Search results for: perceptual linear prediction (PLP’s)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5478

Search results for: perceptual linear prediction (PLP’s)

5478 The Combination of the Mel Frequency Cepstral Coefficients (MFCC), Perceptual Linear Prediction (PLP), JITTER and SHIMMER Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech

Authors: Brahim-Fares Zaidi, Malika Boudraa, Sid-Ahmed Selouani

Abstract:

Our work aims to improve our Automatic Recognition System for Dysarthria Speech (ARSDS) based on the Hidden Models of Markov (HMM) and the Hidden Markov Model Toolkit (HTK) to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients (MFCC's) and Perceptual Linear Prediction (PLP's) and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers.

Keywords: hidden Markov model toolkit (HTK), hidden models of Markov (HMM), Mel-frequency cepstral coefficients (MFCC), perceptual linear prediction (PLP’s)

Procedia PDF Downloads 160
5477 The Combination of the Mel Frequency Cepstral Coefficients, Perceptual Linear Prediction, Jitter and Shimmer Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech

Authors: Brahim Fares Zaidi

Abstract:

Our work aims to improve our Automatic Recognition System for Dysarthria Speech based on the Hidden Models of Markov and the Hidden Markov Model Toolkit to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients and Perceptual Linear Prediction and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers.

Keywords: ARSDS, HTK, HMM, MFCC, PLP

Procedia PDF Downloads 108
5476 Virtual Reality Based 3D Video Games and Speech-Lip Synchronization Superseding Algebraic Code Excited Linear Prediction

Authors: P. S. Jagadeesh Kumar, S. Meenakshi Sundaram, Wenli Hu, Yang Yung

Abstract:

In 3D video games, the dominance of production is unceasingly growing with a protruding level of affordability in terms of budget. Afterward, the automation of speech-lip synchronization technique is customarily onerous and has advanced a critical research subject in virtual reality based 3D video games. This paper presents one of these automatic tools, precisely riveted on the synchronization of the speech and the lip movement of the game characters. A robust and precise speech recognition segment that systematized with Algebraic Code Excited Linear Prediction method is developed which unconventionally delivers lip sync results. The Algebraic Code Excited Linear Prediction algorithm is constructed on that used in code-excited linear prediction, but Algebraic Code Excited Linear Prediction codebooks have an explicit algebraic structure levied upon them. This affords a quicker substitute to the software enactments of lip sync algorithms and thus advances the superiority of service factors abridged production cost.

Keywords: algebraic code excited linear prediction, speech-lip synchronization, video games, virtual reality

Procedia PDF Downloads 473
5475 An Improved Prediction Model of Ozone Concentration Time Series Based on Chaotic Approach

Authors: Nor Zila Abd Hamid, Mohd Salmi M. Noorani

Abstract:

This study is focused on the development of prediction models of the Ozone concentration time series. Prediction model is built based on chaotic approach. Firstly, the chaotic nature of the time series is detected by means of phase space plot and the Cao method. Then, the prediction model is built and the local linear approximation method is used for the forecasting purposes. Traditional prediction of autoregressive linear model is also built. Moreover, an improvement in local linear approximation method is also performed. Prediction models are applied to the hourly ozone time series observed at the benchmark station in Malaysia. Comparison of all models through the calculation of mean absolute error, root mean squared error and correlation coefficient shows that the one with improved prediction method is the best. Thus, chaotic approach is a good approach to be used to develop a prediction model for the Ozone concentration time series.

Keywords: chaotic approach, phase space, Cao method, local linear approximation method

Procedia PDF Downloads 329
5474 Monthly River Flow Prediction Using a Nonlinear Prediction Method

Authors: N. H. Adenan, M. S. M. Noorani

Abstract:

River flow prediction is an essential to ensure proper management of water resources can be optimally distribute water to consumers. This study presents an analysis and prediction by using nonlinear prediction method involving monthly river flow data in Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The phase space reconstruction involves the reconstruction of one-dimensional (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. Revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) have been employed to compare prediction performance for nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show the prediction results using nonlinear prediction method is better than ARIMA and SVM. Therefore, the result of this study could be used to developed an efficient water management system to optimize the allocation water resources.

