BER (Bit Error Rate) augmentation with channel noise and BER execution is dissected for different Eb/N0 (the energy per bit to noise power spectral density ratio) values.

Keywords: BER, Cognitive Radio, GNU Radio, OFDM, SDR, WiMAX

Procedia PDF Downloads 472
7431 A Physically-Based Analytical Model for Reduced Surface Field Laterally Double Diffused MOSFETs

Authors: M. Abouelatta, A. Shaker, M. El-Banna, G. T. Sayah, C. Gontrand, A. Zekry

Abstract:

In this paper, a methodology for physically modeling the intrinsic MOS part and the drift region of the n-channel Laterally Double-diffused MOSFET (LDMOS) is presented. The basic physical effects like velocity saturation, mobility reduction, and nonuniform impurity concentration in the channel are taken into consideration. The analytical model is implemented using MATLAB. A comparison of the simulations from technology computer aided design (TCAD) and that from the proposed analytical model, at room temperature, shows a satisfactory accuracy which is less than 5% for the whole voltage domain.

Keywords: LDMOS, MATLAB, RESURF, modeling, TCAD

Procedia PDF Downloads 169
7430 Mixed Sub-Fractional Brownian Motion

Authors: Mounir Zili

Abstract:

We will introduce a new extension of the Brownian motion, that could serve to get a good model of many natural phenomena. It is a linear combination of a finite number of sub-fractional Brownian motions; that is why we will call it the mixed sub-fractional Brownian motion. We will present some basic properties of this process. Among others, we will check that our process is non-Markovian and that it has non-stationary increments. We will also give the conditions under which it is a semimartingale. Finally, the main features of its sample paths will be specified.

Keywords: mixed Gaussian processes, Sub-fractional Brownian motion, sample paths

Procedia PDF Downloads 459
7429 Single Carrier Frequency Domain Equalization Design to Cope with Narrow Band Jammer

Authors: So-Young Ju, Sung-Mi Jo, Eui-Rim Jeong

Abstract:

In this paper, based on the conventional single carrier frequency domain equalization (SC-FDE) structure, we propose a new SC-FDE structure to cope with narrowband jammer. In the conventional SC-FDE structure, channel estimation is performed in the time domain. When a narrowband jammer exists, time-domain channel estimation is very difficult due to high power jamming interference, which degrades receiver performance. To relieve from this problem, a new SC-FDE frame is proposed to enable channel estimation under narrow band jamming environments. In this paper, we proposed a modified SC-FDE structure that can perform channel estimation in the frequency domain and verified the performance via computer simulation.

Keywords: channel estimation, jammer, pilot, SC-FDE

Procedia PDF Downloads 447
7428 Experimental Study of Discharge with Sharp-Crested Weirs

Authors: E. Keramaris, V. Kanakoudis

Abstract:

In this study the water flow in an open channel over a sharp-crested weir is investigated experimentally. For this reason a series of laboratory experiments were performed in an open channel with a sharp-crested weir. The maximum head expected over the weir, the total upstream water height and the downstream water height of the impact in the constant bed of the open channel were measured. The discharge was measured using a tank put right after the open channel. In addition, the discharge and the upstream velocity were also calculated using already known equations. The main finding is that the relative error percentage for the majority of the experimental measurements is ± 4%, meaning that the calculation of the discharge with a sharp-crested weir gives very good results compared to the numerical results from known equations.

Keywords: sharp-crested weir, weir height, flow measurement, open channel flow

Procedia PDF Downloads 113
7427 Spatial Correlation of Channel State Information in Real Long Range Measurement

Authors: Ahmed Abdelghany, Bernard Uguen, Christophe Moy, Dominique Lemur

Abstract:

The Internet of Things (IoT) is developed to ensure monitoring and connectivity within different applications. Thus, it is critical to study the channel propagation characteristics in Low Power Wide Area Network (LPWAN), especially Long Range Wide Area Network (LoRaWAN). In this paper, an in-depth investigation of the reciprocity between the uplink and downlink Channel State Information (CSI) is done by performing an outdoor measurement campaign in the area of Campus Beaulieu in Rennes. At each different location, the CSI reciprocity is quantified using the Pearson Correlation Coefficient (PCC) which shows a very high linear correlation between the uplink and downlink CSI. This reciprocity feature could be utilized for the physical layer security between the node and the gateway. On the other hand, most of the CSI shapes from different locations are highly uncorrelated from each other. Hence, it can be anticipated that this could achieve significant localization gain by utilizing the frequency hopping in the LoRa systems by getting access to a wider band.

