Search results for: phosphorous and silica based 3D inorganic gel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28001

Search results for: phosphorous and silica based 3D inorganic gel

27941 Effect of the Nature of Silica Precursor in Zeolite ZSM-22 Synthesis

Authors: Nyiko M. Chauke, James Ramontja, Richard M. Moutloali

Abstract:

The zeolite ZSM-22 material demonstrated effective hydrophilic character as a nanoadditive filler in the preparation of nanocomposite membranes. In this study, nanorods ZSM-22 zeolite materials were hydrothermally synthesised from a homogenous gel mixture prepared using different silica precursors: colloidal silica, fumed silica, tetraethylorthosilicate (TEOS), and aluminium precursor: aluminium sulphate octadecahydrate (Al₂(SO₄)₃.18H₂O to Si/Al of 60. This was focused on developing a defect-free zeolite framework for effective use in applications such as membrane separation process, adsorption, and catalysis. The obtained ZSM-22 zeolite materials with 60 Si/Al ratio exhibits high crystallinity, hydrophilicity, and needle-like morphologies, suggesting successful synthesis as shown by X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Fourier-Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) physicochemical analysis. It was revealed that the use of different nature of silica precursors significantly influenced the properties of the final product and contributed to the development of defect-free zeolite material. As such, the crystalline nanorods of Theta-1 (TON) ZSM-22 obtained from TEOS silica showed high phase purity, defect-free, and narrow particle size distribution. Morphological analysis exhibited that the use of TEOS as silica precursor was effective than its counterparts and produced high crystalline need-like agglomerated particles.

Keywords: silica precursor, hydrothermal synthesis, zeolite material, ZSM-22

Procedia PDF Downloads 109
27940 Effect of Degree of Phosphorylation on Electrospinning and In vitro Cell Behavior of Phosphorylated Polymers as Biomimetic Materials for Tissue Engineering Applications

Authors: Pallab Datta, Jyotirmoy Chatterjee, Santanu Dhara

Abstract:

Over the past few years, phosphorous containing polymers have received widespread attention for applications such as high performance optical fibers, flame retardant materials, drug delivery and tissue engineering. Being pentavalent, phosphorous can exist in different chemical environments in these polymers which increase their versatility. In human biochemistry, phosphorous based compounds exert their functions both in soluble and insoluble form occurring as inorganic or as organophosphorous compounds. Specifically in case of biomacromolecules, phosphates are critical for functions of DNA, ATP, phosphoproteins, phospholipids, phosphoglycans and several coenzymes. Inspired by the role of phosphorous in functional biomacromolecules, design and synthesis of biomimetic materials are thus carried out by several authors to study macromolecular function or as substitutes in clinical tissue regeneration conditions. In addition, many regulatory signals of the body are controlled by phoshphorylation of key proteins present either in form of growth factors or matrix-bound scaffold proteins. This inspires works on synthesis of phospho-peptidomimetic amino acids for understanding key signaling pathways and this is extended to obtain molecules with potentially useful biological properties. Apart from above applications, phosphate groups bound to polymer backbones have also been demonstrated to improve function of osteoblast cells and augment performance of bone grafts. Despite the advantages of phosphate grafting, however, there is limited understanding on effect of degree of phosphorylation on macromolecular physicochemical and/or biological properties. Such investigations are necessary to effectively translate knowledge of macromolecular biochemistry into relevant clinical products since they directly influence processability of these polymers into suitable scaffold structures and control subsequent biological response. Amongst various techniques for fabrication of biomimetic scaffolds, nanofibrous scaffolds fabricated by electrospinning technique offer some special advantages in resembling the attributes of natural extracellular matrix. Understanding changes in physico-chemical properties of polymers as function of phosphorylation is therefore going to be crucial in development of nanofiber scaffolds based on phosphorylated polymers. The aim of the present work is to investigate the effect of phosphorous grafting on the electrospinning behavior of polymers with aim to obtain biomaterials for bone regeneration applications. For this purpose, phosphorylated derivatives of two polymers of widely different electrospinning behaviors were selected as starting materials. Poly(vinyl alcohol) is a conveniently electrospinnable polymer at different conditions and concentrations. On the other hand, electrospinning of chitosan backbone based polymers have been viewed as a critical challenge. The phosphorylated derivatives of these polymers were synthesized, characterized and electrospinning behavior of various solutions containing these derivatives was compared with electrospinning of pure poly (vinyl alcohol). In PVA, phosphorylation adversely impacted electrospinnability while in NMPC, higher phosphate content widened concentration range for nanofiber formation. Culture of MG-63 cells on electrospun nanofibers, revealed that degree of phosphate modification of a polymer significantly improves cell adhesion or osteoblast function of cultured cells. It is concluded that improvement of cell response parameters of nanofiber scaffolds can be attained as a function of controlled degree of phosphate grafting in polymeric biomaterials with implications for bone tissue engineering applications.

Keywords: bone regeneration, chitosan, electrospinning, phosphorylation

Procedia PDF Downloads 195
27939 Comparing the Durability of Saudi Silica Sands for Use in Foundry Processing

Authors: Mahdi Alsagour, Sam Ramrattan

Abstract:

This paper was developed to investigate two types of sands from the Kingdom of Saudi Arabia (KSA) for potential use in the global metal casting industry. Four types of sands were selected for study, two of the sand systems investigated are natural sands from the KSA. The third sand sample is a heat processed synthetic sand and the last sample is commercially available US silica sand that is used as a control in the study. The purpose of this study is to define the durability of the four sand systems selected for foundry usage. Additionally, chemical analysis of the sand systems is presented before and after elevated temperature exposure. Results show that Saudi silica sands are durable and can be used in foundry processing.