Keywords: river flow, nonlinear prediction method, phase space, local linear approximation

Procedia PDF Downloads 409
5473 Research on Perceptual Features of Couchsurfers on New Hospitality Tourism Platform Couchsurfing

Authors: Yuanxiang Miao

Abstract:

This paper aims to examine the perceptual features of couchsurfers on a new hospitality tourism platform, the free homestay website couchsurfing. As a local host, the author has accepted 61 couchsurfers in Kyoto, Japan, and attempted to figure out couchsurfers' characteristics on perception by hosting them. Moreover, the methodology of this research is mainly based on in-depth interviews, by talking with couchsurfers, observing their behaviors, doing questionnaires, etc. Five dominant perceptual features of couchsurfers were identified: (1) Trusting; (2) Meeting; (3) Sharing; (4) Reciprocity; (5) Worries. The value of this research lies in figuring out a deeper understanding of the perceptual features of couchsurfers, and the author indeed hosted and stayed with 61 couchsurfers from 30 countries and areas over one year. Lastly, the author offers practical suggestions for future research.

Keywords: couchsurfing, depth interview, hospitality tourism, perceptual features

Procedia PDF Downloads 145
5472 Perceptual Organization within Temporal Displacement

Authors: Michele Sinico

Abstract:

The psychological present has an actual extension. When a sequence of instantaneous stimuli falls in this short interval of time, observers perceive a compresence of events in succession and the temporal order depends on the qualitative relationships between the perceptual properties of the events. Two experiments were carried out to study the influence of perceptual grouping, with and without temporal displacement, on the duration of auditory sequences. The psychophysical method of adjustment was adopted. The first experiment investigated the effect of temporal displacement of a white noise on sequence duration. The second experiment investigated the effect of temporal displacement, along the pitch dimension, on temporal shortening of sequence. The results suggest that the temporal order of sounds, in the case of temporal displacement, is organized along the pitch dimension.

Keywords: time perception, perceptual present, temporal displacement, Gestalt laws of perceptual organization

Procedia PDF Downloads 250
5471 To Estimate the Association between Visual Stress and Visual Perceptual Skills

Authors: Vijay Reena Durai, Krithica Srinivasan

Abstract:

Introduction: The two fundamental skills involved in the growth and wellbeing of any child can be categorized into visual motor and perceptual skills. Visual stress is a disorder which is characterized by visual discomfort, blurred vision, misspelling words, skipping lines, letters bunching together. There is a need to understand the deficits in perceptual skills among children with visual stress. Aim: To estimate the association between visual stress and visual perceptual skills Objective: To compare visual perceptual skills of children with and without visual stress Methodology: Children between 8 to 15 years of age participated in this cross-sectional study. All children with monocular visual acuity better than or equal to 6/6 were included. Visual perceptual skills were measured using test for visual perceptual skills (TVPS) tool. Reading speed was measured with the chosen colored overlay using Wilkins reading chart and pattern glare score was estimated using a 3cpd gratings. Visual stress was defined as change in reading speed of greater than or equal to 10% and a pattern glare score of greater than or equal to 4. Results: 252 children participated in this study and the male: female ratio of 3:2. Majority of the children preferred Magenta (28%) and Yellow (25%) colored overlay for reading. There was a significant difference between the two groups (MD=1.24±0.6) (p<0.04, 95% CI 0.01-2.43) only in the sequential memory skills. The prevalence of visual stress in this group was found to be 31% (n=78). Binary logistic regression showed that odds ratio of having poor visual perceptual skills was OR: 2.85 (95% CI 1.08-7.49) among children with visual stress. Conclusion: Children with visual stress are found to have three times poorer visual perceptual skills than children without visual stress.

Keywords: visual stress, visual perceptual skills, colored overlay, pattern glare

Procedia PDF Downloads 386
5470 Blood Glucose Measurement and Analysis: Methodology

Authors: I. M. Abd Rahim, H. Abdul Rahim, R. Ghazali

Abstract:

There is numerous non-invasive blood glucose measurement technique developed by researchers, and near infrared (NIR) is the potential technique nowadays. However, there are some disagreements on the optimal wavelength range that is suitable to be used as the reference of the glucose substance in the blood. This paper focuses on the experimental data collection technique and also the analysis method used to analyze the data gained from the experiment. The selection of suitable linear and non-linear model structure is essential in prediction system, as the system developed need to be conceivably accurate.