Keywords: IoT, LPWAN, LoRa, effective signal power, onsite measurement

Procedia PDF Downloads 138
7426 Mixed-Sub Fractional Brownian Motion

Authors: Mounir Zili

Abstract:

We will introduce a new extension of the Brownian motion, that could serve to get a good model of many natural phenomena. It is a linear combination of a finite number of sub-fractional Brownian motions; that is why we will call it the mixed sub-fractional Brownian motion. We will present some basic properties of this process. Among others, we will check that our process is non-markovian and that it has non-stationary increments. We will also give the conditions under which it is a semi-martingale. Finally, the main features of its sample paths will be specified.

Keywords: fractal dimensions, mixed gaussian processes, sample paths, sub-fractional brownian motion

Procedia PDF Downloads 387
7425 Determination of Anchor Lengths by Retaining Walls

Authors: Belabed Lazhar

Abstract:

The dimensioning of the anchored retaining screens passes always by the analysis of their stability. The calculation of anchoring lengths is practically carried out according to the mechanical model suggested by Kranz which is often criticized. The safety is evaluated through the comparison of interior force and external force. The force of anchoring over the length cut behind the failure solid is neglected. The failure surface cuts anchoring in the medium length of sealing. In this article, one proposes a new mechanical model which overcomes these disadvantages (simplifications) and gives interesting results.

Keywords: retaining walls, anchoring, stability, mechanical modeling, safety

Procedia PDF Downloads 327
7424 Channel That Can Be Used on Slope, Slide Prone and Seismic Areas, Swelling and Collapsing Soils

Authors: Sabir Tehrankhan Hasanov, Mir Movsum Anar Dadashev

Abstract:

The article provides a brief overview of irrigation systems and canals applied to slopes, landslide-prone, seismic areas, and swelling and collapsing soils. The contemporary construction of the canal used for irrigation, energy, and water supply purposes is described. In order to ensure the durability, longevity, and reliability of the channel, a damping mat made of cast material is created under its cover, and the top is covered with a waterproof screen. Dowels are placed on the bottom and sides of the channel, and the bottom dowel is riveted to the solid bedrock and connected with piles placed at certain distances. Drainage was placed next to the bottom dowel, an operation road was created on one side of the channel, and a berm road was created on the other side. A bathtub was built on the side of the road, and a forest-bush strip was built on its bank.

Keywords: slope, channel, landslide, collapse, swell, soil, structure

Procedia PDF Downloads 53
7423 General Formula for Water Surface Profile over Side Weir in the Combined, Trapezoidal and Exponential, Channels

Authors: Abdulrahman Abdulrahman

Abstract:

A side weir is a hydraulic structure set into the side of a channel. This structure is used for water level control in channels, to divert flow from a main channel into a side channel when the water level in the main channel exceeds a specific limit and as storm overflows from urban sewerage system. Computation of water surface over the side weirs is essential to determine the flow rate of the side weir. Analytical solutions for water surface profile along rectangular side weir are available only for the special cases of rectangular and trapezoidal channels considering constant specific energy. In this paper, a rectangular side weir located in a combined (trapezoidal with exponential) channel was considered. Expanding binominal series of integer and fraction powers and the using of reduction formula of cosine function integrals, a general analytical formula was obtained for water surface profile along a side weir in a combined (trapezoidal with exponential) channel. Since triangular, rectangular, trapezoidal and parabolic cross-sections are special cases of the combined cross section, the derived formula, is applicable to triangular, rectangular, trapezoidal cross-sections as analytical solution and semi-analytical solution to parabolic cross-section with maximum relative error smaller than 0.76%. The proposed solution should be a useful engineering tool for the evaluation and design of side weirs in open channel.