Keywords: alternative molding media, foundry sand, reclamation, silica sand, specialty sand

Procedia PDF Downloads 106
27938 A Ratiometric Inorganic Phosphate Sensor Based on CdSe/ZnS QDs and Rhodamine 6G-Doped Nanofibers

Authors: Hong Dinh Duong, Jong Il Rhee

Abstract:

In this study, a ratiometric inorganic phosphate sensor was fabricated by a double layer of the rhodamine 6G-doped nanofibers and the CdSe/ZnS QDs-captured polymer. In which, CdSe/ZnS QDs with emission wavelengths of 595nm were synthesized and ligands on their surface were exchanged with mercaptopropionic acid (MPA). The synthesized MPA-QDs were combined with the mixture of sol-gel of 3-glycidoxypropyl trimethoxysilane (GPTMS), 3-aminopropyltrimethoxysilane (APTMS) and polyurethane (PU) to build a layer for sensing inorganic phosphate. Another sensing layer was of nanofibers doped R6G which were produced from poly(styrene-co-acrylonitrile) by electrospining. The ratio of fluorescence intensities between rhodamin 6G (R6G) and CdSe/ZnS QDs exposed at different phosphate concentrations was used for calculating a linear phosphate concentration range of 0-10mM.

Keywords: nanofiber, QDs, ratiometric phosphate sensor, rhodamine 6G, sol-gel

Procedia PDF Downloads 383
27937 Effectiveness of the Use of Polycarboxylic Ether Superplasticizers in High Performance Concrete Containing Silica Fume

Authors: Alya Harichane, Badreddine Harichane

Abstract:

The incorporation of polycarboxylate ether superplasticizer (PCE) and silica fume (SF) in high-performance concretes (HPC) leads to the achievement of remarkable rheological and mechanical improvements. In the fresh state, PCEs are adsorbed on cement particles and dispersants, in turn promoting the workability of the concrete. Silica fume enables a very well compacted concrete to be obtained, which is characterized by high mechanical parameters in its hardened state. Some PCEs are incompatible with silica fume, which can result in the loss of slump and in poor rheological behavior. The main objective of the research is the study of the influence of three types of PCEs, which all have a different molecular architecture, on the rheological and mechanical behavior of high-performance concretes containing 10% of SF as a partial replacement of cement. The results show that the carboxylic density of PCE has an influence on its compatibility with SF.

Keywords: polycarboxylate-ether superplasticizer, rheology, compressive strength, high-performance concrete, silica fume

Procedia PDF Downloads 46
27936 Investigation of the Effect of Phosphorous on the Flame Retardant Polyacrylonitrile Nanofiber

Authors: Mustafa Yılmaz, Ahmet Akar, Nesrin Köken, Nilgün Kızılcan

Abstract:

Commercially available poly(acrylonitrile-co-vinyl acetate) P(AN-VA) or poly(acrylonitrile-co-methyl acrylate) P(AN-MA) are not satisfactory to meet the demand in flame and fire-resistance. In this work, vinylphosphonic acid is used during polymerization of acrylonitrile, vinyl acetate, methacrylic acid to produce fire-retardant polymers. These phosphorus containing polymers are successfully spun in the form of nanofibers. Properties such as water absorption of polymers are also determined and compared with commercial polymers.

Keywords: flame retardant, nanofiber, polyacrylonitrile, phosphorous compound, membrane

Procedia PDF Downloads 221
27935 Effect of Incineration Temperatures to Time on the Rice Husk Ash (RHA) Silica Structure: A Comparative Study to the Literature with Experimental Work

Authors: Binyamien Ibrahim Rasoul

Abstract:

Controlled burning of rice husk can produce amorphous rice husk ash (RHA) with high silica content which can significantly enhance the properties of concrete. This study has been undertaken to investigate the relationship between the incineration temperatures and time to produce RHA with ultimate reactivity. The rice husk samples were incinerated in an electrical muffle furnace at 350°C, 400°C, 425°C 450°C, 475°C, and 500°C for 60 and 90 minutes, respectively. The silica structure in the Rice Husk Ash (RHA) was determined using X-Ray diffraction analysis, while chemical properties obtained using X-Ray Fluorescence. The results show that RHA appeared to be the totally amorphous when the husk incineration up to 425°C for 60 and even at 90 minutes. However, with increased temperature to 450°C, 475°C and 500°C, traces of crystalline silica (quartz) were detected. However, cannot be taken into account as it does not affect on the ash structure. In conclusion, the result gives an idea of the temperature and the time required to produce ash from rice husk with totally amorphous form.

Keywords: rice husk ash, silica, compressive strength, tensile strength, X-Ray diffraction, X-R florescence, pozzolanic activity

Procedia PDF Downloads 122
27934 Application of the Mesoporous Silica Oxidants on Immunochromatography Detections

Authors: Chang, Ya-Ju, Hsieh, Pei-Hsin, Wu, Jui-Chuang, Chen-Yang, Yui Whei

Abstract:

A mesoporous silica material was prepared to apply to the lateral-flow immunochromatography for detecting a model biosample. The probe antibody is immobilized on the silica surface as the test line to capture its affinity antigen, which laterally flows through the chromatography strips. The antigen is labeled with nano-gold particles, such that the detection can be visually read out from the test line without instrument aids. The result reveals that the mesoporous material provides a vast area for immobilizing the detection probes. Biosening surfaces corresponding with a positive proportion of detection signals is obtained with the biosample loading.