Keywords: linear, near-infrared (NIR), non-invasive, non-linear, prediction system

Procedia PDF Downloads 458
5469 Improving Perceptual Reasoning in School Children through Chess Training

Authors: Ebenezer Joseph, Veena Easvaradoss, S. Sundar Manoharan, David Chandran, Sumathi Chandrasekaran, T. R. Uma

Abstract:

Perceptual reasoning is the ability that incorporates fluid reasoning, spatial processing, and visual motor integration. Several theories of cognitive functioning emphasize the importance of fluid reasoning. The ability to manipulate abstractions and rules and to generalize is required for reasoning tasks. This study, funded by the Cognitive Science Research Initiative, Department of Science and Technology, Government of India, analyzed the effect of 1-year chess training on the perceptual reasoning of children. A pretest–posttest with control group design was used, with 43 (28 boys, 15 girls) children in the experimental group and 42 (26 boys, 16 girls) children in the control group. The sample was selected from children studying in two private schools from South India (grades 3 to 9), which included both the genders. The experimental group underwent weekly 1-hour chess training for 1 year. Perceptual reasoning was measured by three subtests of WISC-IV INDIA. Pre-equivalence of means was established. Further statistical analyses revealed that the experimental group had shown statistically significant improvement in perceptual reasoning compared to the control group. The present study clearly establishes a correlation between chess learning and perceptual reasoning. If perceptual reasoning can be enhanced in children, it could possibly result in the improvement of executive functions as well as the scholastic performance of the child.

Keywords: chess, cognition, intelligence, perceptual reasoning

Procedia PDF Downloads 355
5468 Agriculture Yield Prediction Using Predictive Analytic Techniques

Authors: Nagini Sabbineni, Rajini T. V. Kanth, B. V. Kiranmayee

Abstract:

India’s economy primarily depends on agriculture yield growth and their allied agro industry products. The agriculture yield prediction is the toughest task for agricultural departments across the globe. The agriculture yield depends on various factors. Particularly countries like India, majority of agriculture growth depends on rain water, which is highly unpredictable. Agriculture growth depends on different parameters, namely Water, Nitrogen, Weather, Soil characteristics, Crop rotation, Soil moisture, Surface temperature and Rain water etc. In our paper, lot of Explorative Data Analysis is done and various predictive models were designed. Further various regression models like Linear, Multiple Linear, Non-linear models are tested for the effective prediction or the forecast of the agriculture yield for various crops in Andhra Pradesh and Telangana states.

Keywords: agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models

Procedia PDF Downloads 312
5467 Behind Fuzzy Regression Approach: An Exploration Study

Authors: Lavinia B. Dulla

Abstract:

The exploration study of the fuzzy regression approach attempts to present that fuzzy regression can be used as a possible alternative to classical regression. It likewise seeks to assess the differences and characteristics of simple linear regression and fuzzy regression using the width of prediction interval, mean absolute deviation, and variance of residuals. Based on the simple linear regression model, the fuzzy regression approach is worth considering as an alternative to simple linear regression when the sample size is between 10 and 20. As the sample size increases, the fuzzy regression approach is not applicable to use since the assumption regarding large sample size is already operating within the framework of simple linear regression. Nonetheless, it can be suggested for a practical alternative when decisions often have to be made on the basis of small data.

Keywords: fuzzy regression approach, minimum fuzziness criterion, interval regression, prediction interval

Procedia PDF Downloads 297
5466 Reliability Prediction of Tires Using Linear Mixed-Effects Model

Authors: Myung Hwan Na, Ho- Chun Song, EunHee Hong

Abstract:

We widely use normal linear mixed-effects model to analysis data in repeated measurement. In case of detecting heteroscedasticity and the non-normality of the population distribution at the same time, normal linear mixed-effects model can give improper result of analysis. To achieve more robust estimation, we use heavy tailed linear mixed-effects model which gives more exact and reliable analysis conclusion than standard normal linear mixed-effects model.