Keywords: analytical solution, combined channel, exponential channel, side weirs, trapezoidal channel, water surface profile

Procedia PDF Downloads 209
7422 Enhancement of Primary User Detection in Cognitive Radio by Scattering Transform

Authors: A. Moawad, K. C. Yao, A. Mansour, R. Gautier

Abstract:

The detecting of an occupied frequency band is a major issue in cognitive radio systems. The detection process becomes difficult if the signal occupying the band of interest has faded amplitude due to multipath effects. These effects make it hard for an occupying user to be detected. This work mitigates the missed-detection problem in the context of cognitive radio in frequency-selective fading channel by proposing blind channel estimation method that is based on scattering transform. By initially applying conventional energy detection, the missed-detection probability is evaluated, and if it is greater than or equal to 50%, channel estimation is applied on the received signal followed by channel equalization to reduce the channel effects. In the proposed channel estimator, we modify the Morlet wavelet by using its first derivative for better frequency resolution. A mathematical description of the modified function and its frequency resolution is formulated in this work. The improved frequency resolution is required to follow the spectral variation of the channel. The channel estimation error is evaluated in the mean-square sense for different channel settings, and energy detection is applied to the equalized received signal. The simulation results show improvement in reducing the missed-detection probability as compared to the detection based on principal component analysis. This improvement is achieved at the expense of increased estimator complexity, which depends on the number of wavelet filters as related to the channel taps. Also, the detection performance shows an improvement in detection probability for low signal-to-noise scenarios over principal component analysis- based energy detection.

Keywords: channel estimation, cognitive radio, scattering transform, spectrum sensing

Procedia PDF Downloads 175
7421 Ocular Biometry: Common Etiologies of Difference More Than 0.33mm between Axial Lengths of the 2 Eyes

Authors: Ghandehari Motlagh, Mohammad

Abstract:

Purpose: We tried to find the most common etiologies for anisometropia in pre-op cataract cases: axial or refractive. Methods: In this cross-sectional study ,41 pre-op cataract eyes with more than 0.33 difference between axial lengths of 2 eyes were enrolled.Considered for each 1mm difference between axial lengths in long eyes( AXL more than 25):1.75-2.00 D of anisometropia, for normal eyes(AXL: 22- 25):2.50D and for short eyes (AXL less than 22):3.50-3.75 D as axial anisometropia. If there are more or lesser anisometropia, we recorded as refractive anisometropia. Results: Average of anisometropia :4.24 D, prevalence of PK or LK :1 (2.38%), kc:1(2.38%), glaucoma surgery: 1(2.38%), and pseudophakic status of the opposite eye 8(19.04%). Prevalence of axial anisometropia:21 (52.4%) and refractive anisometropia 20(47.6%).Then on basis of this study we can rely on the patient’s refraction exactly before phaco for evaluation of axial length differences between the 2 eyes, because most of the anisometropias are axial. Conclusion: In most cases, cataract does not induce significant change in refractive error (secondary myopia) and AXL difference between the 2 eyes are correlated with anisometropia.so it can be used for cataract patient’s ocular biometry evaluation. Pre-cataract refraction is a valuable variable should be measured and recorded in routin eye examination.

Keywords: ocular axial length, anisometropia, cataract, ophthalmology and optometry

Procedia PDF Downloads 356
7420 The Crack Propagation on Glass in Laser Thermal Cleavage

Authors: Jehnming Lin

Abstract:

In the laser cleavage of glass, the laser is mostly adopted as a heat source to generate a thermal stress state on the substrates. The crack propagation of the soda-lime glass in the laser thermal cleavage with the straight-turning paths was investigated in this study experimentally and numerically. The crack propagation was visualized by a high speed camera with the off-line examination on the micro-crack propagation. The temperature and stress distributions induced by the laser heat source were calculated by ANSYS software based on the finite element method (FEM). With the cutting paths in various turning directions, the experimental and numerical results were in comparison and verified. The fracture modes due to the normal and shear stresses were verified at the turning point of the laser cleavage path. It shows a significant variation of the stress profiles along the straight-turning paths and causes a change on the fracture modes.