Keywords: mesoporous silica, immunochromatography, lateral-flow strips, biosensors, nano-gold particles

Procedia PDF Downloads 577
27933 Efficiency of an Algae-Zinc Complex Compared to Inorganic Zinc Sulfate on Broilers Performance

Authors: R. Boulmane, C. Alleno, D. Marzin

Abstract:

Trace minerals play an essential role in vital processes and are essential to many biological and physiological functions of the animal. They are usually incorporated in the form of inorganic salts such as sulfates and oxides. Most of these inorganic salts are excreted undigested by the animal causing economic losses as well as environmental pollution. In this context, the use of alternative organic trace minerals with higher bioavailability is emerging. This study was set up to evaluate the effect of using an algae-zinc complex in replacement of zinc sulfate in the feed, on growth performance of broiler chickens. One-thousand-two-hundred 1-day-old chicks were randomly distributed to 30 pens, allocated to 1 of 3 groups receiving different diets: the standard diet containing 35ppm of inorganic zinc sulfate (C+), a test diet containing 35ppm of algae-based zinc (T+), and a test diet containing half dose (16ppm) of algae-based zinc (T-). Three different feeds were distributed from D0-D11, D11-D21 and D21-D35. Individual weighing of the animals (D21 and D35), feed consumption (D11, D21 and D35) and pododermatitis occurrence (D35) were monitored. Data were submitted to analysis of variance. Results show that in finishing period the ADWG of the T+ and T- groups are significantly higher than the control C+ (+6%, P = 0.03). On the other hand, the FCR for the total period is lower for both the T+ and T- groups than the control C+ (-1.2%, P = 0.04). Pododermatitis scoring also shows less lesions for the test groups with algae-based zinc compared to the control group receiving inorganic one. In the end, this study shows a positive effect of the algae zinc-complex on growth performance of broilers compared to inorganic zinc, both when using full dose (35 ppm) or half dose (16 ppm). The use of algae-zinc complex in the premix shows to be a good alternative to reduce zinc excretion while maintaining performance.

Keywords: algae-zinc complex, broiler performance, organic trace minerals, zinc sulfate

Procedia PDF Downloads 213
27932 Synthesis of Double Dye-Doped Silica Nanoparticles and Its Application in Paper-Based Chromatography

Authors: Ka Ho Yau, Jan Frederick Engels, Kwok Kei Lai, Reinhard Renneberg

Abstract:

Lateral flow test is a prevalent technology in various sectors such as food, pharmacology and biomedical sciences. Colloidal gold (CG) is widely used as the signalling molecule because of the ease of synthesis, bimolecular conjugation and its red colour due to intrinsic SPRE. However, the production of colloidal gold is costly and requires vigorous conditions. The stability of colloidal gold are easily affected by environmental factors such as pH, high salt content etc. Silica nanoparticles are well known for its ease of production and stability over a wide range of solvents. Using reverse micro-emulsion (w/o), silica nanoparticles with different sizes can be produced precisely by controlling the amount of water. By incorporating different water-soluble dyes, a rainbow colour of the silica nanoparticles could be produced. Conjugation with biomolecules such as antibodies can be achieved after surface modification of the silica nanoparticles with organosilane. The optimum amount of the antibodies to be labelled was determined by Bradford Assay. In this work, we have demonstrated the ability of the dye-doped silica nanoparticles as a signalling molecule in lateral flow test, which showed a semi-quantitative measurement of the analyte. The image was further analysed for the LOD=10 ng of the analyte. The working range and the linear range of the test were from 0 to 2.15μg/mL and from 0 to 1.07 μg/mL (R2=0.988) respectively. The performance of the tests was comparable to those using colloidal gold with the advantages of lower cost, enhanced stability and having a wide spectrum of colours. The positives lines can be imaged by naked eye or by using a mobile phone camera for a better quantification. Further research has been carried out in multicolour detection of different biomarkers simultaneously. The preliminary results were promising as there was little cross-reactivity being observed for an optimized system. This approach provides a platform for multicolour detection for a set of biomarkers that enhances the accuracy of diseases diagnostics.

Keywords: colorimetric detection, immunosensor, paper-based biosensor, silica

Procedia PDF Downloads 347
27931 The Behavior of Self-Compacting Light Weight Concrete Produced by Magnetic Water

Authors: Moosa Mazloom, Hojjat Hatami

Abstract:

The aim of this article is to access the optimal mix design of self-compacting light weight concrete. The effects of magnetic water, superplasticizer based on polycarboxylic-ether, and silica fume on characteristics of this type of concrete are studied. The workability of fresh concrete and the compressive strength of hardened concrete are considered here. For this purpose, nine mix designs were studied. The percentages of superplasticizer were 0.5, 1, and 2% of the weight of cement, and the percentages of silica fume were 0, 6, and 10% of the weight of cement. The water to cementitious ratios were 0.28, 0.32, and 0.36. The workability of concrete samples was analyzed by the devices such as slump flow, V-funnel, L box, U box, and Urimet with J ring. Then, the compressive strengths of the mixes at the ages of 3, 7, 28, and 90 days were obtained. The results show that by using magnetic water, the compressive strengths are improved at all the ages. In the concrete samples with ordinary water, more superplasticizer dosages were needed. Moreover, the combination of superplasticizer and magnetic water had positive effects on the mixes containing silica fume and they could flow easily.