Keywords: reliability, tires, field data, linear mixed-effects model

Procedia PDF Downloads 563
5465 Auteur 3D Filmmaking: From Hitchcock’s Protrusion Technique to Godard’s Immersion Aesthetic

Authors: Delia Enyedi

Abstract:

Throughout film history, the regular return of 3D cinema has been discussed in connection to crises caused by the advent of television or the competition of the Internet. In addition, the three waves of stereoscopic 3D (from 1952 up to 1983) and its current digital version have been blamed for adding a challenging technical distraction to the viewing experience. By discussing the films Dial M for Murder (1954) and Goodbye to Language (2014), the paper aims to analyze the response of recognized auteurs to the use of 3D techniques in filmmaking. For Alfred Hitchcock, the solution to attaining perceptual immersion paradoxically resided in restraining the signature effect of 3D, namely protrusion. In Jean-Luc Godard’s vision, 3D techniques allowed him to explore perceptual absorption by means of depth of field, for which he had long advocated as being central to cinema. Thus, both directors contribute to the foundation of an auteur aesthetic in 3D filmmaking.

Keywords: Alfred Hitchcock, authorship, 3D filmmaking, Jean-Luc Godard, perceptual absorption, perceptual immersion

Procedia PDF Downloads 289
5464 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification

Authors: Ishapathik Das

Abstract:

The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.

Keywords: model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs

Procedia PDF Downloads 391
5463 Discrete State Prediction Algorithm Design with Self Performance Enhancement Capacity

Authors: Smail Tigani, Mohamed Ouzzif

Abstract:

This work presents a discrete quantitative state prediction algorithm with intelligent behavior making it able to self-improve some performance aspects. The specificity of this algorithm is the capacity of self-rectification of the prediction strategy before the final decision. The auto-rectification mechanism is based on two parallel mathematical models. In one hand, the algorithm predicts the next state based on event transition matrix updated after each observation. In the other hand, the algorithm extracts its residues trend with a linear regression representing historical residues data-points in order to rectify the first decision if needs. For a normal distribution, the interactivity between the two models allows the algorithm to self-optimize its performance and then make better prediction. Designed key performance indicator, computed during a Monte Carlo simulation, shows the advantages of the proposed approach compared with traditional one.

Keywords: discrete state, Markov Chains, linear regression, auto-adaptive systems, decision making, Monte Carlo Simulation

Procedia PDF Downloads 497
5462 Perceptual and Ultrasound Articulatory Training Effects on English L2 Vowels Production by Italian Learners

Authors: I. Sonia d’Apolito, Bianca Sisinni, Mirko Grimaldi, Barbara Gili Fivela

Abstract:

The American English contrast /ɑ-ʌ/ (cop-cup) is difficult to be produced by Italian learners since they realize L2-/ɑ-ʌ/ as L1-/ɔ-a/ respectively, due to differences in phonetic-phonological systems and also in grapheme-to-phoneme conversion rules. In this paper, we try to answer the following research questions: Can a short training improve the production of English /ɑ-ʌ/ by Italian learners? Is a perceptual training better than an articulatory (ultrasound - US) training? Thus, we compare a perceptual training with an US articulatory one to observe: 1) the effects of short trainings on L2-/ɑ-ʌ/ productions; 2) if the US articulatory training improves the pronunciation better than the perceptual training. In this pilot study, 9 Salento-Italian monolingual adults participated: 3 subjects performed a 1-hour perceptual training (ES-P); 3 subjects performed a 1-hour US training (ES-US); and 3 control subjects did not receive any training (CS). Verbal instructions about the phonetic properties of L2-/ɑ-ʌ/ and L1-/ɔ-a/ and their differences (representation on F1-F2 plane) were provided during both trainings. After these instructions, the ES-P group performed an identification training based on the High Variability Phonetic Training procedure, while the ES-US group performed the articulatory training, by means of US video of tongue gestures in L2-/ɑ-ʌ/ production and dynamic view of their own tongue movements and position using a probe under their chin. The acoustic data were analyzed and the first three formants were calculated. Independent t-tests were run to compare: 1) /ɑ-ʌ/ in pre- vs. post-test respectively; /ɑ-ʌ/ in pre- and post-test vs. L1-/a-ɔ/ respectively. Results show that in the pre-test all speakers realize L2-/ɑ-ʌ/ as L1-/ɔ-a/ respectively. Contrary to CS and ES-P groups, the ES-US group in the post-test differentiates the L2 vowels from those produced in the pre-test as well as from the L1 vowels, although only one ES-US subject produces both L2 vowels accurately. The articulatory training seems more effective than the perceptual one since it favors the production of vowels in the correct direction of L2 vowels and differently from the similar L1 vowels.