Keywords: laser cleavage, glass, fracture, stress analysis

Procedia PDF Downloads 206
7419 Effects of Channel Orientation on Heat Transfer in a Rotating Rectangular Channel with Jet Impingement Cooling and Film Coolant Extraction

Authors: Hua Li, Hongwu Deng

Abstract:

The turbine blade's leading edge is usually cooled by jet impingement cooling technology due to the heaviest heat load. For a rotating turbine blade, however, the channel orientation (β, the angle between the jet direction and the rotating plane) could play an important role in influencing the flow field and heat transfer. Therefore, in this work, the effects of channel orientation (from 90° to 180°) on heat transfer in a jet impingement cooling channel are experimentally investigated. Furthermore, the investigations are conducted under an isothermal boundary condition. Both the jet-to-target surface distance and jet-to-jet spacing are three times the jet hole diameter. The jet Reynolds number is 5,000, and the maximum jet rotation number reaches 0.24. The results show that the rotation-induced variations of heat transfer are different in each channel orientation. In the cases of 90°≤β≤135°, a vortex generated in the low-radius region of the supply channel changes the mass-flowrate distribution in each jet hole. Therefore, the heat transfer in the low-radius region decreases with the rotation number, whereas the heat transfer in the high-radius region increases, indicating that a larger temperature gradient in the radial direction could appear in the turbine blade's leading edge. When 135°<β≤180°; however, the heat transfer of the entire stagnant zone decreases with the rotation number. The rotation-induced jet deflection is the primary factor that weakens the heat transfer, and jets cannot reach the target surface at high rotation numbers. For the downstream regions, however, the heat transfer is enhanced by 50%-80% in every channel orientation because the dead zone is broken by the rotation-induced secondary flow in the impingement channel.

Keywords: heat transfer, jet impingement cooling, channel orientation, high rotation number, isothermal boundary

Procedia PDF Downloads 78
7418 Modifying Byzantine Fault Detection Using Disjoint Paths

Authors: Mehmet Hakan Karaata, Ali Hamdan, Omer Yusuf Adam Mohamed

Abstract:

Consider a distributed system that delivers messages from a process to another. Such a system is often required to deliver each message to its destination regardless of whether or not the system components experience arbitrary forms of faults. In addition, each message received by the destination must be a message sent by a system process. In this paper, we first identify the necessary and sufficient conditions to detect some restricted form of Byzantine faults referred to as modifying Byzantine faults. An observable form of a Byzantine fault whose effect is limited to the modification of a message metadata or content, timing and omission faults, and message replay is referred to as a modifying Byzantine fault. We then present a distributed protocol to detect modifying Byzantine faults using optimal number of messages over node-disjoint paths.

Keywords: Byzantine faults, distributed systems, fault detection, network pro- tocols, node-disjoint paths

Procedia PDF Downloads 532
7417 Impact of Weather Conditions on Generalized Frequency Division Multiplexing over Gamma Gamma Channel

Authors: Muhammad Sameer Ahmed, Piotr Remlein, Tansal Gucluoglu

Abstract:

The technique called as Generalized frequency division multiplexing (GFDM) used in the free space optical channel can be a good option for implementation free space optical communication systems. This technique has several strengths e.g. good spectral efficiency, low peak-to-average power ratio (PAPR), adaptability and low co-channel interference. In this paper, the impact of weather conditions such as haze, rain and fog on GFDM over the gamma-gamma channel model is discussed. A Trade off between link distance and system performance under intense weather conditions is also analysed. The symbol error probability (SEP) of GFDM over the gamma-gamma turbulence channel is derived and verified with the computer simulations.

Keywords: free space optics, generalized frequency division multiplexing, weather conditions, gamma gamma distribution

Procedia PDF Downloads 145
7416 Computation of Drag and Lift Coefficients on Submerged Vanes in Open Channels

Authors: Anshul Jain, P. Deepak Kumar, P. K. S. Dikshit

Abstract:

To stabilize the riverbanks in the curved reaches of alluvial channels due to erosion and to stop sediment transportation, many models and theories have been put forth. One among such methods is to install flat vanes on the channel bed in predetermined manner. In practical, a relatively small no of vanes can produce bend flows which are practically uniform across the channel. The objective of the present study is to measure the drag and lift on such submerged vanes in open channels. Experiments were performed and the data collected have been presented and analyzed. Using the data collected herein, predictors for the coefficients of drag and lift have been developed. Such predictors yield the value of these coefficients for the known fluid properties and flow characteristic of the channel.

Keywords: drag, lift, vanes, open channel

Procedia PDF Downloads 311
7415 Prediction of Boundary Shear Stress with Flood Plains Enlargements

Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua

Abstract:

The river is our main source of water which is a form of open channel flow and the flow in the open channel provides with many complex phenomena of sciences that need to be tackled such as the critical flow conditions, boundary shear stress, and depth-averaged velocity. The development of society, more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between the main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of the main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, CES software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel, and the results are compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented.