Keywords: magnetic water, self-compacting light weight concrete, silica fume, superplasticizer

Procedia PDF Downloads 339
27930 Effect of Epoxy-ZrP Nanocomposite Top Coating on Inorganic Barrier Layer

Authors: Haesook Kim, Ha Na Ra, Mansu Kim, Hyun Gi Kim, Sung Soo Kim

Abstract:

Epoxy-ZrP (α-zirconium phosphate) nanocomposites were coated on inorganic barrier layer such as sputtering and atomic layer deposition (ALD) to improve the barrier properties and protect the layer. ZrP nanoplatelets were synthesized using a reflux method and exfoliated in the polymer matrix. The barrier properties of coating layer were characterized by measuring water vapor transmission rate (WVTR). The WVTR dramatically decreased after epoxy-ZrP nanocomposite coating, while maintaining the optical properties. It was also investigated the effect of epoxy-ZrP coating on inorganic layer after bending and reliability test. The optimal structure composed of inorganic and epoxy-ZrP nanocomposite layers was used in organic light emitting diodes (OLED) encapsulation.

Keywords: α-zirconium phosphate, barrier properties, epoxy nanocomposites, OLED encapsulation

Procedia PDF Downloads 331
27929 Synthesis of Ni/Mesopore Silica-Alumina Catalyst for Hydrocracking of Pyrolyzed α-Cellulose

Authors: Wega Trisunaryanti, Hesty Kusumastuti, Iip Izul Falah, Muhammad Fajar Marsuki, Rahmad Nuryanto

Abstract:

Synthesis of Ni supported on mesopore silica-alumina (MSA) for hydrocracking of pyrolyzed α-cellulose had been carried out. The silica and alumina were extracted from Sidoarjo mud. Gelatin from catfish bone was used as a template for the mesopore design. The MSA was synthesized by using hydrothermal method at 100 °C for 24 h and calcined at 550 °C for 4 h then characterized by using X-Ray Diffraction Spectrometer (XRD) and Nitrogen Gas Sorption Analyzer (GAS). The Ni metal was loaded to the MSA by wet impregnation method. The catalytic activity in the hydrocracking reaction of pyrolyzed α-cellulose was carried out at 450 °C for 2 h. The MSA synthesized in this work is an amorphous material with specific surface area, total pore volume, and average pore diameter of 212.29 m²/g, 1.29 cm³/g, and 20.05 nm, respectively. The Ni/MSA catalyst produced 73.02 wt.% of liquid product in hydrocracking of pyrolyzed α-cellulose.

Keywords: catalyst, gelatin, hydrocracking, mesopore silica-alumina, α-cellulose

Procedia PDF Downloads 136
27928 Water Vapor Oxidization of NiO for a Hole Transport Layer in All Inorganic QD-LED

Authors: Jaeun Park, Daekyoung Kim, Ho Kyoon Chung, Heeyeop Chae

Abstract:

Quantum dots light-emitting diodes (QD-LEDs) have been considered as the next generation display and lighting devices due to their excellent color purity, photo-stability solution process possibility and good device stability. Currently typical quantum dot light emitting diodes contain organic layers such as PEDOT:PSS and PVK for charge transport layers. To make quantum dot light emitting diodes (QD-LED) more stable, it is required to replace those acidic and relatively unstable organic charge transport layers with inorganic materials. Therefore all inorganic and solution processed quantum dot light emitting diodes can potentially be a solution to stable and cost-effective display devices. We studied solution processed NiO films to replace organic charge transport layers that are required for stable all-inorganic based light emitting diodes. The transition metal oxides can be made by various vacuum and solution processes, but the solution processes are considered more cost-effective than vacuum processes. In this work we investigated solution processed NiOx for a hole transport layer (HTL). NiOx, has valence band energy levels of 5.3eV and they are easy to make sol-gel solutions. Water vapor oxidation process was developed and applied to solution processed all-inorganic QD-LED. Turn-on voltage, luminance and current efficiency of QD in this work were 5V, 1800Cd/m2 and 0.5Cd/A, respectively.

Keywords: QD-LED, metal oxide solution, NiO, all-inorganic QD-LED device

Procedia PDF Downloads 722
27927 Evaluation of Different Fertilization Practices and Their Impacts on Soil Chemical and Microbial Properties in Two Agroecological Zones of Ghana

Authors: Ansong Richard Omari, Yosei Oikawa, Yoshiharu Fujii, Dorothea Sonoko Bellingrath-Kimura

Abstract:

Renewed interest in soil management aimed at improving the productive capacity of Sub Saharan Africa (SSA) soils has called for the need to analyse the long term effect of different fertilization systems on soil. This study was conducted in two agroecological zones (i.e., Guinea Savannah (GS) and Deciduous forest (DF)) of Ghana to evaluate the impacts of long term (> 5 years) fertilization schemes on soil chemical and microbial properties. Soil samples under four different fertilization schemes (inorganic, inorganic and organic, organic, and no fertilization) were collected from 20 farmers` field in both agroecological zones. Soil analyses were conducted using standard procedures. All average soil quality parameters except extractable C, potential mineralizable nitrogen and CEC were significantly higher in DF sites compared to GS. Inorganic fertilization proved superior in soil chemical and microbial biomass especially in GS zone. In GS, soil deterioration index (DI) revealed that soil quality deteriorated significantly (−26%) under only organic fertilization system whereas soil improvement was observed under inorganic and no fertilization sites. In DF, either inorganic or organic and inorganic fertilization showed significant positive effects on soil quality. The high soil chemical composition and enhanced microbial biomass in DF were associated with the high rate of inorganic fertilization.