Keywords: L2 vowel production, perceptual training, articulatory training, ultrasound

Procedia PDF Downloads 256
5461 Perceptual Learning with Hand-Eye Coordination as an Effective Tool for Managing Amblyopia: A Prospective Study

Authors: Anandkumar S. Purohit

Abstract:

Introduction: Amblyopia is a serious condition resulting in monocular impairment of vision. Although traditional treatment improves vision, we attempted the results of perceptual learning in this study. Methods: The prospective cohort study included all patients with amblyopia who were subjected to perceptual learning. The presenting data on vision, stereopsis, and contrast sensitivity were documented in a pretested online format, and the pre‑ and post‑treatment information was compared using descriptive, cross‑tabulation, and comparative methods on SPSS 22. Results: The cohort consisted of 47 patients (23 females and 24 males) with a mean age of 14.11 ± 7.13 years. A significant improvement was detected in visual acuity after the PL sessions, and the median follow‑up period was 17 days. Stereopsis improved significantly in all age groups. Conclusion: PL with hand-eye coordination is an effective method for managing amblyopia. This approach can improve vision in all age groups.

Keywords: amblyopia, perceptual learning, hand-eye coordination, visual acuity, stereopsis, contrast sensitivity, ophthalmology

Procedia PDF Downloads 25
5460 Dry Relaxation Shrinkage Prediction of Bordeaux Fiber Using a Feed Forward Neural

Authors: Baeza S. Roberto

Abstract:

The knitted fabric suffers a deformation in its dimensions due to stretching and tension factors, transverse and longitudinal respectively, during the process in rectilinear knitting machines so it performs a dry relaxation shrinkage procedure and thermal action of prefixed to obtain stable conditions in the knitting. This paper presents a dry relaxation shrinkage prediction of Bordeaux fiber using a feed forward neural network and linear regression models. Six operational alternatives of shrinkage were predicted. A comparison of the results was performed finding neural network models with higher levels of explanation of the variability and prediction. The presence of different reposes are included. The models were obtained through a neural toolbox of Matlab and Minitab software with real data in a knitting company of Southern Guanajuato. The results allow predicting dry relaxation shrinkage of each alternative operation.

Keywords: neural network, dry relaxation, knitting, linear regression

Procedia PDF Downloads 584
5459 3D Printing Perceptual Models of Preference Using a Fuzzy Extreme Learning Machine Approach

Authors: Xinyi Le

Abstract:

In this paper, 3D printing orientations were determined through our perceptual model. Some FDM (Fused Deposition Modeling) 3D printers, which are widely used in universities and industries, often require support structures during the additive manufacturing. After removing the residual material, some surface artifacts remain at the contact points. These artifacts will damage the function and visual effect of the model. To prevent the impact of these artifacts, we present a fuzzy extreme learning machine approach to find printing directions that avoid placing supports in perceptually significant regions. The proposed approach is able to solve the evaluation problem by combing both the subjective knowledge and objective information. Our method combines the advantages of fuzzy theory, auto-encoders, and extreme learning machine. Fuzzy set theory is applied for dealing with subjective preference information, and auto-encoder step is used to extract good features without supervised labels before extreme learning machine. An extreme learning machine method is then developed successfully for training and learning perceptual models. The performance of this perceptual model will be demonstrated on both natural and man-made objects. It is a good human-computer interaction practice which draws from supporting knowledge on both the machine side and the human side.