Keywords: depth average velocity, non prismatic compound channel, relative flow depth, velocity distribution

Procedia PDF Downloads 144
7414 Calculation of Electronic Structures of Nickel in Interaction with Hydrogen by Density Functional Theoretical (DFT) Method

Authors: Choukri Lekbir, Mira Mokhtari

Abstract:

Hydrogen-Materials interaction and mechanisms can be modeled at nano scale by quantum methods. In this work, the effect of hydrogen on the electronic properties of a cluster material model «nickel» has been studied by using of density functional theoretical (DFT) method. Two types of clusters are optimized: Nickel and hydrogen-nickel system. In the case of nickel clusters (n = 1-6) without presence of hydrogen, three types of electronic structures (neutral, cationic and anionic), have been optimized according to three basis sets calculations (B3LYP/LANL2DZ, PW91PW91/DGDZVP2, PBE/DGDZVP2). The comparison of binding energies and bond lengths of the three structures of nickel clusters (neutral, cationic and anionic) obtained by those basis sets, shows that the results of neutral and anionic nickel clusters are in good agreement with the experimental results. In the case of neutral and anionic nickel clusters, comparing energies and bond lengths obtained by the three bases, shows that the basis set PBE/DGDZVP2 is most suitable to experimental results. In the case of anionic nickel clusters (n = 1-6) with presence of hydrogen, the optimization of the hydrogen-nickel (anionic) structures by using of the basis set PBE/DGDZVP2, shows that the binding energies and bond lengths increase compared to those obtained in the case of anionic nickel clusters without the presence of hydrogen, that reveals the armor effect exerted by hydrogen on the electronic structure of nickel, which due to the storing of hydrogen energy within nickel clusters structures. The comparison between the bond lengths for both clusters shows the expansion effect of clusters geometry which due to hydrogen presence.

Keywords: binding energies, bond lengths, density functional theoretical, geometry optimization, hydrogen energy, nickel cluster

Procedia PDF Downloads 390
7413 Effects of Position and Cut-Out Lengths on the Axial Crushing Behavior of Aluminum Tubes: Experimental and Simulation

Authors: B. Käfer, V. K. Bheemineni, H. Lammer, M. Kotnik, F. O. Riemelmoser

Abstract:

Axial compression tests are performed on circular tubes made of Aluminum EN AW 6060 (AlMgSi0.5 alloy) in T66 state. All the received tubes have the uniform outer diameter of 40mm and thickness of 1.5mm. Two different lengths 100mm and 200mm are used in the analysis. After performing compression tests on the uniform tube, important crashworthy parameters like peak force, average force, crush efficiency and energy absorption are measured. The present paper has given importance to increase the percentage of crush efficiency without decreasing the value energy absorption of a tube, so a circumferential notch was introduced on the top section of the tube. The effects of position and cut-out lengths of a circumferential notch on the crush efficiency are well explained with relative deformation modes and force-displacement curves. The numerical simulations were carried on the software tool ANSYS/LS-DYNA. It is seen that the numerical results are reasonably good in agreement with the experimental results. 

Keywords: crash box, Notch triggering, energy absorption, FEM simulation

Procedia PDF Downloads 417
7412 Numerical Analysis of Liquid Metal Magnetohydrodynamic Flows in a Manifold with Three Sub-Channels

Authors: Meimei Wen, Chang Nyung Kim

Abstract:

In the current study, three-dimensional liquid metal (LM) magneto-hydrodynamic (MHD) flows in a manifold with three sub-channels under a uniform magnetic field are numerically investigated. In the manifold, the electrical current can cross channel walls, thus having influence on the flow distribution in each sub-channel. A case with various arrangements of electric conductivity for different parts of channel walls is considered, yielding different current distributions as well as flow distributions in each sub-channel. Here, the imbalance of mass flow rates in the three sub-channels is addressed. Meanwhile, predicted are detailed behaviors of the flow velocity, pressure, current and electric potential of LM MHD flows with three sub-channels. Commercial software CFX is used for the numerical simulation of LM MHD flows.

Keywords: CFX, liquid metal, manifold, MHD flow

Procedia PDF Downloads 322