Keywords: deterioration index, fertilization scheme, microbial biomass, tropical agroecological zone

Procedia PDF Downloads 371
27926 Effect of Silica Fume at Cellular Sprayed Concrete

Authors: Kyong-Ku Yun, Seung-Yeon Han, Kyeo-Re Lee

Abstract:

Silica fume which is a super-fine byproduct of ferrosilicon or silicon metal has a filling effect on micro-air voids or a transition zone in a hardened cement paste by appropriate mixing, placement, and curing. It, also, has a Pozzolan reaction which enhances the interior density of the hydrated cement paste through a formation of calcium silicate hydroxide. When substituting cement with silica fume, it improves water tightness and durability by filling effect and Pozzolan reaction. However, it needs high range water reducer or super-plasticizer to distribute silica fume into a concrete because of its finesses and high specific surface area. In order to distribute into concrete evenly, cement manufacturers make a pre-blended cement of silica fume and provide to a market. However, a special mixing procedures and another transportation charge another cost and this result in a high price of pre-blended cement of silica fume. The purpose of this dissertation was to investigate the dispersion of silica fume by air slurry and its effect on the mechanical properties of at ready-mixed concrete. The results are as follows: A dispersion effect of silica fume was measured from an analysis of standard deviation for compressive strength test results. It showed that the standard deviation decreased as the air bubble content increased, which means that the dispersion became better as the air bubble content increased. The test result of rapid chloride permeability test showed that permeability resistance increased as the percentages of silica fume increased, but the permeability resistance decreased as the quantity of mixing air bubble increased. The image analysis showed that a spacing factor decreased and a specific surface area increased as the quantity of mixing air bubble increased.

Keywords: cellular sprayed concrete, silica fume, deviation, permeability

Procedia PDF Downloads 112
27925 Unconventional Composite Inorganic Membrane Fabrication for Carbon Emissions Mitigation

Authors: Ngozi Nwogu, Godson Osueke, Mamdud Hossain, Edward Gobina

Abstract:

An unconventional composite inorganic ceramic membrane capable in carbon dioxide emission decline was fabricated and tested at laboratory scale to develop in conformism to various environmental guidelines to mitigate the effect of global warming. A review of the existing membrane technologies for carbon capture including the relevant gas transport mechanisms are presented and discussed. Single gas separation experiments using silica modified ceramic membrane with internal diameter 20mm, outside diameter 25mm and length of 368mm deposited on a macro porous supported reactor.was carried out to investigate individual gas permeation behaviours at different pressures and membrane efficiency after a dip coating method. Nitrogen, Carbon dioxide, Argon, Oxygen and Methane pure gases were used to investigate their individual permeation rates at various pressures. Results show that the gas flow rate increases with pressure drop. However at above a pressure of 3bar, CO2 permeability ratio to than the other gases indicated control of a more selective surface adsorptive transport mechanism.

Keywords: carbon dioxide, composite membranes, permeability, transport mechanisms

Procedia PDF Downloads 476
27924 The Optimization of Topical Antineoplastic Therapy Using Controlled Release Systems Based on Amino-functionalized Mesoporous Silica

Authors: Lacramioara Ochiuz, Aurelia Vasile, Iulian Stoleriu, Cristina Ghiciuc, Maria Ignat

Abstract:

Topical administration of chemotherapeutic agents (eg. carmustine, bexarotene, mechlorethamine etc.) in local treatment of cutaneous T-cell lymphoma (CTCL) is accompanied by multiple side effects, such as contact hypersensitivity, pruritus, skin atrophy or even secondary malignancies. A known method of reducing the side effects of anticancer agent is the development of modified drug release systems using drug incapsulation in biocompatible nanoporous inorganic matrices, such as mesoporous MCM-41 silica. Mesoporous MCM-41 silica is characterized by large specific surface, high pore volume, uniform porosity, and stable dispersion in aqueous medium, excellent biocompatibility, in vivo biodegradability and capacity to be functionalized with different organic groups. Therefore, MCM-41 is an attractive candidate for a wide range of biomedical applications, such as controlled drug release, bone regeneration, protein immobilization, enzymes, etc. The main advantage of this material lies in its ability to host a large amount of the active substance in uniform pore system with adjustable size in a mesoscopic range. Silanol groups allow surface controlled functionalization leading to control of drug loading and release. This study shows (I) the amino-grafting optimization of mesoporous MCM-41 silica matrix by means of co-condensation during synthesis and post-synthesis using APTES (3-aminopropyltriethoxysilane); (ii) loading the therapeutic agent (carmustine) obtaining a modified drug release systems; (iii) determining the profile of in vitro carmustine release from these systems; (iv) assessment of carmustine release kinetics by fitting on four mathematical models. Obtained powders have been described in terms of structure, texture, morphology thermogravimetric analysis. The concentration of the therapeutic agent in the dissolution medium has been determined by HPLC method. In vitro dissolution tests have been done using cell Enhancer in a 12 hours interval. Analysis of carmustine release kinetics from mesoporous systems was made by fitting to zero-order model, first-order model Higuchi model and Korsmeyer-Peppas model, respectively. Results showed that both types of highly ordered mesoporous silica (amino grafted by co-condensation process or post-synthesis) are thermally stable in aqueous medium. In what regards the degree of loading and efficiency of loading with the therapeutic agent, there has been noticed an increase of around 10% in case of co-condensation method application. This result shows that direct co-condensation leads to even distribution of amino groups on the pore walls while in case of post-synthesis grafting many amino groups are concentrated near the pore opening and/or on external surface. In vitro dissolution tests showed an extended carmustine release (more than 86% m/m) both from systems based on silica functionalized directly by co-condensation and after synthesis. Assessment of carmustine release kinetics revealed a release through diffusion from all studied systems as a result of fitting to Higuchi model. The results of this study proved that amino-functionalized mesoporous silica may be used as a matrix for optimizing the anti-cancer topical therapy by loading carmustine and developing prolonged-release systems.