Keywords: 3d printing, perceptual model, fuzzy evaluation, data-driven approach

Procedia PDF Downloads 438
5458 Estimation of Functional Response Model by Supervised Functional Principal Component Analysis

Authors: Hyon I. Paek, Sang Rim Kim, Hyon A. Ryu

Abstract:

In functional linear regression, one typical problem is to reduce dimension. Compared with multivariate linear regression, functional linear regression is regarded as an infinite-dimensional case, and the main task is to reduce dimensions of functional response and functional predictors. One common approach is to adapt functional principal component analysis (FPCA) on functional predictors and then use a few leading functional principal components (FPC) to predict the functional model. The leading FPCs estimated by the typical FPCA explain a major variation of the functional predictor, but these leading FPCs may not be mostly correlated with the functional response, so they may not be significant in the prediction for response. In this paper, we propose a supervised functional principal component analysis method for a functional response model with FPCs obtained by considering the correlation of the functional response. Our method would have a better prediction accuracy than the typical FPCA method.

Keywords: supervised, functional principal component analysis, functional response, functional linear regression

Procedia PDF Downloads 73
5457 SEMCPRA-Sar-Esembled Model for Climate Prediction in Remote Area

Authors: Kamalpreet Kaur, Renu Dhir

Abstract:

Climate prediction is an essential component of climate research, which helps evaluate possible effects on economies, communities, and ecosystems. Climate prediction involves short-term weather prediction, seasonal prediction, and long-term climate change prediction. Climate prediction can use the information gathered from satellites, ground-based stations, and ocean buoys, among other sources. The paper's four architectures, such as ResNet50, VGG19, Inception-v3, and Xception, have been combined using an ensemble approach for overall performance and robustness. An ensemble of different models makes a prediction, and the majority vote determines the final prediction. The various architectures such as ResNet50, VGG19, Inception-v3, and Xception efficiently classify the dataset RSI-CB256, which contains satellite images into cloudy and non-cloudy. The generated ensembled S-E model (Sar-ensembled model) provides an accuracy of 99.25%.

Keywords: climate, satellite images, prediction, classification

Procedia PDF Downloads 72
5456 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements

Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva

Abstract:

The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% at 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes have been designed, three as conventional concretes for three grades under discussion and fifteen as HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines i.e. IS: 10262. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave One Out Validation (LOOV) methods.

Keywords: high performance concrete, fly ash, concrete mixes, compressive strength, strength prediction models, linear regression, ANN

Procedia PDF Downloads 440
5455 Prediction of Marijuana Use among Iranian Early Youth: an Application of Integrative Model of Behavioral Prediction

Authors: Mehdi Mirzaei Alavijeh, Farzad Jalilian

Abstract:

Background: Marijuana is the most widely used illicit drug worldwide, especially among adolescents and young adults, which can cause numerous complications. The aim of this study was to determine the pattern, motivation use, and factors related to marijuana use among Iranian youths based on the integrative model of behavioral prediction Methods: A cross-sectional study was conducted among 174 youths marijuana user in Kermanshah County and Isfahan County, during summer 2014 which was selected with the convenience sampling for participation in this study. A self-reporting questionnaire was applied for collecting data. Data were analyzed by SPSS version 21 using bivariate correlations and linear regression statistical tests. Results: The mean marijuana use of respondents was 4.60 times at during week [95% CI: 4.06, 5.15]. Linear regression statistical showed, the structures of integrative model of behavioral prediction accounted for 36% of the variation in the outcome measure of the marijuana use at during week (R2 = 36% & P < 0.001); and among them attitude, marijuana refuse, and subjective norms were a stronger predictors. Conclusion: Comprehensive health education and prevention programs need to emphasize on cognitive factors that predict youth’s health-related behaviors. Based on our findings it seems, designing educational and behavioral intervention for reducing positive belief about marijuana, marijuana self-efficacy refuse promotion and reduce subjective norms encourage marijuana use has an effective potential to protect youths marijuana use.