Keywords: carmustine, silica, controlled, release

Procedia PDF Downloads 228
27923 The Study of Wetting Properties of Silica-Poly (Acrylic Acid) Thin Film Coatings

Authors: Sevil Kaynar Turkoglu, Jinde Zhang, Jo Ann Ratto, Hanna Dodiuk, Samuel Kenig, Joey Mead

Abstract:

Superhydrophilic, crack-free thin film coatings based on silica nanoparticles were fabricated by dip-coating method. Both thermodynamic and dynamic effects on the wetting properties of the thin films were investigated by modifying the coating formulation via changing the particle-to-binder ratio and weight % of silica in solution. The formulated coatings were characterized by a number of analyses. Water contact angle (WCA) measurements were conducted for all coatings to characterize the surface wetting properties. Scanning electron microscope (SEM) images were taken to examine the morphology of the coating surface. Atomic force microscopy (AFM) analysis was done to study surface topography. The presence of hydrophilic functional groups and nano-scale roughness were found to be responsible for the superhydrophilic behavior of the films. In addition, surface chemistry, compared to surface roughness, was found to be a primary factor affecting the wetting properties of the thin film coatings.

Keywords: poly (acrylic acid), silica nanoparticles, superhydrophilic coatings, surface wetting

Procedia PDF Downloads 108
27922 Effects of Humidity and Silica Sand Particles on Vibration Generation by Friction Materials of Automotive Brake System

Authors: Mostafa M. Makrahy, Nouby M. Ghazaly, G. T. Abd el-Jaber

Abstract:

This paper presents the experimental study of vibration generated by friction materials of an automotive disc brake system using brake test rig. Effects of silica sand particles which are available on the road surface as an environmental condition with a size varied from 150 μm to 600 μm are evaluated. Also, the vibration of the brake disc is examined against the friction material in humidity environment conditions under variable rotational speed. The experimental results showed that the silica sand particles have significant contribution on the value of vibration amplitude which enhances with increasing the size of silica sand particles at different speed conditions. Also, it is noticed that the friction material is sensitive to humidity and the vibration magnitude increases under wet testing conditions. Moreover, it can be reported that with increasing the applied pressure and rotational speed of the braking system, the vibration amplitudes decrease for all cases.

Keywords: disc brake vibration, friction-induced vibration, silica sand particles, brake operational and environmental conditions

Procedia PDF Downloads 116
27921 Synthesis of Bimetallic Ti-Fe-SBA-15 Using Silatrane

Authors: Ratchadaporn Kaewmuang, Hussaya Maneesuwan, Thanyalak Chaisuwan, Sujitra Wongkasemjit

Abstract:

Mesoporous materials have been used in many applications, such as adsorbent and catalyst. SBA-15, a 2D hexagonal ordered mesoporous silica material, has not only high specific surface area, but also thicker wall, larger pore size, better hydrothermal stability, and mechanical properties than M41s. However, pure SBA-15 still lacks of redox properties. Therefore, bimetallic incorporation into framework is of interest since it can create new active sites. In this work, Ti-Fe-SBA-15 is studied and successfully synthesized via sol-gel process, using silatrane, FeCl3, and titanium (VI) isopropoxide as silica, iron, and titanium sources, respectively. The products are characterized by SAXD, FE-SEM, and N2 adsorption/desorption, DR-UV, and XRF.

Keywords: SBA-15, mesoporous silica, bimetallic, titanium, iron, silatrane

Procedia PDF Downloads 349
27920 Preparation of Biodiesel by Three Step Method Followed Purification by Various Silica Sources

Authors: Chanchal Mewar, Shikha Gangil, Yashwant Parihar, Virendra Dhakar, Bharat Modhera

Abstract:

Biodiesel was prepared from Karanja oil by three step methods: saponification, acidification and esterification. In first step, saponification was done in presence of methanol and KOH or NaOH with Karanja oil. During second step acidification, various acids such as H3PO4, HCl, H2SO4 were used as acid catalyst. In third step, esterification followed by purification was done with various silica sources as Ludox (colloidal silicate) and fumed silica gel. It was found that there was no significant change in density, kinematic viscosity, iodine number, acid value, saponification number, flash point, cloud point, pour point and cetane number after purification by these adsorbents. The objective of this research is the comparison among different adsorbents which were used for the purification of biodiesel. Ludox (colloidal silicate) and fumed silica gel were used as adsorbents for the removal of glycerin from biodiesel and evaluate the effectiveness of biodiesel purity. Furthermore, this study compared the results of distilled water washing also. It was observed that Ludox, fumed silica gel and distilled water produced yield about 93%, 91% and 83% respectively. Highest yield was obtained with Ludox at 100 oC temperature using H3PO4 as acid catalyst and NaOH as base catalyst with methanol, (3:1) alcohol to oil molar ratio in 90 min.

Keywords: biodiesel, three step method, purification, silica sources

Procedia PDF Downloads 470
27919 Morphological Characteristic of Hybrid Thin Films

Authors: Azyuni Aziz, Syed A. Malik, Shahrul Kadri Ayop, Fatin Hana Naning

Abstract:

Currently, organic-inorganic hybrid thin films have attracted researchers to explore them, where these thin films can give a lot of benefits. Hybrid thin films are thin films that consist of inorganic and organic materials. Inorganic and organic materials give high efficiency and low manufacturing cost in some applications such as solar cells application, furthermore, organic materials are environment-friendly. In this study, poly (3-hexylthiophene) was choosing as organic material which combined with inorganic nanoparticles, Cadmium Sulfide (CdS) quantum dots. Samples were prepared using new technique, Angle Lifting Deposition (ALD) at different weight percentage. All prepared samples were then characterized by Field Emission Scanning Electron Microscopy (FESEM) with Energy-dispersive X-ray spectroscopy (EDX) and Atomic Force Microscopy (AFM) to study surface of samples and determine their surface roughness. Results show that these inorganic nanoparticles have affected the surface of samples and surface roughness of samples increased due to increasing of weight percentage of CdS in the thin films samples.

Keywords: AFM, CdS, FESEM-EDX, hybrid thin films, P3HT

Procedia PDF Downloads 473
27918 Investigating the Application of Composting for Phosphorous Recovery from Alum Precipitated and Ferric Precipitated Sludge

Authors: Saba Vahedi, Qiuyan Yuan

Abstract:

A vast majority of small municipalities and First Nations communities in Manitoba operate facultative or aerated lagoons for wastewater treatment, and most of them use Ferric Chloride (FeCl3) or alum (usually in the form of Al2(SO4)3 ·18H2O) as coagulant for phosphorous removal. The insoluble particles that form during the coagulation process result in a massive volume of sludge which is typically left in the lagoons. Therefore, phosphorous, which is a valuable nutrient, is lost in the process. In this project, the complete recovery of phosphorous from the sludge that is produced in the process of phosphorous removal from wastewater lagoons by using a controlled composting process is investigated. Objective The main objective of this project is to compost alum precipitated sludge that is produced in the process of phosphorous removal in wastewater treatment lagoons in Manitoba. The ultimate goal is to have a product that will meet the characteristics of Class A biosolids in Canada. A number of parameters, including the bioavailability of nutrients in the composted sludge and the toxicity of the sludge, will be evaluated Investigating the bioavailability of phosphorous in the final compost product. The compost will be used as a source of P compared to a commercial fertilizer (monoammonium phosphate MAP) Experimental setup Three different batches of composts piles have been run using the Alum sludge and Ferric sludge. The alum phosphate sludge was collected from an innovative phosphorous removal system at the RM of Taché . The collected sludge was sent to ALS laboratory to analyze the C/N ratio, TP, TN, TC, TAl, moisture contents, pH, and metals concentrations. Wood chips as the bulking agent were collected at the RM of Taché landfill The sludge in the three piles were mixed with 3x dry woodchips. The mixture was turned every week manually. The temperature, the moisture content, and pH were monitored twice a week. The temperature of the mixtures was remained above 55 °C for two weeks. Each pile was kept for ten weeks to get mature. The final products have been applied to two different plants to investigate the bioavailability of P in the compost product as well as the toxicity of the product. The two types of plants were selected based on their sensitivity, growth time, and their compatibility with the Manitoba climate, which are Canola, and switchgrass. The pots are weighed and watered every day to replenish moisture lost by evapotranspiration. A control experiment is also conducted by using topsoil soil and chemical fertilizers (MAP). The experiment will be carried out in a growth room maintained at a day/night temperature regime of 25/15°C, a relative humidity of 60%, and a corresponding photoperiod of 16 h. A total of three cropping (seeding to harvest) cycles need be completed, with each cycle at 50 d in duration. Harvested biomass must be weighed and oven-dried for 72 h at 60°C. The first cycle of growth Canola and Switchgrasses in the alum sludge compost, harvested at the day 50, oven dried, chopped into bits and fine ground in a mill grinder (< 0.2mm), and digested using the wet oxidation method in which plant tissue samples were digested with H2SO4 (99.7%) and H2O2 (30%) in an acid block digester. The digested plant samples need to be analyzed to measure the amount of total phosphorus.

Keywords: wastewater treatment, phosphorus removal, composting alum sludge, bioavailibility of pohosphorus

Procedia PDF Downloads 48
27917 A Comparative Analysis of the Private and Social Benefit-Cost Ratios of Organic and Inorganic Rice Farming: Case Study of Smallholder Farmers in the Aveyime Community, Ghana

Authors: Jerome E. Abiemo, Takeshi Mizunoya

Abstract:

The Aveyime community in the Volta region of Ghana is one of the major hubs for rice production. In the past, rice farmers applied organic pesticides to control pests, and compost as a soil amendment to improve fertility and productivity. However, the introduction of chemical pesticides and fertilizers have led many farmers to convert to inorganic system of rice production, without considering the social costs (e.g. groundwater contamination and health costs) related to the use of pesticides. The study estimates and compares the private and social BCRs of organic and inorganic systems of rice production. Both stratified and simple random sampling techniques were employed to select 300 organic and inorganic rice farmers and 50 pesticide applicators. The respondents were interviewed with pre-tested questionnaires. The Contingent Valuation Method (CVM) which elucidates organic farmers` Willingness-to-Pay (WTP) was employed to estimate the cost of groundwater contamination. The Cost of Illness (COI) analysis was used to estimate the health cost of pesticide-induced poisoning of applicators. The data collated, was analyzed with the aid of Microsoft excel. The study found that high private benefit (e.g. increase in farm yield and income) was the most influential factor for the rapid adoption of pesticides among rice farmers. The study also shows that the social costs of inorganic rice production were high. As such the social BCR of inorganic farming (0.2) was low as compared to organic farming (0.7). Based on the results, it was recommended that government should impose pesticide environmental tax, review current agricultural policies to favour organic farming and promote extension education to farmers on pesticide risk, to ensure agricultural and environmental sustainability.