Keywords: marijuana, youth, integrative model of behavioral prediction, Iran

Procedia PDF Downloads 554
5454 Validation of the Linear Trend Estimation Technique for Prediction of Average Water and Sewerage Charge Rate Prices in the Czech Republic

Authors: Aneta Oblouková, Eva Vítková

Abstract:

The article deals with the issue of water and sewerage charge rate prices in the Czech Republic. The research is specifically focused on the analysis of the development of the average prices of water and sewerage charge rate in the Czech Republic in the years 1994-2021 and on the validation of the chosen methodology relevant for the prediction of the development of the average prices of water and sewerage charge rate in the Czech Republic. The research is based on data collection. The data for this research was obtained from the Czech Statistical Office. The aim of the paper is to validate the relevance of the mathematical linear trend estimate technique for the calculation of the predicted average prices of water and sewerage charge rates. The real values of the average prices of water and sewerage charge rates in the Czech Republic in the years 1994-2018 were obtained from the Czech Statistical Office and were converted into a mathematical equation. The same type of real data was obtained from the Czech Statistical Office for the years 2019-2021. Prediction of the average prices of water and sewerage charge rates in the Czech Republic in the years 2019-2021 were also calculated using a chosen method -a linear trend estimation technique. The values obtained from the Czech Statistical Office and the values calculated using the chosen methodology were subsequently compared. The research result is a validation of the chosen mathematical technique to be a suitable technique for this research.

Keywords: Czech Republic, linear trend estimation, price prediction, water and sewerage charge rate

Procedia PDF Downloads 120
5453 Genomic Prediction Reliability Using Haplotypes Defined by Different Methods

Authors: Sohyoung Won, Heebal Kim, Dajeong Lim

Abstract:

Genomic prediction is an effective way to measure the abilities of livestock for breeding based on genomic estimated breeding values, statistically predicted values from genotype data using best linear unbiased prediction (BLUP). Using haplotypes, clusters of linked single nucleotide polymorphisms (SNPs), as markers instead of individual SNPs can improve the reliability of genomic prediction since the probability of a quantitative trait loci to be in strong linkage disequilibrium (LD) with markers is higher. To efficiently use haplotypes in genomic prediction, finding optimal ways to define haplotypes is needed. In this study, 770K SNP chip data was collected from Hanwoo (Korean cattle) population consisted of 2506 cattle. Haplotypes were first defined in three different ways using 770K SNP chip data: haplotypes were defined based on 1) length of haplotypes (bp), 2) the number of SNPs, and 3) k-medoids clustering by LD. To compare the methods in parallel, haplotypes defined by all methods were set to have comparable sizes; in each method, haplotypes defined to have an average number of 5, 10, 20 or 50 SNPs were tested respectively. A modified GBLUP method using haplotype alleles as predictor variables was implemented for testing the prediction reliability of each haplotype set. Also, conventional genomic BLUP (GBLUP) method, which uses individual SNPs were tested to evaluate the performance of the haplotype sets on genomic prediction. Carcass weight was used as the phenotype for testing. As a result, using haplotypes defined by all three methods showed increased reliability compared to conventional GBLUP. There were not many differences in the reliability between different haplotype defining methods. The reliability of genomic prediction was highest when the average number of SNPs per haplotype was 20 in all three methods, implying that haplotypes including around 20 SNPs can be optimal to use as markers for genomic prediction. When the number of alleles generated by each haplotype defining methods was compared, clustering by LD generated the least number of alleles. Using haplotype alleles for genomic prediction showed better performance, suggesting improved accuracy in genomic selection. The number of predictor variables was decreased when the LD-based method was used while all three haplotype defining methods showed similar performances. This suggests that defining haplotypes based on LD can reduce computational costs and allows efficient prediction. Finding optimal ways to define haplotypes and using the haplotype alleles as markers can provide improved performance and efficiency in genomic prediction.

Keywords: best linear unbiased predictor, genomic prediction, haplotype, linkage disequilibrium

Procedia PDF Downloads 140
5452 The Interleaving Effect of Subject Matter and Perceptual Modality on Students’ Attention and Learning: A Portable EEG Study

Authors: Wen Chen

Abstract:

To investigate the interleaving effect of subject matter (mathematics vs. history) and perceptual modality (visual vs. auditory materials) on student’s attention and learning outcomes, the present study collected self-reported data on subjective cognitive load (SCL) and attention level, EEG data, and learning outcomes from micro-lectures. Eighty-one 7th grade students were randomly assigned to four learning conditions: blocked (by subject matter) micro-lectures with auditory textual information (B-A condition), blocked (by subject matter) micro-lectures with visual textual information (B-V condition), interleaved (by subject matter) micro-lectures with auditory textual information (I-A condition), and interleaved micro-lectures by both perceptual modality and subject matter (I-all condition). The results showed that although interleaved conditions may show advantages in certain indices, the I-all condition showed the best overall outcomes (best performance, low SCL, and high attention). This study suggests that interleaving by both subject matter and perceptual modality should be preferred in scheduling and planning classes.