Keywords: benefit-cost-ratio (BCR), inorganic farming, pesticides, social cost

Procedia PDF Downloads 446
27916 Investigation of Zeolite and Silica Fume Addition on Durability of Cement Composites

Authors: Martina Kovalcikova, Adriana Estokova

Abstract:

Today, concrete belongs to the most frequently used materials in the civil engineering industry for many years. Consuming energy in cement industry is very high and CO₂ emissions generated during the production of Portland cement has serious environmental threatens. Therefore, utilization of pozzolanic material as a supplementary cementitious material has a direct relationship with the sustainable development. The paper presents the results of the comparative study of the resistance of the Slovak origin zeolite based cement composites with addition of silica fume exposed to the sulfate environment. The various aggressive media were used for the experiment: sulfuric acid with pH 4, distilled water and magnesium sulfate solution with a concentration of 3 g/L of SO₄²−. The laboratory experiment proceeded during 180 days under model conditions. The changes in the elemental concentrations of calcium and silicon in liquid leachates were observed.

Keywords: concrete, leaching, silica fume, sulfuric acid, zeolite

Procedia PDF Downloads 236
27915 Micro-Filtration with an Inorganic Membrane

Authors: Benyamina, Ouldabess, Bensalah

Abstract:

The aim of this study is to use membrane technique for filtration of a coloring solution. the preparation of the micro-filtration membranes is based on a natural clay powder with a low cost, deposited on macro-porous ceramic supports. The micro-filtration membrane provided a very large permeation flow. Indeed, the filtration effectiveness of membrane was proved by the total discoloration of bromothymol blue solution with initial concentration of 10-3 mg/L after the first minutes.

Keywords: the inorganic membrane, micro-filtration, coloring solution, natural clay powder

Procedia PDF Downloads 480
27914 Study of Waveguide Silica Glasses by Raman Spectroscopy

Authors: Mohamed Abdelmounim Bakkali, Mustapha El Mataouy, Abellatif Aaliti, Mouhamed Khaddor

Abstract:

In the paper, we study the effects of introducing hafnium oxide on Raman spectra of silica glass planar waveguide activated by 0.3 mol% Er3+ ions. This work compares Raman spectra measured for three thin films deposited on silicon substrate. The films were prepared with different molar ratio of Si/Hf using sol-gel method and deposited by dip coating technique. The effect of hafnium oxide incorporation on the waveguides shows the evolution of the structure of this material. This structural information is useful to understand the luminescence intensity by means of ion–ion interaction mechanisms.

Keywords: optical amplifiers, non-bridging oxygen, erbium, sol-gel, waveguide, silica-hafnia

Procedia PDF Downloads 274
27913 Effect of Supplemental Bacterial Phytase at Different Dietary Levels of Phosphorus on Tibial Bone Characteristics and Body Weight Gain in Broilers

Authors: Saqib Saleem Abdullah, Saima Masood, Hafsa Zaneb, Shela Gul Bokhari, Muti Ur Rehman, Jamil Akbar

Abstract:

A 5- weeks feeding trial was carried out to determine the effectiveness of Bacterial Phytase (Phyzyme®) in broilers, at different dietary levels of Phosphorous. 140 d-old broilers (Hubbard) were randomly divided into 4 groups (n=4). Birds were fed corn-based basal diet or the same diet supplemented with 3 different levels of non Phytate Phosphorous (NPP) (0.45 %, 0.30 % and 0.15 %). Furthermore, the diets were supplemented with bacterial Phytase. Birds were fed ad libitum and kept under thermo neutral conditions. The parameters studied were; body weight gain (BWG), tibial bone characteristics (TBC), serum Calcium (Ca), Phosphorus (P) and Alkaline Phosphatase (AP) levels and tibia ash percentage (TAP). BWG of the broilers was calculated at weekly interval and remaining parameters were calculated after slaughtering the birds at 35thday. Results suggested that Phytase supplementation at 0.30% NPP (Non Phytate Phosphorus + Bacterial Phytase) increased (P < 0.05) the BWG, bone length, bone weight, tibiotarsal index, medullary canal diameter and diaphysis diameter however, rubosticity index was reduced to minimum (P < 0.05) at this dietary level of phosphorous when compared with other groups. Maximum (P < 0.05) rubosticity index was observed in control group with 0% Phytase. Furthermore, Phytase addition at 0.30 % NPP also improved (P < 0.05) Ca, P and AP levels in the blood. Phytase supplementation at lower phosphorus level (0.30%NPP) improved BWG and TBC including bone density and bone quality in broilers hence it can be concluded that addition of Phytase at 0.30% NPP may prove beneficial for bone and overall performance in broilers.

Keywords: diaphysis diameter, phytase, rubosticity index, tibia

Procedia PDF Downloads 368
27912 Synthesis of Microporous Interconnected Polymeric Foam of Poly (Glycidyl Methacrylate-Co-Divinylbenzene-Co-Butyl Acrylate) by Using Aqueous Foam as a Template

Authors: A. A. Gadgeel, S. T. Mhaske

Abstract:

Hexadecyltrimethylammonium bromide (HTAB) modified nano silica were used as pore stabilizer for the preparation of interconnected macroporous copolymer foam of glycidyl methacrylate (GMA), divinylbenzene (DVB) and tert-butyl acrylate (BA). The polymerization of air infused aqueous foam is carried out through free radical thermal initiator. The porosity of the polymerized foam depends on the concentration of HTAB used to control the hydrophobic and hydrophilic behavior of silica nanoparticle. Modified silica particle results to form closed cell foam with 74% of porosity for 60% of air infusion during aqueous foaming. The preliminary structure of microfoam was observed through optical microscopy, whereas for a better understanding of morphology SEM was used. The proposed route is an eco-friendly route for synthesizing polymeric microporous polymer as compared to other chemical and additive-based routes available.

Keywords: air-infused, interconnected microporous, porosity, aqueous foam

Procedia PDF Downloads 89