Keywords: cognitive load, interleaving effect, micro-lectures, sustained attention

Procedia PDF Downloads 137
5451 Statistical Analysis with Prediction Models of User Satisfaction in Software Project Factors

Authors: Katawut Kaewbanjong

Abstract:

We analyzed a volume of data and found significant user satisfaction in software project factors. A statistical significance analysis (logistic regression) and collinearity analysis determined the significance factors from a group of 71 pre-defined factors from 191 software projects in ISBSG Release 12. The eight prediction models used for testing the prediction potential of these factors were Neural network, k-NN, Naïve Bayes, Random forest, Decision tree, Gradient boosted tree, linear regression and logistic regression prediction model. Fifteen pre-defined factors were truly significant in predicting user satisfaction, and they provided 82.71% prediction accuracy when used with a neural network prediction model. These factors were client-server, personnel changes, total defects delivered, project inactive time, industry sector, application type, development type, how methodology was acquired, development techniques, decision making process, intended market, size estimate approach, size estimate method, cost recording method, and effort estimate method. These findings may benefit software development managers considerably.

Keywords: prediction model, statistical analysis, software project, user satisfaction factor

Procedia PDF Downloads 123
5450 Prediction of B-Cell Epitope for 24 Mite Allergens: An in Silico Approach towards Epitope-Based Immune Therapeutics

Authors: Narjes Ebrahimi, Soheila Alyasin, Navid Nezafat, Hossein Esmailzadeh, Younes Ghasemi, Seyed Hesamodin Nabavizadeh

Abstract:

Immunotherapy with allergy vaccines is of great importance in allergen-specific immunotherapy. In recent years, B-cell epitope-based vaccines have attracted considerable attention and the prediction of epitopes is crucial to design these types of allergy vaccines. B-cell epitopes might be linear or conformational. The prerequisite for the identification of conformational epitopes is the information about allergens' tertiary structures. Bioinformatics approaches have paved the way towards the design of epitope-based allergy vaccines through the prediction of tertiary structures and epitopes. Mite allergens are one of the major allergy contributors. Several mite allergens can elicit allergic reactions; however, their structures and epitopes are not well established. So, B-cell epitopes of various groups of mite allergens (24 allergens in 6 allergen groups) were predicted in the present work. Tertiary structures of 17 allergens with unknown structure were predicted and refined with RaptorX and GalaxyRefine servers, respectively. The predicted structures were further evaluated by Rampage, ProSA-web, ERRAT and Verify 3D servers. Linear and conformational B-cell epitopes were identified with Ellipro, Bcepred, and DiscoTope 2 servers. To improve the accuracy level, consensus epitopes were selected. Fifty-four conformational and 133 linear consensus epitopes were predicted. Furthermore, overlapping epitopes in each allergen group were defined, following the sequence alignment of the allergens in each group. The predicted epitopes were also compared with the experimentally identified epitopes. The presented results provide valuable information for further studies about allergy vaccine design.

Keywords: B-cell epitope, Immunotherapy, In silico prediction, Mite allergens, Tertiary structure

Procedia PDF Downloads 159
5449 Automatic Flood Prediction Using Rainfall Runoff Model in Moravian-Silesian Region

Authors: B. Sir, M. Podhoranyi, S. Kuchar, T. Kocyan

Abstract:

Rainfall-runoff models play important role in hydrological predictions. However, the model is only one part of the process for creation of flood prediction. The aim of this paper is to show the process of successful prediction for flood event (May 15–May 18 2014). The prediction was performed by rainfall runoff model HEC–HMS, one of the models computed within Floreon+ system. The paper briefly evaluates the results of automatic hydrologic prediction on the river Olše catchment and its gages Český Těšín and Věřňovice.

Keywords: flood, HEC-HMS, prediction, rainfall, runoff

Procedia PDF Downloads 392